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Abstract: Zero-shot classification presents a challenge since it necessitates a model to categorize
images belonging to classes it has not encountered during its training phase. Previous research in
the field of remote sensing (RS) has explored this task by training image-based models on known RS
classes and then attempting to predict the outcomes for unfamiliar classes. Despite these endeavors,
the outcomes have proven to be less than satisfactory. In this paper, we propose an alternative
approach that leverages vision-language models (VLMs), which have undergone pre-training to grasp
the associations between general computer vision image-text pairs in diverse datasets. Specifically,
our investigation focuses on thirteen VLMs derived from Contrastive Language-Image Pre-Training
(CLIP/Open-CLIP) with varying levels of parameter complexity. In our experiments, we ascertain
the most suitable prompt for RS images to query the language capabilities of the VLM. Furthermore,
we demonstrate that the accuracy of zero-shot classification, particularly when using large CLIP
models, on three widely recognized RS scene datasets yields superior results compared to existing
RS solutions.

Keywords: Contrastive Language-Image Pre-Training models; remote sensing; zero-shot classification

1. Introduction

Scene classification is a fundamental research problem in remote sensing (RS) that
involves automatically classifying remotely sensed data into different land cover or land use
categories. This information is critical for a variety of applications, such as urban planning,
agriculture, natural resource management, and disaster response. Scene classification is
typically performed using a supervised learning approach, in which a model is trained on
a labeled dataset of RS images along with their corresponding labels. Nevertheless, these
models require a significant amount of labeled data for each RS class to be effective, which
can be challenging to obtain in RS due to the time-consuming, expensive, and specialized
nature of data collection.

To overcome this challenge, researchers have explored domain adaptation techniques
to leverage the knowledge learned from a source domain with available data to a target
domain in which the data is limited or unavailable [1]. More recently, researchers have
explored new learning paradigms such as few-shot learning and zero-shot learning for RS
scene classification [2]. Few-shot learning involves training a model on a small number of
labeled samples, whereas zero-shot learning involves predicting the class of a new image
into scene categories that were not observed during training. These approaches have shown
the potential to reduce the need for large amounts of labeled data, expand the range of
land cover or land use categories that can be classified, and improve the generalization
performance of the model.
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A common zero-shot learning technique is to leverage semantic information to enable
the classification of new classes without requiring labeled training data, which can be useful
in RS where new classes may emerge or existing classes may change over time. In this
context, vision-language models such as CLIP (Contrastive Language-Image Pre-Training)
can be used to learn the semantic relationship between the visual features of the images
and the textual descriptions of the scene categories, enabling them to generalize to new
categories without the need for explicit training on those categories. CLIP is trained on
a large dataset of image-text pairs to associate natural language descriptions with visual
concepts in a process known as contrastive learning. One of the key advantages of CLIP is
its ability to generalize to new tasks and classes without the need for additional training,
making it powerful and flexible enough to perform zero-shot learning. It is worth recalling
that these models have been successfully applied to RS tasks related to RS image-text
retrieval [3] and visual question answering [4,5].

This paper presents an extensive evaluation of large vision-language models, specif-
ically CLIP models, for zero-shot scene classification in RS. In this study, we investigate
the effectiveness of prompt engineering in enhancing the performance of these models by
identifying the most effective prompts for zero-shot RS scene classification. The results
of this investigation shed light on the potential of vision-language models and prompt
engineering techniques for improving the accuracy of scene classification in RS imagery. In
particular, the experimental results show impressive results on three well-known RS scene
datasets by establishing new state-of-the-art zero-shot classification.

The remaining sections of the paper are organized as follows: we provide an overview
of related classification problems in the next section, followed by the presentation of
experimental results in Section 4, and finally, we conclude with our findings and outline
future directions in Section 5.

2. Related Work

In this section, we provide an overview of various works related to the fields of few-
shot and zero-shot learning. One of the earliest studies by Li et al. [2] introduces a method
that relies on Generative Adversarial Networks (GANs). They utilize the conditional
Wasserstein Generative Adversarial Network (WGAN) to produce image features. Given
the challenges posed by RS images, which exhibit both inter-class similarity and intra-
class diversity, they incorporate several constraints on the generator. These constraints
include a classification loss to maintain discrimination between different classes, and a
semantic regression component is employed to verify that the generated image features
accurately reflect semantic attributes. Additionally, a class-prototype loss is introduced
to encourage variation among the synthesized image features, preventing them from
becoming excessively uniform.

