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Abstract: The automatic identification of emotions from speech holds significance in facilitating
interactions between humans and machines. To improve the recognition accuracy of speech emotion,
we extract mel-frequency cepstral coefficients (MFCCs) and pitch features from raw signals, and an
improved differential evolution (DE) algorithm is utilized for feature selection based on K-nearest
neighbor (KNN) and random forest (RF) classifiers. The proposed multivariate DE (MDE) adopts
three mutation strategies to solve the slow convergence of the classical DE and maintain population
diversity, and employs a jumping method to avoid falling into local traps. The simulations are
conducted on four public English speech emotion datasets: eNTERFACE05, Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS), Surrey Audio-Visual Expressed Emotion (SAEE),
and Toronto Emotional Speech Set (TESS), and they cover a diverse range of emotions. The MDE
algorithm is compared with PSO-assisted biogeography-based optimization (BBO_PSO), DE, and the
sine cosine algorithm (SCA) on emotion recognition error, number of selected features, and running
time. From the results obtained, MDE obtains the errors of 0.5270, 0.5044, 0.4490, and 0.0420 in
eNTERFACE05, RAVDESS, SAVEE, and TESS based on the KNN classifier, and the errors of 0.4721,
0.4264, 0.3283 and 0.0114 based on the RF classifier. The proposed algorithm demonstrates excellent
performance in emotion recognition accuracy, and it finds meaningful acoustic features from MFCCs
and pitch.

Keywords: speech emotion recognition; feature selection; differential evolution; mutation

1. Introduction

Emotions play an important role in human interaction [1]. Speech is the most natural
form of human expression and communication [2,3]. Therefore, the automatic recognition
of speech signals by computing devices is considered a concern [4,5]. Words and messages
are often combined to express a person’s emotions [6,7]. There are two important sources
of information in a speech signal: (a) an explicit source containing linguistic content, and
(b) an implicit source carrying vocal cues and non-verbal elements about speakers [8,9].

Speech emotion recognition (SER) is an essential component of modern artificial
intelligence-based systems [10,11]. For instance, identifying the emotions of customers or
drivers can lead to adaptive responses. In healthcare and education, SER has the potential
to monitor patients’ and students’ emotional states, and aids in diagnosing conditions
such as depression, anxiety, or engagement. However, it is not an easy task in real life to
categorize happiness, sadness, anger, fear, disgust, surprise, and neutral emotions from
speech [12,13]. People express emotions differently across cultures and individuals, and
they also convey mixed emotions. The main difficulty lies in extracting meaningful and
optimal features from speech signals [14].
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The characteristic of SERs is the high dimensionality of features, not all of which are
correlated [15]. Many efforts have been made to improve the performance of emotional
state recognition in speech through feature selection. The main aim of feature selection is
to choose the most important acoustic features, which can reduce the computational cost of
SERs and improve their recognition accuracy [16–18].

Researchers have applied various features to recognize emotional states, but emotion
recognition is still a challenging issue. It is hard to connect speech features to specific emo-
tions due to the lack of theoretical support, while the effectiveness of SERs is determined by
the features extracted from speech signals that must be invariant to speakers and their lan-
guages. Over the years, people have utilized mel-frequency cepstral coefficients (MFCCs)
to obtain acoustic features. MFCCs are essential because they capture the spectral char-
acteristics of human speech and approximate the non-linear human auditory perception
of sounds. MFCCs bridge the gap between speech’s acoustic properties and its emotional
content, and they provide a concise and informative representation of the spectral details in
speech. Although these features carry important information about audio signals, it should
be noted that the performance of recognition algorithms also subsequently decreases as
the length and sampling rate of audio signals increase, requiring more calculations for
analysis. DE is known for its robustness and simplicity in handling complex optimization
problems [19,20], and it is a reliable choice for SER. In this study, we investigate DE to
recognize speech emotion through feature selection, and the main contributions of this
paper are summarized as follows:

(1) We introduce a system for extracting acoustic features.
(2) We propose an improved DE to implement feature selection.
(3) The proposed mutation strategies in DE are essential for enhancing exploration and

exploitation. It is possible to achieve better convergence and exploration of the speech
emotion space. The jumping method introduced in DE improves global search ability
and escapes local optima.

