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Abstract: Selective laser melting (SLM) is an additive manufacturing technique commonly used in
the rapid prototyping of components. The complexity of the SLM microstructure poses a unique
challenge to deriving effective mechanical properties at different length scales. Representative volume
elements (RVEs) are often used to homogenize the material properties of composites. Instead of
RVEs, we use statistical volume elements (SVEs) to homogenize the elastic and fracture properties of
the material. This relates the inherent variation of a material’s microstructure to the variation in its
mechanical properties at different observation scales. The convergence to the RVE limit is examined
from two perspectives: the stability of the mean value as the SVE size increases for the mean-based
approach, and the tendency of the normalized variation in homogenized properties to zero as the
SVE size increases for the variation-based approach. Fracture properties tend to make the RVE limit
slower than do elastic properties from both perspectives. There are also differences between vertical
(normal to printing plane) and horizontal (in-plane) properties. While the elastic properties tend to
make the RVE limit faster for the horizontal direction, i.e., having a smaller variation and more stable
mean value, the fracture properties exhibit the opposite effect. We attributed these differences to the
geometry of the melt pools.

Keywords: selective laser melting (SLM); homogenization; statistical volume element; representative
volume element

1. Introduction

Selective laser melting (SLM) is an additive manufacturing method where components
are formed directly from metal powder [1]. Components formed using SLM are built
layer-by-layer using a high-powered laser, localized to a selected area, fusing metallic
powder together. This methodology is of particular interest to industries that require
complex geometry, or intricate hollow designs [2]. Such complex geometries find value
in applications such as aerospace, biomedical and other industries [1]. Considering the
diverse applications of components manufactured through SLM, there has been a notable
focus on the modeling and simulation aspects.

The area affected by the radiation of the laser can be sectioned into three regions: the
fusion zone (FZ), heat-affected zone (HAZ), and substrate [3]. In the fusion zone, metallic
powder is briefly liquidized to form pools of melted powder known as melt pools [3]. It
is the melt pools, once resolidified, that form the layer-by-layer construction of the SLM
component. A 3D conceptual drawing of a melt pool is shown in Figure 1 from [3].
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Figure 1. Conceptual drawing of a melt pool [3]. 

Melt pool boundaries change size and shape depending on the parameters used in 
the SLM process, such as laser power and laser scanning speed. These parameters greatly 
influence induced residual stresses, a hierarchical layout, and the severity of defects such 
as voids and cracks [4]. The inclusion of melt pools, however, dramatically increases the 
complexities of the microstructure of SLM materials, making it difficult to establish a cor-
relation between microstructures and mechanical response [5–8]. 

Current works have simulated this microstructure using Voronoi tessellation, ap-
proximating the polycrystalline geometry of the printed microstructure [5,9,10]. Notably, 
these studies share a focus on accurately representing the complex microstructural fea-
tures inherent to AM processes. From [9], a modular methodology is used to obtain rep-
resentative microstructural cells, encompassing feature-based representations and mor-
phological shape analyses for different AM processes and materials. Analogously, addi-
tional works introduce a novel technique that models columnar and equiaxial grains, 
alongside melt pools, using crystal plasticity and finite element (FE) modeling for SLM 
components [5]. Additionally, a crystal plasticity-based fast Fourier transform (CP-FFT) 
framework captures microstructural influences on mechanical responses in SLM-fabri-
cated materials, highlighting the role of grain features [10]. From this perspective, crystal 
plasticity furnishes the essential microstructural insight required for mechanical analysis, 
while FFT augments the ability to scrutinize and visualize the spatial distribution of mi-
crostructural features. 

Other crystal plasticity models are presented in [11], extending the focus to compre-
hend the impact of crack nucleation behavior on mechanical attributes, specifically the 
assessment of fatigue life in materials produced through SLM printing. This would sug-
gest that process parameters leading to the formation of different pore types can signifi-
cantly influence the initiation of fatigue cracks, which directly impacts the mechanical be-
havior of the material. Moreover, in [12,13], researchers conduct a morphological analysis 
that directly assesses inherent physical traits, thereby reinforcing the substantial connec-
tion between processing parameters and the resulting material behavior. 

Even with the extensive literature outlining the effect of various process parameters 
and demonstrating the effects with approximated domains, there exists a gap in our un-
derstanding of the mechanical behavior at different length scales for metal SLM materials. 
In this work, a framework is introduced to employ a high-fidelity meshing approach to 
comprehensively represent the intricate complexities of SLM microstructures. Addition-
ally, the variation in mechanical properties is examined across various length scales, elu-
cidating the intricate connection between these fluctuations and specific regions within 
the melt pool. 

Numerical homogenization has proven to be an effective means to quantify material 
properties, given a microstructure with such complexities [14]. The goal of numerical ho-
mogenization is to upscale the effect of all microstructural details into the effective or ap-
parent material properties that can be used in continuum-level models [15]. In homogeni-
zation theory, a representative volume element (RVE) refers to a large-enough domain for 
which a target material property can be considered converged versus the volume element 
size [16–19]. There are various perspectives in defining convergence [20–22]. For example, 
one can examine if the given property is almost independent of the choice of boundary 
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Melt pool boundaries change size and shape depending on the parameters used in
the SLM process, such as laser power and laser scanning speed. These parameters greatly
influence induced residual stresses, a hierarchical layout, and the severity of defects such
as voids and cracks [4]. The inclusion of melt pools, however, dramatically increases
the complexities of the microstructure of SLM materials, making it difficult to establish a
correlation between microstructures and mechanical response [5–8].