The work proposed by [6] introduces Class Adapting Principal Directions (CAPDs)
and an alignment process to transfer information from seen to unseen classes, incorporates
automatic selection of useful seen classes, adapts to few-shot learning, and generalizes
CAPDs to improve performance by using different learning scenarios. In contrast, the
methodology in [7] involves leveraging deep learning and meta-learning techniques to
address the challenge of classifying RS scenes with limited labeled data. The preliminary
results of this methodology have been reported using various RS scene datasets, indicat-
ing its potential effectiveness in few-shot learning. Another approach by Yang et al. [8]
focuses on scene image classification by constructing a new knowledge graph from scratch,
specifically designed for RS data. They create a semantic representation of scene categories
through representation learning. To achieve robust cross-modal matching between visual
features and semantic representations, they propose a deep alignment network with a series
of carefully designed optimization constraints. This network addresses both zero-shot and
generalized zero-shot remote sensing image scene classification.

Xiang Li et al. [9] introduce a VLM approach for RS scene classification, enhancing
feature representations and enabling improved zero-shot classification accuracy across
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multiple benchmark datasets. The authors in [10] highlight the vital role of few-shot
learning in addressing the data scarcity issue in RS image interpretation, a domain greatly
benefiting from deep learning. The study offers a comprehensive review, categorizes two
key few-shot learning methods, and outlines three primary applications, complete with
datasets and evaluation criteria. In [11], they address the challenge of few-shot classification
by introducing an approach based on the Earth Mover’s Distance with spatial and channel
attention modules.

Zhengwu Yuan [12] presents a solution for generating synthetic training data for
overhead object detection in satellite imagery, addressing challenges in acquiring real
data. The proposed solution demonstrates effectiveness in zero-shot and few-shot learning
scenarios and provides insights into design parameters while making its implementation
and experimental imagery details available for wider use.

Wang et al. [13] present a semantic autoencoder with distance constraints designed for
the task of zero-shot classification in RS scenes. They develop a semantic autoencoder for
known scene classes, aligning the visual and semantic spaces. To enhance the discriminative
capability of this semantic autoencoder, they introduce a discriminative distance metric
constraint, aiming to minimize distances between encoded vectors of samples from the
same class and maximize distances between samples from different classes.

In a different study, Quan and co-authors [14] suggest a zero-shot technique that relies
on Sammon embedding and spectral clustering. They employ a semi-supervised Sammon
embedding algorithm to modify semantic space prototypes to better align with visual
space prototypes, making it possible to synthesize unseen class prototypes effectively in
the visual space. This allows for the use of a nearest-neighbor method with these unseen
class prototypes to accomplish the classification task.

Li et al. [15] present a method for classifying RS scene images using the natural
language processing model Word2Vec to map the names of seen and unseen scene classes
to semantic vectors. They construct a semantic-directed graph based on these vectors to
describe relationships between unseen and seen classes. Knowledge transfer from seen to
unseen classes is facilitated through initial label predictions using an unsupervised domain
adaptation model. A label-propagation algorithm, aided by the semantic-directed graph
and initial predictions, is then employed for zero-shot scene classification. To mitigate noise
in zero-shot classification results, a label refinement approach based on sparse learning is
used, leveraging visual similarities among images within the same scene class.

Finally, Sumbul et al. [16] undertake a zero-shot investigation with a specific emphasis
on fine-grained recognition of RS images. They create a matching function and illustrate
the process of transferring knowledge to unfamiliar categories. However, it is noteworthy
that most of these methods primarily revolve around devising visual-semantic embedding
models that exclusively consider known classes. This limitation makes it challenging
to ensure effective extension to unseen classes. Additionally, models trained solely on
known data tend to misclassify unseen test instances into known categories, leading to a
pronounced imbalanced classification problem.