(4) We validate the performance of the proposed algorithm with eNTERFACE05, the
Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), the Sur-
rey Audio-Visual Expressed Emotion (SAEE), and the Toronto Emotional Speech Set
(TESS). The algorithm provides more accurate and efficient speech emotion recog-
nition, and it extends applications in areas such as human–computer interaction,
sentiment analysis, and emotional well-being assessment.

The structure of this paper is organized as follows. Section 2 introduces the related
works of speech emotion recognition. Sections 3 and 4 describe the materials used and the
proposed algorithm. Section 5 represents the experimental results with discussions, and
Section 6 provides the conclusions.

2. Related Works

Yogesh et al. utilized a hybrid optimization algorithm, BBO_PSO, for emotion and
stress recognition from natural speech [21]. Additionally, they employed higher-order
spectral features in conjunction with the hybrid approach. These features capture the high
statistical characteristics of speech signals, and they have been shown to be effective in
obtaining subtle variations in speech related to emotions and stress.

Shahin et al. presented a novel approach to improve the performance of SER systems
for both Arabic and English languages [22]. The research focuses on developing an efficient
feature selection method using the grey wolf optimizer (GWO) algorithm, which aims to
identify the most relevant features from speech signals for accurate emotion recognition.
To develop an agent-independent speech emotion/stress recognition system, Yogesh et
al. identified the speaker’s emotion from speech where features are acquired from the
OpenSmile toolbox and high-order spectral features [23]. They proposed a novel particle
swarm optimization (PSO)-assisted biogeography for feature selection. Butta utilized an
ensemble technique that combines multiple algorithms through cat swarm optimization
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(CSO) [24]. This ensemble approach is designed to harness the collective intelligence of
different algorithms to improve the accuracy and robustness of emotion classification.

Akinpelu and Viriri also utilized pre-trained deep neural networks to extract high-
level features from speech data. Transfer learning allows the model to transfer knowledge
learned from a source domain (general speech data) to the target domain (emotion-specific
speech data), and enhances the model’s ability to generalize to new and unseen emotion
samples [25]. The study emphasizes the importance of robustness in speech emotion
classification, so the model performs well under different speakers, noise levels, and
recording environments. Feature selection and deep transfer learning techniques are
intended to improve the model’s robustness.

Depression is a prevalent mental health condition that is difficult to accurately di-
agnose. However, speech analysis has shown promise as a potential non-invasive and
cost-effective method for depression detection. Kaur et al. proposed a novel approach
that combines speech analysis with a quantum whale optimization algorithm (QWOA)
for feature selection [26]. Gideon et al. recognized emotional expressions during natural
phone conversations [27], and they specifically investigated individuals with recent sui-
cidal ideation. By analyzing emotion patterns, the research examines if this vulnerable
group has unique emotional expressions compared to individuals who have not recently
had suicidal thoughts. Gharsellaoui et al. proposed a new algorithm combining DE and
linear discriminant analysis (LDA) to design an efficient feature selection and classification
model [28]. Auditory features are provided as input for a DE-LDA-based ESR system.

Although the aforementioned works have produced impressive recognition results,
the binary optimization characteristics of SER are not considered when using evolution-
ary algorithms and feature selection. The global search and local search of evolutionary
algorithms cannot be well balanced. This paper proposes a new SER model that utilizes mul-
tivariate DE to balance the exploration and exploitation in feature selection, and improves
recognition accuracy.

3. Materials

In our SER system, we first pass audio through a pre-emphasis filter. Next, we extract
mel-frequency cepstral coefficients (MFCCs) and pitch features with framing, windowing,
and Fourier transform (FT) techniques. Finally, we utilize DE to select the most relevant
features from acoustic features, and we also employ KNN and RF to perform classification
tasks. The overview of the proposed system is given in Figure 1.

