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Abstract: Diabetic retinopathy (DR), a consequence of diabetes, is one of the prominent contributors
to blindness. Effective intervention necessitates accurate classification of DR; this is a need that
computer vision-based technologies address. However, using large-scale deep learning models for
DR classification presents difficulties, especially when integrating them into devices with limited
resources, particularly in places with poor technological infrastructure. In order to address this, our
research presents a knowledge distillation-based approach, where we train a fusion model, composed
of ResNet152V2 and Swin Transformer, as the teacher model. The knowledge learned from the heavy
teacher model is transferred to the lightweight student model of 102 megabytes, which consists
of Xception with a customized convolutional block attention module (CBAM). The system also
integrates a four-stage image enhancement technique to improve the image quality. We compared
the model against eight state-of-the-art classifiers on five evaluation metrics; the experiments show
superior performance of the model over other methods on two datasets (APTOS and IDRiD). The
model performed exceptionally well on the APTOS dataset, achieving 100% accuracy in binary
classification and 99.04% accuracy in multi-class classification. On the IDRiD dataset, the results were
98.05% for binary classification accuracy and 94.17% for multi-class accuracy. The proposed approach
shows promise for practical applications, enabling accessible DR assessment even in technologically
underdeveloped environments.

Keywords: attention; CNN; diabetic retinopathy; knowledge distillation; transformer

1. Introduction

The human eye is an exceptional organ that provides us with the priceless benefit
of vision, enabling us to connect with and experience the outside world and convey our
emotions. A diabetes-related eye disease, termed diabetic retinopathy(DR), however, can
impair this crucial skill. Diabetes-related high blood sugar may harm the blood vessels in
the retina, impairing eyesight [1]. Currently, this is the most common cause of eyesight
loss [2]. Early stages might not present any symptoms, highlighting the value of routine
eye exams for early identification. Vision loss or impaired vision may present as symptoms
as it advances. Diabetic retinopathy progresses in five phases. The earliest stage of no
diabetic retinopathy (no DR) reveals no retinal damage. Microaneurysms occur in mild
non-proliferative diabetic retinopathy (mild NPDR), causing minimal visual distortion [3].
Moderate non-proliferative diabetic retinopathy (moderate NPDR) causes vascular ob-
structions and decreased retinal oxygen, which can lead to the formation of new blood
vessels [4]. Severe non-proliferative diabetic retinopathy (severe NPDR) is characterized by
substantial oxygen deficiency and increased oxidative stress. Controlling blood sugar, hy-
pertension, and cholesterol through dietary modifications, medication, and insulin therapy
are key components of managing and preventing diabetes [5]. To monitor retinal health
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and enable prompt actions, routine eye exams are essential [2]. Treatments, including laser
photocoagulation, intraocular injections, or vitrectomy surgery, can be necessary in extreme
cases to stop future vision loss [6]. It is crucial for individuals with diabetes to take charge
of managing their illness and make their sight priority number one in order to decrease the
probability and effects of diabetic retinopathy [7]. The use of computer vision technologies
in the detection and treatment of diabetic retinopathy offers various benefits. It facilitates
early detection and increases screening accessibility [8,9]. It makes unbiased assessments
possible for individualized and affordable therapies [10]. Additionally, the data produced
support research and facilitate more effective therapeutic approaches.

Convolutional neural networks (CNNs), a sub-field of artificial neural networks, are
widely used in computer vision tasks [11]. They are capable of learning hierarchical
representations from input images, making them effective for image classification, object
detection, and segmentation [12]. CNNs excel at capturing local patterns and spatial
dependencies through convolutional layers, while pooling layers reduce spatial dimensions
and preserve important information [13]. Despite their high performance, CNNs have
limitations when dealing with small datasets. They require significant amounts of labeled
data for training, which are often impractical or expensive to obtain. Additionally, training
CNN models is computationally demanding and requires powerful hardware and time
resources. To overcome these limitations, transfer learning has emerged as a powerful
solution. By leveraging pre-trained CNN models, which have been trained on large datasets
for generic image recognition tasks, transfer learning reduces the need for massive labeled
datasets and lowers the computational burden [14]. The idea is to use the knowledge
learned via a pre-trained CNN from one task and apply it to related tasks [15]. Since it
starts with a pre-trained CNN backbone and only requires fine-tuning a small portion of
the model, the number of training iterations required is significantly reduced, speeding
up the training process. Another advantage of transfer learning is its efficiency with a
small amount of data. It is particularly useful when faced with limited data, as it leverages
knowledge from large-scale datasets to improve performance on smaller datasets [16].