Current works have simulated this microstructure using Voronoi tessellation, approxi-
mating the polycrystalline geometry of the printed microstructure [5,9,10]. Notably, these
studies share a focus on accurately representing the complex microstructural features
inherent to AM processes. From [9], a modular methodology is used to obtain representa-
tive microstructural cells, encompassing feature-based representations and morphological
shape analyses for different AM processes and materials. Analogously, additional works
introduce a novel technique that models columnar and equiaxial grains, alongside melt
pools, using crystal plasticity and finite element (FE) modeling for SLM components [5].
Additionally, a crystal plasticity-based fast Fourier transform (CP-FFT) framework captures
microstructural influences on mechanical responses in SLM-fabricated materials, highlight-
ing the role of grain features [10]. From this perspective, crystal plasticity furnishes the
essential microstructural insight required for mechanical analysis, while FFT augments the
ability to scrutinize and visualize the spatial distribution of microstructural features.

Other crystal plasticity models are presented in [11], extending the focus to compre-
hend the impact of crack nucleation behavior on mechanical attributes, specifically the
assessment of fatigue life in materials produced through SLM printing. This would suggest
that process parameters leading to the formation of different pore types can significantly
influence the initiation of fatigue cracks, which directly impacts the mechanical behavior
of the material. Moreover, in [12,13], researchers conduct a morphological analysis that
directly assesses inherent physical traits, thereby reinforcing the substantial connection
between processing parameters and the resulting material behavior.

Even with the extensive literature outlining the effect of various process parameters
and demonstrating the effects with approximated domains, there exists a gap in our
understanding of the mechanical behavior at different length scales for metal SLM materials.
In this work, a framework is introduced to employ a high-fidelity meshing approach to
comprehensively represent the intricate complexities of SLM microstructures. Additionally,
the variation in mechanical properties is examined across various length scales, elucidating
the intricate connection between these fluctuations and specific regions within the melt pool.

Numerical homogenization has proven to be an effective means to quantify material
properties, given a microstructure with such complexities [14]. The goal of numerical homog-
enization is to upscale the effect of all microstructural details into the effective or apparent
material properties that can be used in continuum-level models [15]. In homogenization
theory, a representative volume element (RVE) refers to a large-enough domain for which a
target material property can be considered converged versus the volume element size [16–19].
There are various perspectives in defining convergence [20–22]. For example, one can examine
if the given property is almost independent of the choice of boundary conditions used [23,24],
whether the mean value has stabilized versus the volume size, or whether the variation of the
homogenized properties over a population of volume elements (VEs) of the same size is small
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enough [25,26]. Depending on the mechanical properties in question, however, constructing
an appropriately sized RVE can prove sufficiently challenging, if not impractical [26]. For
example, fracture-related properties have very large RVE sizes.

An alternative approach, one that attempts to consider the variability of the microstruc-
ture, is the concept of a statistical volume element (SVE), first introduced in [27–29] for
homogenizing elastic properties. SVE homogenization partitions a large domain into VEs
much smaller than the RVE size limit for a given property. Understanding the variation in
mechanical properties versus VE (SVE) size and homogenizing properties in terms of SVEs,
as opposed to RVEs, has multiple benefits. First, many mechanical properties have a specific
form of size effect; that is, the trends in which the mean and variation in the given property
change versus the observation (SVE) size [30,31]. Second, RVE-based homogenization has
been rendered ineffective in many fracture analyses as all material heterogeneities that play
a key role in crack nucleation, propagation, and coalescence are lost in the homogenization
process. For example, a lack of convergence or convergence to an incorrect value is reported
for fracture pattern [32] and fracture energy [33]. In the method of moving window [34,35],
a window (SVE) traverses a macroscopic domain, and each time at the centroid of the SVE
assigns the homogenized properties. Unlike RVEs, the homogenized values at different
locations are not uniform (or almost uniform), hence the corresponding mesoscopic property
fields generated are inhomogeneous and address the aforementioned problem. Third, many
interesting mechanical responses of a material are stochastic. For example, for the same
sample geometry and loading, different fracture patterns and strain–stress curves are reported
in [36] and [37], respectively. The smaller size of SVEs (compared to RVEs) ensures that
the homogenized properties are stochastic and maintain the mentioned sample-to-sample
variation. In short, the SVE-based properties maintain a certain level of material heterogeneity
and randomness, and are a promising tool in multiscale material modeling. For this purpose,
the size of SVE can be viewed as the resolution of the homogenization scheme and acts as
a gauge between RVE-based homogenization and direction numerical simulation (DNS) in
terms of accuracy and efficiency.

The intent of this work is to explore the effects of SVE size against published experi-
mental results of elastic and fracture properties of SLM material and explore the size effect
of these properties. The SVE-based homogenization will also examine the effect of the
geometry of the melt pools and their intrinsic length scale on homogenized properties
at different sizes. Investigating the correlation between microstructure and mechanical
properties can prove instrumental in establishing fundamental relationships that govern a
material’s behavior.