Output 
Emotion Class

Speech
Emotion

Databases
Feature Extraction Feature Selection

Differential Evolution

Classifiers

Figure 1. The scheme of the proposed system.

3.1. Dataset Description

In this paper, the eNTERFACE05, RAVDESS, SAEE, and TESS databases are utilized
to evaluate feature selection algorithms, and Figure 2 presents the samples of signals.
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Figure 2. The samples of signals.

3.1.1. eNTERFACE05

The eNTERFACE05 database, developed as part of the eNTERFACE’05 project, com-
prises audio, video, and physiological signals recorded from participants. The emotions
of these participants contain anger, happiness, sadness, surprise, disgust, and fear. Partic-
ipants are asked to listen carefully to a short story and immerse themselves in the scene.
They can read, memorize, and pronounce (one at a time) five utterances presented, which
constitute different responses to a given situation.

3.1.2. Ryerson Audio-Visual Database of Emotional Speech and Song

In the RAVDESS database, there are 7356 audio and video clips, and each one lasts
around 3 to 5 s. A total of 24 professional actors (12 male and 12 female) are present in these
recordings, and each actor uses various language styles, including calm, angry, neutral,
sad, and more.

3.1.3. Surrey Audio-Visual Expressed Emotion

SAVEE has 480 audio and video clips, with 60 recordings representing every emotion.
Four male British English speakers who display seven different emotions, including anger,
happiness, disgust, sadness, surprise, fear, and neutral.

3.1.4. Toronto Emotional Speech Set

TESS consists of audio recordings of emotional expressions acted by North American
English speakers. This database includes 200 audio clips, and each represents distinct
emotions: anger, disgust, fear, happiness, surprise, sadness, and neutrality. These emotions

Figure 2. The samples of signals.

3.1.1. eNTERFACE05

The eNTERFACE05 database, developed as part of the eNTERFACE’05 project, com-
prises audio, video, and physiological signals recorded from participants. The emotions
of these participants contain anger, happiness, sadness, surprise, disgust, and fear. Partic-
ipants are asked to listen carefully to a short story and immerse themselves in the scene.
They can read, memorize, and pronounce (one at a time) five utterances presented, which
constitute different responses to a given situation.

3.1.2. Ryerson Audio-Visual Database of Emotional Speech and Song

In the RAVDESS database, there are 7356 audio and video clips, and each one lasts
around 3 to 5 s. A total of 24 professional actors (12 male and 12 female) are present in these
recordings, and each actor uses various language styles, including calm, angry, neutral,
sad, and more.

3.1.3. Surrey Audio-Visual Expressed Emotion

SAVEE has 480 audio and video clips, with 60 recordings representing every emotion.
Four male British English speakers who display seven different emotions, including anger,
happiness, disgust, sadness, surprise, fear, and neutral.

3.1.4. Toronto Emotional Speech Set

TESS consists of audio recordings of emotional expressions acted by North American
English speakers. This database includes 200 audio clips, and each represents distinct
emotions: anger, disgust, fear, happiness, surprise, sadness, and neutrality. These emotions
are conveyed through short sentences spoken in a neutral tone. In TESS, the emotional
expressions are portrayed by actors. It proves particularly valuable for investigating
acoustic features and patterns associated with different emotions in speech.
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3.2. Feature Extraction

In this study, we extract MFCCs and pitch features from raw audios, and Figure 3
describes their steps. Pitch features contain 11 values (per sample window of 25 ms),
including the maximum, minimum, median, mean and variance of each pitch, their cor-
responding derivatives, and spurt length. MFCC features have 130 values, including the
maximum, minimum, median, mean and variance of each coefficient, and their correspond-
ing derivatives.

Pre-emphasis
Framing

Windowing
Fourier Transform Mel-Scale Filter BankSpeech Signals

Log|.|Discrete Cosine transform
Pitch Features

MFCC Features

Figure 3. Steps involved in feature extraction.