3. RS Zero-Shot Classification

In zero-shot classification, we are given only a test set D =
{

Ij
}N

j=1 composed of N

images, where each image is Ij ∈ ℜ224×224×3. The aim is to classify each Ij into one of the
following classes: c = {1, . . . , C}. As mentioned previously, we adopted the CLIP family
of models for carrying out this task. CLIP is a vision-language model composed of image
and text encoders. The text encoders are typically based on natural language processing
(NLP) transformers, while the vision backbone is based on CNNs (Convolutional Neural
Networks) or vision transformers.

Figure 1 shows an overall view of the proposed zero-shot classification for RS imagery.
Recall that we do not fine-tune these models at all on RS images; instead, they are frozen,
and we use them directly for classification only. Typically, the model consists of a parallel
vision and language encoders. The vision encoder embeds the test image I (for simplicity,
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we remove the subscript j) into a visual feature f (I). For the language encoder, we embed
all class names present in the dataset into a set of textual features: { f (Tc)}C

c=1. This is done
by appending the name of the classes present in the dataset, for example, to a predefined
prompt set in the CLIP model. For example, we append the name “airplane” to the prompt
“a photo of”, yielding the prompt “a photo of an airplane”. Next, we feed this prompt to
the language encoder to obtain the textual feature representation f (Tc) and compute the
cosine similarity score between the image representation and all textual representations
as follows:

sim(I, Tc) =
dot_product(f(I), f(Tc))

∥f(I)∥2∥f(Tc)∥2
, c = 1, . . . , C (1)

where ∥.∥2 refers to the l2-norm.
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Finally, we compute the probability for each class and assign the image to the class
yielding the maximum probability:

PC = Softmax(sim(I, Tc)), c = 1, . . . , C (2)

Since RS images possess unique characteristics and are acquired from top-view satel-
lites, we anticipate that utilizing more appropriate prompts can lead to improved results
compared to the predefined prompt ‘a photo of’. In this regard, we employ alterna-
tive prompts outlined in Table 1, incorporating terms related to RS, scene, and top-view.
Through our experiments, we demonstrate that utilizing these prompts can yield superior
results when compared to the original prompt defined by CLIP.

Table 1. Prompts used for the language model.

Prompt 1 class_name

Prompt 2 a photo of + class_name

Prompt 3 a remote sensing image of + class_name

Prompt 4 a top view image of + class_name

Prompt 5 a satellite image of + class_name

Prompt 6 a scene of + class_name

4. Experimental Results

In this section, we present the experimental results for vision-language models for
zero-shot classification of RS images. In Section 4.1, we describe the used dataset in addition
to the experiment setup; in Section 4.2, we show the results; and finally, in Section 4.3, we
compare our results against the SOTA.

4.1. Dataset Description and Experiments Setup

The Merced dataset comprises 21 categories of Earth scenes, each containing 100 RGB
images. These images, acquired from the United States Geological Survey (USGS) National
Map, have a ground resolution of 0.3 m and a size of 256 × 256 pixels [17]. Meanwhile, the
AID dataset encompasses 10,000 RGB images sourced from Google Earth, with 30 scene
classifications and a size of 600 × 600 pixels. The ground resolution for AID images varies
from 0.5 to 8 m [18]. The NWPU-RESISC45 dataset consists of 31,500 RS images grouped
into 45 categories, with each class containing 700 images extracted from Google Earth
imagery. These images have a size of 256 × 256 pixels, and their spatial resolution ranges
from 30 m to 0.2 m, with exceptions for certain classes [19]. Figure 2 displays samples from
these three datasets, and Table 2 summarizes the class count and images per class.

To assess the proposed approach’s effectiveness, we conducted a set of experiments
with all classes considered as unseen. Specifically, we regarded 21, 30, and 45 classes as
unseen for the Merced, AID, and NWPU datasets, respectively.

In this study, we explored 13 distinct models based on CNNs and Transformers.
We present the classification results in terms of overall accuracy (OA), representing the
percentage of correct classifications relative to the total number of images in each dataset,
along with class-specific accuracy.