2. Materials and Methods

The layer-by-layer construction, shown in Figure 2, depicts rows of melt pools atop one
another to form the microstructure typical of an SLM material. Consider the cross-section
shown in Figure 2 from [38] of an SLM material, referred to as the RVE from hereon.
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conforming mesh using the CISAMR algorithm: (a) h-adaptive refinement in the vicinity of material 
interfaces; (b) r- adaptivity of the nodes of elements intersecting each interface; (c) sub-triangulating 
the elements deformed during the r-adaptivity process, as well as elements with hanging nodes 
created after h-adaptivity. Red, and yellow nodes correspond to hanging nodes created during the 
SAMR process, and conforming background mesh nodes, respectively. 

A unique feature of CISAMR is the ability to generate high-quality meshes for prob-
lems with complex morphologies [41]. However, the presence of sharp geometrical fea-
tures in the microstructure requires the addition of new algorithmic features to the CIS-
AMR algorithm. As shown in Figure 4, in such cases, after the h-adaptivity (SAMR) phase, 
we first identify all background mesh elements containing sharp corners of melt pools. 
Next, the closest mesh node to the sharp corner within this element is identified and 
snapped to the sharp corner. The subsequent phases of the CISAMR algorithm (r-adap-
tivity and sub-triangulation) are then carried out in the same way as described earlier. 
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The FE mesh used in this analysis was constructed using the conforming to interface
structured adaptive mesh refinement (CISAMR) [39,40] method. The CISAMR is a non-
iterative mesh generation algorithm that transforms an initial structured mesh comprising
rectangular elements in a high-quality hybrid conforming mesh consisting of rectangu-
lar and triangular elements. The meshing process involves three phases: (1) h-adaptive
refinement of background elements intersecting material interfaces to minimize the geo-
metric discretization error and accurately approximate stress concentrations in the regions;
(2) performing r-adaptivity on the nodes of refined elements cut by material interfaces,
which on average transforms 50% of these elements into conforming elements; and (3) the
sub-triangulation of the remaining non-conforming elements with hanging nodes, as well
as elements with hanging nodes that are created during the h-adaptive refinement phase.
The effect of each phase of the CISAMR algorithm on the transformation of a structured
mesh into a conforming mesh is visualized in Figure 3 for a smooth interface (see [39] for
more algorithmic and implementation details).
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Figure 3. Transformation of a structured mesh composed of 4-node quadrilateral elements into a
conforming mesh using the CISAMR algorithm: (a) h-adaptive refinement in the vicinity of material
interfaces; (b) r- adaptivity of the nodes of elements intersecting each interface; (c) sub-triangulating
the elements deformed during the r-adaptivity process, as well as elements with hanging nodes
created after h-adaptivity. Red, and yellow nodes correspond to hanging nodes created during the
SAMR process, and conforming background mesh nodes, respectively.

A unique feature of CISAMR is the ability to generate high-quality meshes for prob-
lems with complex morphologies [41]. However, the presence of sharp geometrical features
in the microstructure requires the addition of new algorithmic features to the CISAMR
algorithm. As shown in Figure 4, in such cases, after the h-adaptivity (SAMR) phase, we
first identify all background mesh elements containing sharp corners of melt pools. Next,
the closest mesh node to the sharp corner within this element is identified and snapped
to the sharp corner. The subsequent phases of the CISAMR algorithm (r-adaptivity and
sub-triangulation) are then carried out in the same way as described earlier. With this
simple modification, we can enable the CISAMR algorithm to preserve sharp features
in the resulting mesh. To mesh the microstructure shown in Figure 2a, we first generate
segregated meshes for each melt pool using the modified CISAMR algorithm, and then
stitch them together (merge node IDs along their boundaries) to generate the conforming
mesh for the entire microstructure.

Figure 5a shows the geometrical model constructed for the 924 µm × 840 µm RVE
image shown in Figure 2a, in which melt pool boundaries are characterized using non-
uniform rational B-splines (NURBS) curves. This domain comprises 239 melt pools and is
discretized using the CISAMR algorithms, resulting in a conforming mesh consisting of
1.31 million elements and a maximum aspect ratio of 4.4. The RVE mesh is then partitioned
into several smaller SVEs. Four different SVE sizes are analyzed in this work, i.e., LSVE = 56,
84, 112, and 140 µm. These sizes correspond to 240, 110, 56, and 36 SVE counts, respectively.
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Figure 5. (a) The microstructure of the SLM material. Each color representing a unique melt pool;
(b) a sample SVE extracted from CISAMR mesh generated on the domain in (a), with an inset showing
the mesh structure.

Since the RVE mesh contains 239 melt pools, the smallest to largest SVEs contain an
average of about 1, 2.2, 4.2, and 6.6 melt pools in each SVE. Accordingly, LSVE = 56 is
the minimum size below which there will be less than one melt pool on average within
a SVE. As a sub-melt pool length scale, the model ideally should incorporate grain-level
mechanisms, crystal plasticity, or other alternative physics-based models more appropriate
for investigating the failure response of the SVE. In the following, we use a cohesive model
to model failure between the melt pools. Accordingly, due to the lack of more accurate
grain-scale models in this work, we limited the smallest SVE size to LSVE = 56. As for the
largest size, SVEs larger than LSVE = 140 µm would result in fewer than 36 SVEs, which
may be a too small number to accurately calculate the mean and standard deviation of
homogenized properties. We refer the reader to [26] on why this is especially a concern for
fracture properties due to their slower convergence relative to LSVE compared with that of
elastic properties. In short, while ideally we could model larger SVEs (if starting with a
larger experimental image, as shown in Figure 2a), the chosen sizes still manifest distinct
mechanical behaviors. Larger sizes are valuable for revealing interactions between multiple
melt pools, while mid-range sizes shed light on interactions between select boundaries.