3.2.1. Pre-Emphasis

In audio communication systems, pre-emphasis is often applied to audio signals before
they are transmitted or recorded, and pre-emphasis signals are then de-emphasized on
the receiving end to restore the original frequency. This technique enhances the clarity of
speech signals and makes them easier to understand. Equation (1) demonstrates how to
apply the pre-emphasis filter to a signal x(t).

y(t) = x(t)− αx(t − 1) (1)

where α is set to 0.97.

3.2.2. Framing

Framing divides a continuous audio signal into smaller segments (frames). Each frame
typically consists of a fixed number of audio samples or time points, and the frames are
usually overlapping to capture temporal information in signals. By breaking continuous
signals into frames, we can extract useful information from each segment, and analyze it
separately.

3.2.3. Windowing

Windowing is a key step in preparing audio signals for further analysis, and more
accurate and meaningful results are obtained when using Fourier-transform-based methods.
The most common window functions used in audio processing are the Hamming window,
Hanning window, and Blackman window.

3.2.4. Pitch Features

Pitch features are important elements extracted from speech signals, and they provide
information about the tonal characteristics of the human voice. Pitch can actually be defined
as the repeat rate of complex signals in the autocorrelation function. The pitch is relatively
stable when a person is calm. The pitch frequency increases when a person is happy or
angry, while it decreases when a person is depressed.
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3.2.5. Fourier Transform

Fourier transform is a mathematical technique used to analyze signals and data in the
frequency domain. It transforms a signal from the time domain where it is represented as a
sequence of amplitude values over time, into the frequency domain, where it is represented
as a combination of sinusoidal waves with different frequencies.

3.2.6. Mel-Scale Filter Bank

The mel-scale filter bank extracts MFCCs from audio signals [29]. MFCCs represent the
short-term power spectrum of sound. They are widely used in speech and audio processing
tasks, because they capture important characteristics of the sound that are relevant to
human perception.

3.2.7. Discrete Cosine Transform (DCT)

DCT converts a sequence of data points (such as audio samples or image pixels) from
the time or spatial domain to the frequency domain. It achieves this by expressing data as a
linear combination of cosine functions with different frequencies and amplitudes.

3.2.8. Mel-Frequency Cepstral Coefficients

MFCCs are the most popular features for recognizing human speech. In 1980, Davis
and Mermelstein brought a representation of the approximate structure of the human vocal
tract system in which MFCCs accurately describe the system’s shape in the short-time
power spectrum.

First, the Hamming window splits speech signals into frames of 25 ms with an overlap
of 10 ms, and then a fast Fourier transform is utilized to acquire the power spectrum
of each frame. Finally, DCT is applied to the logarithmically transformed spectrum to
obtain MFCCs. The entire frequency range is divided into n mel filter banks, as shown in
Equation (2).

c(n) =
K

∑
k=1

(logSk)cos[n(k − 1
2
)

π

K
] (2)

where sk denotes the output of the k-channel filter bank, and n represents the index of mel
cepstral coefficients.

4. Methodology

The problems of DE are premature convergence to local optima and fixed control
parameters. It is necessary to make additional improvements to achieve better performance
before using it in feature selection. An improved DE proposed in this study adopts three
different mutation strategies to maintain population diversity during optimization, and
thus balances exploration and exploitation. Figure 4 is the flowchart of the proposed
multivariate DE (MDE).

In feature selection and SER, classification accuracy is the main indicator for evalu-
ating algorithms. Consequently, it is used as the objective function in MDE, as shown in
Equation (3):

f it =
∑10

i=1 errori

10
(3)

where errori represents the classification error of the i-th cross validation, and we employ
10-fold cross validation in here.
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Is or not iteration

Start

Initialize related params

Sort individuals (1, 2, …, n) according to 
objective function values from best to worst

Randomly initialize the 
positions of the population

Output the optimal 
solution

Execute Algorithm 1 for the 
worst individuals (5n/6-n)

Execute Algorithm 2 for the 
sub-worst individuals (4n/6-

5n/6)

End

No

Yes

Execute the objective function for each 
individual with Eq. (3)

Execute Algorithm 3 for the 
poor individuals (n/2-4n/6)

Execute the objective function of the worst 
individuals (half population) with Eq. (3)

Jump local traps

Figure 4. The flowchart of MDE.