The experiments were carried out using a computer with an Intel i9 processor, 64 GB RAM,
and an NVIDIA GeForce RTX GPU with 11 GB of memory.
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Table 2. RS datasets used in the experiments: (A) general statistics and (B) names of classes.

(A)

Dataset #Classes #Images

Merced 21 2100

AID 30 10,000

NWPU-RESISC45 45 31,500

(B)

Dataset #Classes

Merced

agricultural, airplane, baseballdiamond, beach, buildings,
chaparral, denseresidential, forest, freeway, golf course, harbor,

intersection, mediumresidential, mobilehomepark, overpass,
parkinglot, river, runway, sparseresidential, storagetanks,

tenniscourt

AID

airport, bare land, baseball field, beach, bridge, center pivot,
church, commercial area, dense residential, desert, farmland,

forest, industrial area, meadow, medium residential, mountain,
park, parking lot, playground, pond, port, railway station,

resort, river, school, sparse residential, square, stadium, storage
tanks, viaduct

NWPU-RESISC45

airplane, airport, baseball diamond, basketball court, beach,
bridge, chaparral, church, circular farmland, cloud, commercial

area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island,

lake, meadow, medium residential, mobile home park,
mountain, overpass, palace, parking lot, railway, railway station,
rectangular farmland, river, roundabout, runway, sea ice, ship,

snowberg, sparse residential, stadium, storage tank, tennis
court, terrace, thermal power station, and wetland.

4.2. Results

Table 3 shows the models investigated for zero-shot classification, while Table 4 shows
the OA zero-shot accuracy produced by the different CLIP/Open-CLIP models on the
three datasets. For Merced, the top three performing models for the six different prompt
templates are xlm-roberta-large, ViT-H-14 from Open-CLIP, and ViT-H-14 from CLIP, with
average accuracies of 77.00%, 72.00%, and 71.33%, respectively. For AID, xlm-roberta-large
followed by RN50x64 from CLIP and ViT-H-14 from Open-CLIP exhibit the best behavior,
yielding average accuracies of 68.33%, 62.33%, and 61.17%, respectively. For NWPU,
ViT-H-14 from Open-CLIP yields the highest average accuracy with 66.83%, followed by
convnext_large_d as well as from Open-CLIP and ViT-L-14 from CLIP with accuracies of
63.17% and 62.83%, respectively. However, we observe that xlm-roberta-large also yields
an accuracy of 62.50%, which is very close to ViT-L-14 from CLIP. By averaging the results
across the three datasets, we notice that the top three performing models are xlm-roberta-
large, ViT-H-14 from Open-CLIP, and ViT-L-14 from CLIP, confirming the generalization
ability of models with large parameters compared with models with a moderate or low
number of parameters. Figures 3–5 show the confusion matrix for used datasets obtained
by xlm-roberta-large and ViT-H-14.
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Table 3. Models investigated for zero-shot classification.

Model Type Model Name #Parameters (Millions)

CLIP

RN50-quickgelu 102.54 M

RN101-quickgelu 120.22 M

RN50x64 623.67 M

ViT-B-32 151.81 M

ViT-B-16 150.15 M

ViT-L-14 428.15 M

Open-CLIP

Convnext_base_w 179.92 M

Convnext_large_d 352.30 M

ViT-L-14’ 428.15 M

ViT-B-16’ 150.15 M

ViT-B-32’ 151.81 M

ViT-H-14’ 986.64 M

xlm-roberta-large 1.19 B

Table 4. Zero-shot classification results for (A) Merced, (B) AID, and (C) NWPU datasets.

(A)

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Average

Clip

RN50-quickgelu 48 46 49 46 48 51 48.00

RN101-
quickgelu 55 50 56 54 53 59 54.50

RN50x64 64 64 68 68 74 65 67.17

ViT-B-32 58 56 60 56 59 60 58.17

ViT-B-16 62 62 64 60 62 65 62.50

ViT-L-14 70 68 73 69 71 77 71.33

Open-Clip

convnext_base_w 54 53 60 58 60 60 57.50

convnext_large_d 62 67 69 64 70 71 67.17

ViT-L-14’ 60 58 65 62 63 62 61.67

ViT-B-16’ 52 54 54 56 60 51 54.50

ViT-B-32’ 45 54 48 51 56 47 50.17

ViT-H-14’ 67 65 76 72 73 79 72.00

xlm-roberta-
large 79 81 76 78 75 73 77.00

Average 58.08 58.08 61.83 59.67 62.42 62.25
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Table 4. Cont.