Another significant limitation of CNNs is their inability to effectively capture global
context due to their local receptive fields [17]. This is particularly noticeable when deal-
ing with images that contain substantial objects or intricate relationships between remote
regions. The Vision Transformer (ViT) [18] addresses this problem by leveraging the trans-
former architecture’s attention mechanism, enabling efficient global information capture.
ViT divides an image into fixed-size, non-overlapping patches. These patches are linearly
projected by multiplying them with a learnable weight matrix and their positions are
embedded with them. Finally, they are treated as a sequence. It utilizes the self-attention
mechanism to identify long-distance dependencies, allowing for interactions between
patches. ViT is now highly competitive in a variety of image classification tasks [19,20].
ViT, however, still has trouble managing high-resolution images effectively. When ap-
plied directly to large images, the self-attention mechanism’s quadratic complexity, with
respect to the input sequence length, becomes a bottleneck and hinders scalability. The
Swin Transformer [21] is useful in this situation. The Swin Transformer uses a hierarchical
structure of self-attention mechanisms to handle high-resolution images. The image is split
into non-overlapping windows and is processed hierarchically across several layers. As
attention is calculated within local windows rather than across the entire sequence, this
lessens the quadratic complexity issue. Swin Transformer outperforms some state-of-the-art
architectures in various image recognition tasks. Therefore, it is currently dominating the
field of computer vision.

The rising complexity and resource requirements of contemporary deep learning
models give rise to the need for knowledge distillation [22,23]. These models are difficult to
deploy on resource-restricted devices and in situations with constrained processing power
as their sizes and computational requirements increase. By transferring the information
and insights of a larger teacher model to a smaller student model through knowledge dis-
tillation, this problem is resolved [24]. This allows the student model to attain substantial
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performance while being more computationally efficient. This knowledge compression
improves model interpretability, energy efficiency, and robustness while providing a realis-
tic way to regularize model training. It also enables deployment on edge devices, mobile
platforms, and low-resource contexts [25].

In order to address the need for accurate diabetic retinopathy classification using a
lightweight image classifier, this article presents a knowledge distillation-based approach.
The proposed solution involves a series of image preprocessing tasks to enhance the image
quality and amplify the visibility of the interested areas of the retinal image. Subsequently, a
robust teacher model is constructed by fusing Swin Transformer and ResNet152V2, which is
leveraged to train the student model. The use of Swin Transformer and ResNet152V2 in the
teacher model for knowledge distillation is supported by an amalgamation of architectural
efficacy and task-specific considerations. Swin Transformer, a relatively recent approach in
computer vision, has remarkable abilities; it extracts both the global and local context from
images. It is highly suited for tasks like image categorization due to its hierarchical structure
and self-attention mechanism. ResNet152V2, a deep form of the ResNet architecture, on the
other hand, is known for its dependability and toughness in a variety of computer vision
tasks. Combining these diverse architectures improves the process of knowledge transfer
by offering the student model access to a wider range of knowledge. The student model
is composed of Xception and a modified convolutional block attention module (CBAM).
An empirical study of the portable model on the APTOS and IDRiD datasets attests to its
effectiveness. In summary, this research paper has the following major contributions.

• The research involves various image preprocessing techniques to enhance image
quality and highlight key areas of interest in the image.

• A robust fusion model is proposed that employs Swin Transformer and ResNet152V2;
it serves as an instructive guide for knowledge distillation.

• For efficiency, this research presents a compact student model by merging Xception
and a tailored CBAM block, which is 102 megabytes.

• The effectiveness of the proposed model is demonstrated by an empirical evaluation on
the challenging APTOS and IDRiD datasets, which yielded excellent results, with 100%
accuracy in binary classification and a remarkable 99.04% in multi-class classification
on the APTOS dataset. Moreover, the accuracies were 98.05% for binary classification
and 94.17% for multi-class accuracy on the IDRiD dataset.

The rest of the article is structured as follows. Section 2 presents the recent studies
for DR classification, highlighting their contributions and limitations. Section 3 describes
the proposed methods, followed by the results obtained in Section 4. Finally, the article
concludes in Section 5.