The performance of DE is affected by both crossover and mutation, which generates
a trial candidate solution. If the randomly selected learning solutions are not within the
optimal region, they will mislead some individuals to approach them. MDE only allows
individuals with poor objective function values (half of the population) to participate in
position update. Individuals with great performance do not update their positions; instead,
they serve as exemplars.
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4.1. Mutation Strategies

The worst individuals (candidate solutions) learn from the optimal and sub-optimal
solutions, and the newly generated solutions are mainly dominated by the optimal solution.
The solutions participating in the selection are all superior to candidate solutions. To
improve convergence, the new solutions do not execute crossover after mutation, but they
directly compare with candidate solutions. Algorithm 1 describes the mutation scheme of
the worst individuals. These individuals learn from excellent solutions, and their positions
are mainly controlled by the global optimal solution a, which increases the convergence
ability of the algorithm.

The mutation method of sub-worst solutions also randomly selects a group of distinct
individuals. Unlike the random differential mutation approach, it employs the best individ-
ual from this group as the basis for differential mutation. Meanwhile, the other individuals
with lower performance contribute to generating vector differences. The update method
for sub-worst solutions is similar to Algorithm 1, but it will perform a crossover to enhance
the population’s diversity, as depicted in Algorithm 2.

Algorithm 1: The mutation method of the worst individuals

1 % k is the index of individual i after sorting.
2 % Position means the positions of individuals.
3 % a, b and c are randomly selected individuals for the crossover operator.
4 % if the fitness value of z is better than x, it will replace x.
5 k = index(n − i + 1) ;
6 x = Position(k,:) ;
7 A = randperm(nPop/2);
8 A(A == index(1)) = [];
9 a = index(1);

10 b = index(A(2)) ;
11 c = index(A(3));
12 z = Position(a,:)+beta.*(Position(b,:)-Position(c,:));
13 for j = 1 : dim do
14 if z(j) > rand then
15 z(j) = Position(a,j);
16 end
17 else
18 if rand > 0.5 then
19 z(j) = Position(b,j);
20 end
21 else
22 z(j) = Position(c,j);
23 end
24 end
25 end
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Algorithm 2: The mutation method of sub-worst individuals

1 k = index(n − i + 1) ;
2 x = Position(k,:) ;
3 A = randperm(nPop/2);
4 A(A == index(1)) = [];
5 a = index(1);
6 b = index(A(2));
7 c = index(A(3));
8 y = Position(a,:)+beta.*(Position(b,:)-Position(c,:));
9 for j = 1 : dim do

10 if y(j) > rand then
11 y(j) = Position(a,j);
12 end
13 else
14 if rand > 0.5 then
15 y(j) = Position(b,j);
16 end
17 else
18 y(j) = Position(c,j);
19 end
20 end
21 end
22 z = zeros(1,dim);
23 j0 = randi([1 numel(x)]);
24 for j = 1:numel(x) do
25 if j == j0 || rand <= pCR then
26 z(j) = y(j);
27 end
28 else
29 z(j) = x(j);
30 end
31 end

The poor solutions learn from more exemplars to explore more space. They are
not only controlled by the global optimal solution, but also affected by other solutions.
The mutation increases the chance of learning from more solutions, and improves the
exploration ability of the algorithm. In fact, the difference among them is not significant, so
crossover is considered from expanding the diversity of the population, as described in
Algorithm 3. It has excellent exploration.
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Algorithm 3: The mutation method of poor individuals

1 k = index(n − i + 1) ;
2 x = Position(k,:) ;
3 A = randperm(nPop/2);
4 A(A == index(1)) = [];
5 a = index(1);
6 b = index(A(2));
7 c = index(A(3));
8 d = index(A(4)) ;
9 e = index(A(5)) ;

10 y = Position(a,:)+beta.*(Position(b,:)-Position(c,:))+beta.*(Position(d,:)-Position(e,:))
;