The microstructure and the corresponding conforming mesh for one of the SVEs
with LSVE = 140 µm are illustrated in Figure 5b. For reference, the CISAMR mesh is
generated on a background structured mesh with an element size of 2.8 µm, with two
levels of h-adaptive refinement along melt pool boundaries. Accordingly, the SVEs of sizes
LSVE = 56, 84, 112, and 140 µm correspond to 20, 30, 40, and 50 background elements
along the edge, respectively. The calibration of material and interface properties and finite
element analysis of the SVEs are discussed next.
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Finite element analysis by Abaqus [42] was used to analyze the derived SVEs under
three different load cases to characterize the response for tensile loading in vertical and
horizontal directions (denoted by v and h subscripts), and shear loading. The most common
boundary conditions (BCs) for the homogenization of elastic properties are the kinematic
uniform boundary condition (KUBC) and stress uniform boundary condition (SUBC). In
the KUBC, two displacements of the boundary nodes are specified as consistent with
a macroscopic strain tensor. In the SUBC, traction values corresponding to a constant
macroscopic stress tensor are applied on the boundary of VE. KUBC and SUBC provide
the upper and lower limits for the homogenized elastic properties, with the properties
converging to unique values as the SVE size increases [43–45]. The KUBC is not appropriate
for the nonlinear failure problem as it does not permit a crack to completely tear vertically or
horizontally through the domain. The SUBC is also not appropriate for failure simulations
as it cannot model the unloading portion of the homogenized strain-stress response. We
have used a mixed boundary condition (MBC) [26] for homogenization. The MBC condition
is preferred over the KUBC and SUBC for multiple reasons. First, the homogenized elastic
properties are in between the KUBC and SUBC values and thus are not overly over- or
under-estimated for small SVE sizes. Second, it allows cracks to completely go through the
VE and can model the unloading portion of the strain–stress response, and the problems of
KUBC and SUBC, respectively.

To apply the MBC for the tensile loading in the horizontal direction, the top and bottom
sides of the SVE are modeled as rollers (zero tangential traction and normal direction),
whereas the left and right sides are gradually taken apart by applying opposing spatially
uniform and temporally increasing displacement values across all nodes. The terminal
value of the applied displacement of SVEs in the horizontal direction is chosen to be large
enough so that most SVEs undergo failure through the loading process. For the tangential
direction, zero traction is specified for these sides too. We refer the reviewer to [26] for a
more thorough description of the MBC and its comparison with the KUBC and SUBC.

The average strains and stresses of the SVEs were computed using a Python script.
With the average stresses and strains of the three load cases, the elasticity stiffness was
computed using the process described in [26]. The compliance matrix was computed as the
inverse of the stiffness matrix. Finally, the vertical and horizontal elastic moduli, denoted
by Ev and Eh, were computed from the compliance matrix.

To establish an effective failure model for each SVE, one must consider the interaction
between each melt pool, i.e., the boundary between melt pools in Figure 5a (corresponding
to melt pools in Figure 2a). Since the fusion zone is melted and deposited on top of the
heat-affected zone, there must exist an interface between the two [3]. Several works includ-
ing [5,9,10] treat such melt pool boundaries as weak interfaces, whose failure response is
represented by a cohesive traction–separation relation (TSR).

Figure 6 shows the bilinear TSR used for this study. This TSR is characterized by
the initial tangent modulus, k, strength value, σmax, and the work of separation (fracture
energy), φ, which is the area under the traction–separation relation.
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Table 1 shows experimentally measured vertical and horizontal elastic moduli and
strengths for the sample shown in Figure 2a from [38]. Our objective is to calibrate the
elastic and fracture properties of SLM at the melt pool scale, e.g., bulk properties and
melt pool boundary TSR parameters, so that the computationally homogenized elastic
and fracture properties for the RVE match the results shown in this table. The last two
columns of the table show our computational results for a domain that is half the size
of the domain shown in Figure 5a in each direction. As evident, there is a good match
between experimental and computational elastic and fracture properties. The details of the
calibration process are provided below. Since the experimentally reported stiffnesses and
strengths are in GPa and the RVE size in Figure 2a is expressed in µm, we use GPa and µm
as units of stiffness/ strength and length for the remainder of the paper.

Table 1. Experimental results compared to simulation results for vertical and horizontal load cases.