(B)

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Average

Clip

RN50-quickgelu 42 43 46 47 46 48 45.33

RN101-
quickgelu 50 48 54 52 54 54 52.00

RN50x64 59 59 65 62 69 60 62.33

ViT-B-32 49 50 57 55 54 55 53.33

ViT-B-16 54 55 64 59 61 63 59.33

ViT-L-14 59 56 63 61 63 61 60.50

Open-Clip

convnext_base_w 55 58 61 59 61 61 59.17

convnext_large_d 55 61 61 59 66 61 60.50

ViT-L-14’ 51 56 59 58 60 55 56.50

ViT-B-16’ 49 56 50 54 59 51 53.17

ViT-B-32’ 36 47 46 50 51 45 45.83

ViT-H-14’ 56 59 63 56 67 66 61.17

xlm-roberta-
large 66 69 67 69 70 69 68.33

Average 51.25 54.00 57.42 56.00 59.25 56.67

(C)

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Average

Clip

RN50-quickgelu 33 35 42 43 45 42 40.00

RN101-
quickgelu 41 48 54 53 50 53 49.83

RN50x64 57 57 60 62 64 61 60.17

ViT-B-32 45 46 57 53 51 55 51.17

ViT-B-16 44 51 61 58 58 60 55.33

ViT-L-14 59 59 65 63 64 67 62.83

Open-Clip

convnext_base_w 55 57 60 59 62 60 58.83

convnext_large_d 60 60 65 62 68 64 63.17

ViT-L-14’ 58 59 64 65 66 61 62.17

ViT-B-16’ 57 57 57 59 58 55 57.17

ViT-B-32’ 48 48 48 51 51 47 48.83

ViT-H-14’ 62 60 71 64 72 72 66.83

xlm-roberta-
large 59 62 63 63 66 62 62.50

Average 52.15 53.77 59.00 58.08 59.62 58.38
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The results presented in Table 1 shed light on the significance of employing RS-related
terms in the prompts, which consistently yield higher accuracy compared to CLIP’s original
prompt, “a photo of a <class_name>”. Notably, prompt template 5, “a satellite image of a
<class_name>”, emerges as particularly effective, demonstrating slightly superior average
accuracy across all three datasets.
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On a conclusive note, the top-performing models across the three datasets are identi-
fied as xlm-roberta-large and ViT-H-14 from Open-CLIP. Specifically, for the Merced dataset,
zero-shot overall accuracy (OA) reaches impressive levels of 75% and 73% (xlm-roberta-
large and ViT-H-14). Likewise, for the AID dataset, the accuracies are notably high at 70%
and 73%, and the NWPU dataset attains accuracies of 66% and 72%, further highlighting
the robust performance of these models.

To delve deeper into the nuances of zero-shot classification at the class level, we
provide a comprehensive view through confusion matrices for the Merced, AID, and
NWPU datasets. These matrices depict the performance of both xlm-roberta-large and
ViT-H-14, offering valuable insights. Remarkably, eleven classes in the Merced dataset,
eleven in the AID dataset, and fifteen in the NWPU dataset achieved classification accuracy
surpassing 90%.

Unveiling the challenges encountered, the Merced dataset exhibited particular diffi-
culty in distinguishing sparse residential scenes, often misclassified as intersections, while
dense residential scenes were sometimes confused with intersections or medium residential
areas. Additionally, building classes were occasionally misinterpreted as parking lots.

In the AID dataset, complexities emerged with dense and sparse residential categories
for xlm-roberta-large, while ViT-H-14 faced challenges with dense and medium residential
classes. Within the NWPU dataset, xlm-roberta-large grappled with the identification of
airplanes, ground track fields, and terrace scenes, while ViT-H-14 encountered hurdles with
meadows and medium and sparse residential classes.