11 for j = 1 : dim do
12 if y(j) > rand & rand > 0.75 then
13 y(j) = Position(a,j);
14 end
15 else
16 Execute the roulette strategy to determine the value of y(j) from b, c, d or e ;
17 end
18 end
19 z = zeros(1,dim);
20 j0 = randi([1 numel(x)]);
21 for j = 1:numel(x) do
22 if j == j0 || rand <= pCR then
23 z(j) = y(j);
24 end
25 else
26 z(j) = x(j);
27 end
28 end

4.2. Jumping Method

It can be seen from MDE that elite individuals influence the search of the population.
When a solution is too excellent, they will quickly converge to this position. If the solution
is a local optimum, they may fall into a trap, leading the population to lose diversity.
Elite individuals are forced to leave their positions and search for other space if the global
optimal solution is not updated after ten iterations, as shown in Equation (4).

X j
i =

{
1 − X j

i i f (rand <= 2 ∗ i/nPop)
X j

i else
(4)

where nPop is the population size, j is the dimension, and i represents the i-th elite indi-
vidual according to the sorting order. This method allows most individuals to have the
opportunity to escape local traps, and also allows several individuals to continue searching
around their positions.

5. Experimental Results and Analysis
5.1. Approaches Used for Comparisons

To validate the superiority of the proposed MDE, the classification performance is
compared with two previous works, DE [28] and BBO_PSO [21], and a metaheuristic algo-
rithm SCA [30]. BBO_PSO is a new hybrid PSO-assisted biogeography-based optimization
for emotion recognition, and SCA is a sine cosine algorithm for feature selection. Table 1
provides additional information concerning the algorithms. beta_min and beta_max repre-
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sent the lower and upper bounds of the scaling factor, and the most popular strategy set
beta in DE by using a Gaussian distribution with a mean of 0.5 and a standard deviation of
0.3. These values are consistent with the settings of SaDE [31], and they are beneficial to
producing small and large search step sizes. pCR means the crossover probability, KeepRate
is rate of kept habitats, pMutation is the mutation probability, w is the inertia weight, and
c1 and c2 are learning factors. thres is a threshold value.

Table 1. The main parameters setting.

Algorithm Main Parameters

DE beta_min = 0.2; beta_max = 0.8; pCR = 0.2;
BBO_SCA KeepRate = 0.2; pMutation = 0.1; w = 0.9; c1 = 2; c2 = 2;
SCA thres = 0.5;
MDE beta_min = 0.2; beta_max = 0.8; pCR = 0.2;

The algorithms adopt Equation (3) as their objective function. The maximum objective
functions of the algorithms are set to 2000, and this process is repeated 20 times with a
population size of 20. We apply the Wilcoxon rank-sum and Friedman tests to determine if
there are significant differences in the experimental results in which a significance level of
0.05 is chosen.

5.2. Experimental Analysis

KNN and RF are adopted as classifiers, where K is 5, and the Euclidean distance is
selected as the computational method for data points. The number of decision trees is set
to 100, and the splitting criterion of decision trees is the Gini index (gdi), which reflects the
influence of a certain feature on the classification results. All data serve as samples, and the
data are randomly divided into 10 parts through 10-fold cross validation. One of them is
used for testing, while the other parts are used for training. We obtain the final average
recognition error after repeating ten times, and the bold font indicates that a algorithm has
obtained the optimal solution.

5.2.1. Simulation Results on the K-Nearest Neighbor Classifier

Figure 5 displays the experimental results using the KNN classifier, and it shows the
average, maximum, and minimum errors obtained from each independent run.