Experimental [38] Calibration Domain

Horizontal Vertical Horizontal Vertical

Young’s Modulus (GPa) 172 160 171.75 160.80

Yield (max) Strength (GPa) 1.09 1.08 1.27 1.07

For multiphase composites, the volume fractions and topologies of individual phases
contribute to the overall elastic and fracture properties of the material at a given SVE
(observation) size. Herein, similar to [5,9,10], the additively manufactured material is
treated as single-phase with the melt pool boundaries being the dominant feature respon-
sible for a material nonlinear response. From this perspective, there are two aspects that
contribute to the compliance of SLM material: bulk compliance and traction separation
model compliance. This is due to the fact that the cohesive model is intrinsic; that is, it has
the initial slope of k in Figure 6. To demonstrate the effect of cohesive model compliance,
consider a one-dimensional domain, wherein equal length elastic regions of length L and
elastic modulus Em are separated by cohesive interfaces with initial stiffness k. The compli-
ances of the bulk and cohesive interfaces are 1/Em and 1/Lk, respectively, resulting in the
overall compliance,

1
Eeff

=
1

Em
+

1
Lk

(1)

where Eeff is the effective elastic modulus of the material. Clearly, 1/Eeff and 1/Em are
effective and bulk compliances. To relate this simple 1D model to the microstructure
shown in Figures 2a and 5a, L is set to the average spacing of the melt pools in the vertical
direction. Subsequently, Em can be considered to be the elastic modulus of the bulk material
within the melt pools. Finally, Eeff corresponds to the vertical stiffness of SLM from Table 1
(160.80 GPa). We note that Equation (1) will be exact for the vertical stiffness of material only
if in Figure 2a, the melt pool lines are horizontal lines separated by distance L. However,
this equation still provides a good starting point for choosing the combinations of the bulk
material stiffness, Em, and cohesive model stiffness, k, that result in a vertical stiffness close
to the experimental value of 160 GPa in Table 1.

Interestingly, the 1D equation relating k, Em has worked well in the calibration process
by varying k, calculating Em from (1), and assigning reasonable values for σmax and φ,
the other two parameters of the TSR in Figure 6. Specifically, we choose a value of σmax
equal to the macroscopic vertical strength of the bulk material equal to 1.08 GPa in Table 1.
Unfortunately, no energy measure was provided in the experimental results of [38]; thus,
there is no direct means to assign the value of φ. However, computational results provided
some guidance on choosing a reasonable value for φ; in Figure 6, the area under the
unloading line represents the energy reserve past the maximum strength of the interface;
the smaller β is defined as the ratio of the unloading to loading energies, the more brittle
the behavior of the TSR is. From the simulation of SVEs of different sizes, we encountered
nonconvergence problems when β . 2.
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In short, in the calibration process, we only varied the value of k, with the correspond-
ing value of Em obtained from Equation (1), σmax = 1.08 GPa and φ obtained from β = 2.
Figure 7a,b show the computed vertical stiffness, Ev, and strength, σv,max, as a function
of k. Interestingly, for the same value of k ≈ 72 GPa/µm, the vertical Ev and σv,max from
Table 1 are matched simultaneously. Having chosen k = 72 GPa/µm, other parameters
are obtained from the process explained earlier and are reported in Table 2, noting that
φ = 0.025 GPa-µm is the rounded-up fracture energy corresponding to β = 2, and a Poisson
ratio of ν = 0.3 is a typical value chosen for steel.
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Table 2. Material properties set from the calibration process.

Calibrated Material Properties

Em 175 GPa

ν 0.3

k 72 GPa

σmax 1.08 GPa

φ 0.025 GPa-µm

Figure 8a shows the VE geometry and boundary conditions used to calibrate the
material properties discussed above. Displacement boundary conditions were applied to
the top of the domain with a fixed BC at the bottom. Traction-free BCs are used on the
left and right sides to match the experimental setup. The corresponding vertical stress vs.
strain response is depicted in Figure 8b for the final calibrated parameters. The slope of the
linear part matches Ev = 160.80 GPa and the maximum strength matches σv,max = 1.08 GPa
in Table 1 from [38] (see the last two columns).

For large enough domains such as the one shown in Figure 8a, the material fails
across the boundaries between the melt pools. However, for smaller domains, like the
partitioned SVEs, the likelihood of a melt pool boundary permeating across the domain,
thus resulting in cohesive fracture along the corresponding TSR interfaces, significantly
reduces. As a result, realistically, other modes of material degradation must be included
to handle the failure of small SVEs. Accordingly, a bulk failure mechanism is needed to
handle the failure of all SVE sizes, especially in the horizontal direction. For this reason, we
have employed a bulk plasticity model in addition to TSR-based decohesion across melt
pool boundaries. Due to the inherent microstructure of SLM materials, the effect of bulk
degradation, i.e., plastic yielding, is more evident for the horizontal load case than it is for
the vertical load case.
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3. Results

To interpret the effect of SVE size on mechanical properties, we first select a few
mechanical quantities of interest (QoIs) and examine the results as SVE size increases. The
variation of QoIs is discussed in the context of graphical overlays of stress versus strain,
and the size effect of the homogenized QoI; that is, the variation in its mean, minimum, and
maximum versus the SVE size. The remainder of this section is divided into two sections.
The first examines the vertical load case and the second handles the horizontal load case.
We consider elastic and fracture QoIs.

3.1. Vertical Direction

Figure 9 shows strain versus stress results in the vertical direction for all SVEs of sizes
LSVE = 56 µm and LSVE = 140 µm, respectively. The elastic property corresponds to the
slope of the linear part of the response and is the elastic modulus of SLM material in the
vertical direction (Ev). Two key fracture properties correspond to the maximum stress
(σv,max) and fracture energy (the area under the strain–stress curve).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

  
(a) (b) 

Figure 9. Vertical stress vs. strain overlay for (a) 𝐿 = 56 µm; (b) 𝐿 = 140 µm. 