These findings underscore the remarkable capabilities of vision-language models
(VLMs) in accurately classifying RS scenes despite their training in entirely distinct domains.
Nevertheless, further enhancements in analyzing and interpreting these results can offer
deeper insights into their implications and potential applications.

4.3. Comparison to Existing Solutions

In this section, we compare our results to the existing zero-shot solutions proposed for
RS scenes. Examples of such methods include those based on stacked autoencoders and
GANs. Table 5 shows the results for different unseen ratios for Merced, AID, and NWPU
datasets. It is worth recalling that while existing solutions use the seen classes for learning,
in our case, we do not use them at all. Instead, we simply classify the unseen classes using
VLMs. The results provided in the tables clearly confirm the great capabilities of VLMs in
performing zero-shot classification. VLMs significantly surpass the existing models and
establish new state-of-the-art results for all three datasets. In addition, we observe that
the larger the VLM, the better the obtained results. Indeed, these results show that larger
VLMs learn more complex relationships between images and text pairs. This improved
generalization ability is essential for zero-shot classification, as it allows VLMs to perform
well on classes they have not seen during training.

Table 5. Zero-shot classification accuracies with different unseen ratios. Unlike SOTA models, we use
VLMs for classifying unseen classes without training on the classes considered as seen. (A) Merced,
(B) AID, and (C) NWPU datasets.

(A)

Method 16/5 13/8 10/11 7/14 0/21

SSE [20] 35.59 ± 5.90 23.42 ± 3.81 17.07 ± 3.56 10.82 ± 2.10 -----

DMaP [21] 48.92 ± 8.71 30.91 ± 4.77 22.99 ± 4.81 17.3 ± 3.04 -----

SAE [22] 49.5 ± 8.42 32.71 ± 6.49 24.04 ± 4.36 18.63 ± 2.76 -----

ZSL-LP [15] 49.01 ± 8.85 31.26 ± 5.09 23.28 ± 4.13 17.55 ± 2.9 -----

VSOP [23] 46.48 ± 7.83 29.81 ± 4.56 21.97 ± 4.11 16.14 ± 2.59 -----

f-CLSWGAN [24] 56.97 ± 11.06 36.47 ± 6.28 27.89 ± 4.99 19.34 ± 3.96 -----
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Table 5. Cont.

CYCLEWGAN [25] 58.36 ± 10.04 36.81 ± 5.53 28.37 ± 4.53 21.15 ± 3.51 -----

DSAE [13] 58.63 ± 11.23 37.5 ± 7.79 25.59 ± 5.24 20.18 ± 3.07 -----

CSPWGAN [13] 62.66 ± 10.79 46.19 ± 5.52 35.17 ± 4.93 26.17 ± 3.87 -----

VLMs

xlm-roberta-large
(Open-CLIP) 91.50 ± 7.57 86.2 ± 6.28 83.8 ± 6.07 79.55 + 5.55 75%

ViT-H-14 (Open-CLIP) 91.10 ± 7.47 86.65 ± 5.12 85.05 + 5.54 81.22 + 5.44 73%

RN50-quickgelu (CLIP) 78.50 ± 10.20 73.40 ± 6.39 77.4 + 12.23 73.95 + 11.09 48%

ViT-B-32 (CLIP) 79.30 ± 8.93 73.40 + 6.39 75.53 + 11.62 71.77 + 11.35 59%

(B)