DE BBO_PSO
ERROR MAX MIN ERROR

eNTERFACE05 0.5612 & 0.6457 & 0.5273 & 0.5877
RAVDESS 0.5222 & 0.7199 & 0.4287 & 0.5724
SAVEE 0.4604 & 0.5190 & 0.4010 & 0.4624
TESS 0.1120 & 0.1913 & 0.0244 & 0.1364
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Figure 5. The classification errors of the compared algorithms based on KNN.
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It is evident from the figure that MDE excels DE, BBO_PSO, and SCA by achieving
errors of 0.5270, 0.5044, 0.4490, and 0.0420 in eNTERFACE05, RAVDESS, SAVEE, and TESS.
Regarding the maximum error, MDE outperforms DE, BBO_PSO, and SCA in eNTER-
FACE05, SAVEE, and TESS, while SCA beats DE, BBO_PSO, and MDE in RAVDESS. In
terms of the minimum error, DE and SCA perform well in SAVEE and eNTERFACE05,
respectively, while BBO_PSO has the best performance in RAVDESS and TESS. It can be
found that the data obtained by MDE have excellent stability, which is especially suitable
for speech emotion recognition.

The Wilcoxon rank-sum test reveals that the algorithms have similar experimental
results in SAVEE (as shown in Table 2), and it cannot distinguish the experimental results of
DE and MDE in RAVDESS. DE, BBO_PSO, SCA, and MDE perform well on two, one, one,
and four datasets, respectively. The Friedman test exhibits that their average ranks are 2.5,
3, 75, 2.75, and 1, with p < 0.05. Table 2 proves that MDE is superior to other algorithms.

Table 2. The non-parametric statistical analysis of the compared algorithms based on KNN.

DE BBO_PSO SCA MDE

>/=/< 0/2/2 0/1/3 0/1/3 4/0/0
Rank 2.5 3.75 2.75 1

p-Value 2.56 ×10−2

Table 3 illustrates the number of selected features and the running time of the al-
gorithms. MDE obtains the least number of selected features and the shortest running
time in eNTERFACE05 and TESS, while SCA outperforms DE, BBO_PSO, and MDE in
RAVDESS and SAVEE. Their running time in eNTERFACE05 and SAVEE is the lowest,
but they spend a lot of time in RAVDESS and TESS. MDE uses the fewest features to
complete recognition in eNTERFACE05 and TESS, while it obtains more features than other
algorithms in RAVDESS and SAVEE. As can be seen from Figure 5, the recognition accuracy
of MDE is better than DE, BBO_PSO, and SCA. From the number of selected features and
classification errors obtained by the algorithms, it can be concluded that using more or
fewer features is not beneficial for emotion prediction.

Based on the above discussion, the proposed MDE exhibits the best performance in
classification accuracy and running time, and it is suitable for English speech
emotion recognition.

Table 3. The number of selected features and the running time (seconds) of the compared algorithms
based on KNN.

Dataset
DE BBO_PSO SCA MDE

Length Time Length Time Length Time Length Time

eNTERFACE05 65.85 274.2602 65.05 259.1495 66.15 255.6974 15.85 221.556
RAVDESS 72.35 626.1439 67.75 660.178 31.8 357.7027 74.2 666.1531

SAVEE 66.35 294.514 66.9 267.3497 28.2 238.9834 68.55 374.099
TESS 70.5 1666.3398 68.55 1726.7875 73.45 1837.7258 28.8 832.355

5.2.2. Simulation Results on the Random Forest Classifier

Figure 6 displays the experimental results using the RF classifier, and it shows the
average, maximum, and minimum errors acquired from each independent run.

The errors obtained with RF are superior to the values obtained by KNN. Figure 6
illustrates that MDE has the best results in eNTERFACE05, RAVDESS, SAVEE, and TESS. Its
errors in the four emotion datasets are 0.4721, 0.4264, 0.3283, and 0.0114, and it outperforms
DE, BBO_PSO, and SCA. In the maximum error, MDE performs well in RAVDESS, SAVEE,
and TESS, while DE beats BBO_PSO, SCA, and MDE in eNTERFACE05. Concerning the
minimum error, MDE exhibits the best performance in eNTERFACE05, SAVEE, and TESS,
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and SCA outperforms DE, BBO_PSO, and MDE in RAVDESS. The data obtained by the
RF classifier certify that the performance of MDE is stable, and it can be used for English
speech emotion recognition.