A few trends can be observed. First, for both sizes, there are more variations in frac-
ture (maximum and post-maximum stress) than there are in elastic response. Second, the 
variations in both elastic and fracture properties are more noticeable for the smaller SVEs 
in Figure 9a. Third, the captured response is a relatively brittle pre-maximum stress level. 
In reference [46], several brittleness indicators are defined based on the ratios of initiation 
(i.e., where the stress–strain response before the maximum stress significantly deviates 
from the linear response), maximum (where the stress is the maximum), and final (the 
first instance when the stress reaches zero) strains or energies. For example, in Figure 9, 
the ratio of strain at the initiation stage to that at the maximum stage is very close to one, 
reflecting the little softening response before the elastic branches reach the maximum 
stress level, and indicating a brittle failure response. 

Figure 10a shows the probability distribution function (PDF) plots of 𝐸  for all rela-
tive SVE sizes. As can be seen, the variation in 𝐸  decreases as the SVE size increases. This 
is in agreement with the second observation above for the two relative SVE sizes of 𝐿 = 56 and 𝐿 = 140 µm. Interestingly, the mean and mode of 𝐸  are relatively unaffected 
as a function of SVE size. Another important vertical elastic material property is 𝐶 , the 
vertical normal component of the elasticity stiffness matrix. Due to Poisson effects, 𝐶  is 
not equal to 𝐸 . For brevity, we do not present the results for 𝐶 , but note that similar 
trends to 𝐸  are observed for 𝐶 . The red dot corresponds to the experimental value re-
ported in Table 1 from [38] and is provided as a reference point for other sample size re-
sults. The experimental sample, called RVE in this paper, is about six times larger than the 
largest SVE size of 140 µm. Thus, if we had more experimental images for this material, 
we would have expected the PDF of for this size to be a narrower bell-shaped curve than 
that of 𝐿 = 140 µm, around the red dot. 

  
(a) (b) 

Figure 10. Vertical results for 𝐸 : (a) PDF of 𝐸  for all SVE sizes. The red dot serves as a reference 
to the published value from [38]; (b) the size effect plot for 𝐸 . 

Figure 9. Vertical stress vs. strain overlay for (a) LSVE = 56 µm; (b) LSVE = 140 µm.

A few trends can be observed. First, for both sizes, there are more variations in
fracture (maximum and post-maximum stress) than there are in elastic response. Second,
the variations in both elastic and fracture properties are more noticeable for the smaller
SVEs in Figure 9a. Third, the captured response is a relatively brittle pre-maximum stress
level. In reference [46], several brittleness indicators are defined based on the ratios of
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initiation (i.e., where the stress–strain response before the maximum stress significantly
deviates from the linear response), maximum (where the stress is the maximum), and final
(the first instance when the stress reaches zero) strains or energies. For example, in Figure 9,
the ratio of strain at the initiation stage to that at the maximum stage is very close to one,
reflecting the little softening response before the elastic branches reach the maximum stress
level, and indicating a brittle failure response.

Figure 10a shows the probability distribution function (PDF) plots of Ev for all relative
SVE sizes. As can be seen, the variation in Ev decreases as the SVE size increases. This is in
agreement with the second observation above for the two relative SVE sizes of LSVE = 56
and LSVE = 140 µm. Interestingly, the mean and mode of Ev are relatively unaffected as a
function of SVE size. Another important vertical elastic material property is C22, the vertical
normal component of the elasticity stiffness matrix. Due to Poisson effects, C22 is not equal
to Ev. For brevity, we do not present the results for C22, but note that similar trends to
Ev are observed for C22. The red dot corresponds to the experimental value reported in
Table 1 from [38] and is provided as a reference point for other sample size results. The
experimental sample, called RVE in this paper, is about six times larger than the largest
SVE size of 140 µm. Thus, if we had more experimental images for this material, we
would have expected the PDF of for this size to be a narrower bell-shaped curve than that
of LSVE =140 µm, around the red dot.
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Size effect relation of vertical stiffness is shown in Figure 10b. The minimum and
maximum values of homogenized stiffness for the population of SVEs at any given size are
shown by the dashed and dot-dashed lines. The mean value of the homogenized property
is shown by the solid line inside this region. As implied by the PDFs in Figure 10a, we
observe that the mean value of Ev is quite stable among all SVE sizes. Moreover, there exists
a relative difference of only 0.0027 across means values for each SVE size, highlighting that
Ev is not size-sensitive. In [26], a mean-based RVE size limit criterion is proposed, wherein
the RVE size for a property is defined as the size at which the mean value of the given
property is close enough to its terminal value (in the limit of infinite VE size). We observe
that from this perspective, even the smallest relative SBE, LSVE = 56 µm, can be considered
a RVE size for Ev whose mean value closely aligns with that of the published value in
Table 1. The variations in Ev gradually decrease from about 10% to 2.5% of the mean value
as the SVE size increases. The decrease in variations is expected as in the limit of a SVE size
equal to infinity, all VEs have the same response and the variation tends toward zero.