Method 25/5 20/10 15/15 10/20 0/30

SSE [20] 46.11 ± 7.21 30.28 ± 4.90 19.94 ± 2.43 12.73 ± 1.27 -----

DMaP [21] 43.40 ± 7.29 28.29 ± 4.78 19.38 ± 2.62 11.56 ± 1.29 -----

SAE [22] 47.34 ± 8.42 32.12 ± 4.45 23.73 ± 3.28 13.77 ± 1.17 -----

ZSLLP [15] 46.77 ± 7.65 30.82 ± 4.90 21.78 ± 3.37 12.97 ± 1.06 -----

VSOP [23] 48.56 ± 7.90 32.95 ± 5.52 24.84 ± 3.04 14.03 ± 2.47 -----

f-CLSWGAN [24] 50.68 ± 11.25 33.89 ± 5.72 24.95 ± 2.96 17.26 ± 3.06 -----

CYCLEWGAN [25] 52.37 ± 10.47 35.94 ± 5.46 25.28 ± 2.66 17.89 ± 2.86 -----

DSAE [13] 53.49 ± 8.58 35.32 ± 5.17 25.92 ± 3.92 17.65 ± 2.52 -----

CSPWGAN [13] 55.86 ± 10.60 37.93 ± 5.26 26.97 ± 2.53 19.43 ± 3.02 -----

VLMs

xlm-roberta-large
(Open-CLIP) 88.10 + 5.53 80.40 + 6.74 79.00 + 5.15 74.90 + 2.58 70%

ViT-H-14 (Open-CLIP) 88.40 + 8.30 79.9 + 0+7.07 76.55 + 5.91 72.90 + 3.36 73%

RN50-quickgelu (CLIP) 82.03 + 13.89 74.0 + 10.07 69.73 + 11.07 66.20 + 10.10 46%

ViT-B-32 (CLIP) 81.00 + 13.49 73.40 + 10.36 67.67 + 10.50 64.30 + 9.51 54%

(C)

Method 35/10 30/15 25/20 20/25 0/45

SSE [20] 33.36 ± 3.58 23.30 ± 2.48 16.88 ± 2.29 12.94 ± 1.46 -----

DMaP [21] 49.53 ± 6.31 38.07 ± 4.83 28.15 ± 3.86 23.95 ± 2.60 -----

SAE [22] 44.81 ± 4.73 35.07 ± 3.91 24.65 ± 3.71 20.77 ± 2.02 -----

ZSLLP [15] 47.00 ± 6.64 36.45 ± 4.58 26.71 ± 3.43 22.90 ± 2.47 -----

VSOP [23] 45.32 ± 5.71 36.09 ± 4.63 25.44 ± 3.13 22.18 ± 2.00 -----

f-CLSWGAN [24] 45.35 ± 6.37 38.97 ± 4.93 30.06 ± 2.96 24.31 ± 2.57 -----

CYCLEWGAN [25] 46.87 ± 5.99 39.85 ± 4.71 31.17 ± 2.66 25.06 ± 2.74 -----

DSAE [13] 44.68 ± 6.14 40.31 ± 4.89 31.91 ± 3.07 24.89 ± 2.44 -----

CSPWGAN [13] 51.52 ± 6.91 41.94 ± 4.61 31.85 ± 3.32 25.20 ± 2.17 -----

VLMs

xlm-roberta-large
(Open-CLIP) 85.30 + 5.21 81.70 + 2.86 76.60 + 2.57 73.40 + 3.49 66%

ViT-H-14 (Open-CLIP) 87.10 + 4.94 84.30 + 3.93 79.95 + 4.05 76.95 + 4.82 72%

RN50-quickgelu (CLIP) 80.40 + 10.99 77.53 + 10.60 72.50 + 11.23 69.00 + 12.20 45%

ViT-B-32 (CLIP) 79.82 + 9.85 76.75 + 9.50 71.52 + 10.01 68.32 + 10.84 51%
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5. Conclusions

In this paper, we have presented an approach to address the challenging task of zero-
shot classification in RS. Previous solutions struggled to achieve satisfactory results when
attempting to classify unseen classes using image-based models. In this study, we have
introduced a novel strategy based on VLMs that have been pre-trained to understand
the relationships between images and text. Specifically, we have explored thirteen VLMs
derived from CLIP/Open-CLIP, each with varying parameter complexities. Through a
series of experiments, we have identified that the prompt “a satellite image of + class_name”
is the most effective prompt for RS images to query the language backbone of the CLIP
model. The obtained results exhibit better compared to existing RS solutions on three well-
known RS scene datasets. This research indicates a promising direction for improving zero-
shot classification in the field of RS, leveraging the power of VLMs to enhance classification
accuracy for unseen classes.

For future research, we propose focusing on fine-tuning VLMs, exploring different
model architectures, and addressing challenges specific to temporal and multimodal data
in addition to images with coarser resolution.
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