DE BBO_PSO
ERROR MAX MIN ERROR

eNTERFACE050.4731 & 0.4787 & 0.4598 & 0.4821 &
RAVDESS 0.4379 & 0.4435 & 0.4327 & 0.4400 &
SAVEE 0.3343 & 0.3386 & 0.3247 & 0.3388 &
TESS 0.0120 & 0.0124 & 0.0115 & 0.0131 &
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Figure 6. The classification errors of the compared algorithms.

Table 4 presents their non-parametric statistical analysis. Through the Wilcoxon
rank-sum test, DE, BBO_PSO, SCA, and MDE perform well on three, two, two, and four
datasets, respectively. MDE is superior to the other algorithms, while BBO_PSO and SCA
exhibit comparable performance in RF. DE and MDE yield similar results in eNTERFACE05,
SAVEE, and TESS, and the Wilcoxon rank-sum test cannot distinguish the experimental
data of BBO_PSO, SCA, and MDE in eNTERFACE05 and TESS. Their average ranks are 2.5,
3.5, 3, and 1, and the Friedman test reveals that MDE wins first place, followed by DE, SCA,
and BBO_PSO. Table 4 confirms the superiority of MDE in speech emotion recognition.

Table 4. The non-parametric statistical analysis of the compared algorithms.

DE BBO_PSO SCA MDE

>/=/< 0/3/1 0/2/2 0/2/2 4/0/0
Rank 2.5 3.5 3 1

p-Value 3.84 ×10−2

Table 5 illustrates the number of selected features and the running time of the algo-
rithms. The RF classifier provides them with a greater number of features and a longer
running time than the KNN classifier. SCA performs well in the number of selected features
and running time, and it uses 28.8, 26.4, 20.4, and 38.6 features for classification in the four
datasets, respectively. MDE, DE, and BBO_PSO employ approximately half of the features
to accomplish emotion recognition. The number of features obtained by MDE in eNTER-
FACE05 and TESS is smaller than DE, while DE performs better than MDE and BBO_PSO
in RAVDESS and SAVEE. The algorithms have more running time in eNTERFACE05 and
SAVEE, while they have less time in RAVDESS and TESS.

From the experimental results, it can be noticed that although the algorithms obtain
different results on KNN and RF classifiers, MDE consistently performs the best. RF has
a higher time complexity than KNN, but it utilizes more features to achieve excellent
recognition results.
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Table 5. The number of selected features and the running time (seconds) of the compared algorithms.

Dataset
DE BBO_PSO SCA MDE

Length Time Length Time Length Time Length Time

eNTERFACE05 69.4 9999.6274 68 10,775.6739 28.8 7119.838 68.6 11,094.3004
RAVDESS 66.6 34,730.7615 69.6 32,983.0796 26.4 22,223.1923 68.6 36,696.1692

SAVEE 66.2 11,116.0668 66.6 12,783.4402 20.4 9221.0034 68.8 11,135.3497
TESS 71 34,910.0227 69.8 39,412.2563 38.6 29,448.3799 65.8 41,026.9059

6. Conclusions

In SER, researchers focus on identifying significant emotional features through fea-
ture selection; however, searching for the optimal features is impractical due to its high
complexity. In this study, we use an improved differential evolution to classify English
languages from speech signals based on MFCCs and pitch features. Compared with DE,
BBO_PSO, and SCA, the experimental results and non-parametric statistical analysis in the
four English speech emotion datasets illustrate that MDE achieves excellent recognition
accuracy and reduces the number of selected features. The proposed algorithm works
with three mutation strategies and a jumping method to balance global search and local
search, and improves the accuracy of speech emotion by reconstructing input speech data
with relevant and meaningful acoustic features. As speech emotion recognition becomes
increasingly vital in various applications, including human–computer interaction, virtual
assistants, and the ability to quickly and effectively process and analyze emotions. Our
work provides a foundation for enhancing the applicability of such systems.

Emotion recognition is a multifaceted task. To further enhance the robustness and
accuracy of our proposed algorithm, it is important to consider integrating other modal-
ities, such as facial expression analysis. This multimodal approach can provide a more
comprehensive understanding of users’ emotional state. Additionally, our algorithm can
be applied to different languages, which is an important avenue for exploration.
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