PDF and size effect plots of vertical strength, σv,max, are shown in Figure 11. The
size effect plot in σv,max in Figure 11b shows a similar trend to that of vertical stiffness in
Figure 10b, although the mean value is not as stable as Ev across all SVE sizes, and the
variations are higher for the smallest SVE sizes (15% for σv,max compared to 10% for Ev for
the SVE size LSVE = 56 µm). This instability in the mean for σv,max is more evident in the
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PDFs of strengths (Figure 11a). This is expected as fracture properties are more sensitive
to minute differences in the layout of the material at the microscale and in general, higher
variations are experienced for fracture properties than they are for elastic ones [26]. Like
in Figure 10a, the experimental value for the RVE (Figure 2a) is shown by the red dot in
Figure 11a, for a comparison with the PDFs of the results of different SVE sizes.
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3.2. Horizontal Direction

Figure 12 shows strain versus stress results in the horizontal direction for SVEs of
sizes LSVE = 56 and LSVE = 140 µm, respectively. Compared to the corresponding results
for vertical loading in Figure 10, there is less variation in the elastic modulus and delayed
softening past the maximum stress for the horizontal loading results. We contribute these
features to the topology of the melt pools in Figure 2a. The melt pool boundaries are more
favorably opened when the loading is along the vertical direction compared to when it
is in the horizontal direction. This is due to the fact that for horizontal loading, there are
long stretches of material from left to right that carry the load and contain no melt pool
lines. Accordingly, separation along the cohesive surfaces is not activated as much. The
results show less variation and unloading past the maximum stress given that the response
is mostly driven by the elastoplasticity of the bulk material.
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Figure 13 shows the PDF and size effect results for the horizontal stiffness. Referring
to Figure 13b, stiffness for the horizontal load case is not as heavily affected by the varying
SVE size as the vertical stiffness is in Figure 11b. Otherwise, both the vertical and horizontal
stiffnesses show the same trends in the PDFs and size effects. That is, in both cases, the
mean value stays relatively insensitive to the SVE size. The mean value for each SVE size
also closely aligns with the publish value for Eh in Table 1. This is reflected by the red dot
corresponding to the experimental results in [38] for the RVE in Figure 2a.
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Figure 14 shows the results for horizontal strength σh,max. Referring to the PDFs in
Figure 14a, the mean value for σh,max varies more dramatically, close to tenfold more,
compared to the elastic modulus Eh. Again, the red dot corresponding to the experimental
results in [38] is provided for comparison with computational results of different SVE sizes.
Figure 14b illustrates the increase in both the mean and minimum homogenized value
of σh,max as SVE size increased. The reason for the increase to σh,max at larger SVE sizes
and the difference between horizontal and vertical elastic moduli is explained by referring
to the geometry of the melt pools in Figures 2a and 5. For large SVEs, there is a higher
likelihood of having a whole block of bulk material that runs across the entire SVE. Such
blocks prevent the failure of the SVE through debonding across cohesive surfaces, as none
will run across the layer. These stiff layers dictate the overall stiffness in the horizontal
direction; the 3D printed layers in this case act as parallel springs, wherein the highest
stiffness (the continuous layers) dictates the overall stiffness. For small SVEs, there is more
likelihood of having certain melt pool lines cut through a layer. Accordingly, the overall
horizontal strength becomes lower for such small SVEs. In contrast, for all SVE sizes, the
debonding in the vertical direction is easier and almost always possible, thus much less
size sensitivity is observed in Figure 11 for σv,max. The decrease of variations for Eh and
σh,max is expected as both properties tend to their variation-based RVE size as the SVE size
increases [12].
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4. Discussion

In this section, we summarize the results from the presented numerical results in the
prior sections. First, we examine whether or not one can claim any of the four homogenized
properties has reached its RVE size for LSVE = 140 µm. In [26], we discussed mean-based,
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variation-based and boundary condition (BC)-based criteria to examine whether or not
a homogenized properties has reached its RVE size limit. In the mean-based criterion,
the RVE size is defined as the LSVE, such that for all SVEs larger than that, the relative
variations in the mean value (e.g., the middle line in Figures 10b, 11b, 13b and 14b) stay
below a certain user-defined threshold, ε, across all larger SVE sizes. In the variation-based
criterion, the RVE size corresponds to the size beyond with the coefficient of variation
(COV) staying below the threshold, ε. The COV is defined as the ratio of the standard
deviation to the mean value of the quantity. Often, the arbitrary threshold of ε = 0.01 is
used for both criteria [22,25]. This variation-based criterion is the most common choice to
determine the RVE size in the literature; see for example [25,47]. We refer the reader to [26]
for a further discussion of these criteria and the BC-based criterion not used in this work.

In [26], we first obtain best fits to the means and COVs of a homogenized property
versus LSVE before determining when the normalized mean and COV fall below ε for the
definition of mean- and variation-based RVEs. In this work, we adopt a simpler approach
given the lower variation in homogenized properties discussed in Section 3. For the mean-
based criterion, we define the error in the mean values, e(µ), as the largest difference
between the mean values of all sizes divided by the largest mean value. That is, it is a
relative error among all the mean values of the given property. These values are reported
in the first data row of Table 3. As evident, for all properties, e(µ) is below or very close to
ε = 0.01. Thus, from this perspective, all homogenized properties can be claimed to have
reached the mean-based RVE size below or around LSVE = 140 µm.

Table 3. Summary of values used to examine mean- and variation-based RVE sizes for all four
homogenized properties.

Horizontal Vertical

Eh σh,max Ev σv,max

Mean-based: e(µ) 0.000604 0.00766 0.00146 0.0166

Variation-based: COV
(LSVE = 140 µm) 0.00460 0.0230 0.00997 0.0162

The results for the variation-based criterion are shown in the second data line of
Table 3. Herein, the COVs of the largest SVE size of LSVE = 140 µm are provided. For elastic
properties and vertical strength, the COVs are below ε = 0.01. Even for the homogenized
strength, the COV of 0.023 is close to the often-used threshold of 0.01. Thus, even for the
variation-based criterion, the properties are deemed to have reached their RVE size below
or around LSVE = 140 µm. This is an anticipated result, as [48] also obtained a similar
finding pertaining to elastic properties.

Next, we examine the differences in the homogenized properties from two perspectives.
First, for both criteria, elastic properties take smaller values, implying that they reach their
RVE limit at a smaller size. This is consistent with our results in [26,41] for different two-
phase composites. In [41], stress contours demonstrate that minute local variations in the
microstructure result in highly varied levels of stress concentration and thus the strength
value assigned to an SVE. In contrast, the elastic properties reflect the average response of
the SVE (as opposed to the weakest point-type response for fracture properties) and are less
sensitive to microstructural variations. This explains why the values for elastic properties
are smaller in Table 3.

Second, we examine the difference between horizontal and vertical properties. From
Table 3, we observe that that the homogenized Eh not only has a more stable mean value
(reflected in e(µ)), but also has smaller normalized variations (reflected in COV). Both
aspects are also graphically evident when comparing Figures 10b and 13b. This can be
attributed to whole regions spanning the RVE horizontally, acting as rather deterministic
parallel springs for the horizontal loading case. For fracture properties, while a lower
variation is observed for σh,max compared to that for σv,max in Figures 11b and 14b and
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in Table 3, one needs to refer to the actual strain–stress responses in Figures 9 and 12
to have a clearer understanding of the differences of the two loading beyond just the
maximum stress. From the strain–stress responses, we observe a lower variation in the
elastic slope, Eh, compared to that in Ev (consistent with the COV values for LSVE =140 µm
in Table 3). In contrast, it is now the horizontal direction that has a higher variation in
response post-elastic regime.

5. Conclusions

The SVE-based homogenization approach can be used to derive elastic and fracture
properties for SLM materials. The mean apparent values for vertical and horizontal QoIs
bear a resemblance to the experimentally obtained values. Furthermore, increasing the
SVE size reduces the variation in homogenized properties. The relative difference in mean
values for Ev was more than twice that for Eh, indicating heightened sensitivity in the effect
of SVE size on vertical stiffness. The behavior in the horizontal and vertical directions
appears to exhibit inverse tendencies, with the vertical direction displaying heightened
sensitivity in linear components while the horizontal direction demonstrates increased
variability during fracture, indicating divergent behavior between the two directions. The
difference in behavior between horizontal and vertical results can be attributed to the
microstructure of the SLM material. The likelihood of a melt pool boundary perpendicular
to the applied load is greater for the vertical load case than for the horizontal load case.
The resulting over-stiffness phenomenon observed for the horizontal load case decreased
for larger SVEs. As for fracture properties, we observe that they exhibit higher variations
and less stable mean values when compared to those of elastic properties. In any case, for
the SLM material considered, below or around the size of 140 µm, all elastic and fracture
properties reached both the mean- and variation-based RVE size.

The results provide insights into how SLM materials’ elastic and fracture properties
tend toward their macroscopic size-independent and homogeneous limit. While these
RVE-based limits are suitable for many macroscopic problems, SVE-based homogenized
properties are favorable for failure analysis as they maintain a sufficient level of material
heterogeneity needed for such applications [26,41]. The heightened sensitivity of fracture
properties to small variations in SLM materials bears significant implications for material
design and structural integrity. A more comprehensive understanding of the brittleness
and fracture behavior becomes critical since even minor variations in these properties
can potentially lead to catastrophic brittle failures in real-world applications. We believe
that these SVE-based elastic and fracture properties can be used for the stochastic failure
analysis of materials as demonstrated in [30].

Some other extensions of this work are as follows. First, we only had one set of experi-
mental results to compare with our computational results. To accurately validate the results,
we should have several experimental strain–stress responses of the SLM material for each
SVE size considered. Second, the temperature effects during manufacturing and ensuing
residual stresses should be included in subsequent mechanical analysis. These residual
stresses are obtained from the thermomechanical analysis of the printing process [49]. Some
examples of such analysis for a single laser path, multiple parallel paths, and an entire SLM
part are provided in [50,51], and [52], respectively. In future work, we aim to derive residual
stresses resulting from simulating the manufacturing process and incorporating their effect
on the nonlinear properties of the printed material, such as strength and fracture energy.
Third, grain-level nonlinear material models such as crystal plasticity remove the restriction
of crack propagation along melt pool boundaries and provide a more accurate overall rep-
resentation of material failure. Fourth, SVE-based homogenization can be incorporated in
the multiscale linear and nonlinear analysis of SVEs. The lower computational cost of such
multiscale analyses (compared to that for DNS) makes this approach a suitable forward
solver in design problems, for example in optimizing SLM printing parameters [50,53].
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