2. Related Work

In recent history, several methods have been proposed for DR detection. Usman
et al. [2] presented a deep learning and dimensionality reduction-based method for DR
classification. The paper experiments with three pre-trained CNN feature extractors—
ResNet50, ResNet152, and SqueezeNet1—to extract useful features from retinal images.
The extracted features might contain some irrelevant or redundant ones, which are refined
via principal component analysis (PCA) and passed into a machine learning classifier
for final classification. Alahmadi [26] proposed a feature extraction module that deteri-
orates the original feature space of a CNN into content and style representation spaces.
Spatial attention and texture attention are integrated into the content and style features,
respectively. Later, both streams are fused before the final classification. The proposed
module achieves 98% accuracy on binary classification and 85% accuracy on multi-class
classification on the APTOS dataset. Farag et al. [27] leveraged dense blocks and transition
blocks to construct a custom feature extractor for automatic DR detection. The dense
block consists of densely connected convolutional layers, where features extracted from
previous blocks are propagated to the subsequent blocks. The transition block, on the other
hand, consists of point-wise convolution and 2 × 2 max-pooling. This layer compresses
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the output of the dense block by reducing the number of features and dimensionality.
Finally, the extracted features are passed through a convolutional block attention module
(CBAM) [28], where the features are refined with channel attention and spatial attention.
This paper also experiments with the APTOS dataset and attains 97% and 82% accuracy
on binary class and multi-class classification, respectively. Mondal et al. [29] balanced
APTOS19 and DIARETDB1 datasets using generative adversarial network (GAN). For
classification, they present an ensemble learning method consisting of two state-of-the-art
CNN architectures: DenseNet101 and ResNext. Menaouer et al. [30] presented a fusion
model made of two visual geometry group (VGG) networks and a custom deep convolu-
tional network to achieve 90% accuracy on the APTOS dataset. Nonetheless, due to the
integration of VGG networks, which are recognized for their high parameter numbers, the
proposed system becomes infeasible in real-world applications for modest computational
platforms. Mungloo et al. [31] performed an investigation on three high-performing image
classifiers, termed VGG16, ResNet50, and DenseNet169. To conduct the experiment, they
exploited a public dataset (APTOS) and a private dataset (Mauritian) that the authors
collected from local hospitals. Given that APTOS is an imbalanced dataset, the authors
performed two data augmentation methods—flipping and brightness adjustment—on the
training set to balance the dataset, which resulted in an improvement in the classification
performance. Among the three models, ResNet50 produced the best classification accuracy.
On the contrary, in separate research [32], Das et al. found that ResNet50 is the most
overfitted model among the 26 state-of-the-art deep learning models. According to the
experiments, EfficientNetB4 is the most optimal model for DR classification, followed by
Inception-ResNet-v2 and NASNetLarge in the second and third positions, respectively.
Attallah [33] employed four pre-trained CNN models to extract spatial features. In the next
stage, redundant features were deleted and passed to the feature integration phase. Finally,
the system classified fundus images with the help of three state-of-the-art machine learning
classifiers. Although the model achieves a noteworthy performance in retinopathy of
prematurity (ROP) classification, the integration of four classifiers in the feature extraction
phase makes the system heavy. Mustafa et al. [34] extracted features from DR images
using two pre-trained CNN feature extractors: ResNet50 and DenseNet121. The features
were then reduced using principal component analysis (PCA) and fed to an ensemble ma-
chine learning classifier, composed of AdaBoost and Random Forest for final classification.
Raiaan et al. [35] combined three commonly used DR datasets (Messidor-2, IDRiD, and
APTOS) to create a merged dataset. With preprocessing, they presented a lightweight CNN
architecture for the classification. Although the model outperformed some of the existing
architectures, it consumed over 35 million trainable parameters. Attallah [36] presented
a method that uses spectral–temporal, spatial, and textural data to detect retinopathy of
prematurity (ROP) in fundus images. To capture texture features, it first performs a Gabor
wavelet (GW) conversion, after which the data are ready for three already-trained convo-
lutional neural networks (CNNs). The approach uses discrete wavelet transform (DWT)
to combine the data after fine-tuning and feature extraction from these CNNs, and then
uses machine learning classifiers, like SVM, LDA, and ESD for ROP diagnosis, to guarantee
reliable findings. Image preprocessing plays a crucial role in determining the performance
of a deep learning algorithm, especially in image classification [37]. The majority of the
systems, however, neglect this crucial step. Nonetheless, Ozbay [38] leveraged an artificial
bee colony algorithm to segment the lesion regions of retinal images. The segmented mask
is then employed to enhance the image quality, specifically focusing on the fundus region.
Subsequently, a seven-layer CNN architecture is developed to classify the DR images. This
method achieves a remarkable accuracy of 99.66% in classifying five stages of DR.

Many researchers have segmented some regions of the retinal images and only lever-
aged the segmented image for classification. Saranya et al. [39] employed U-Net to segment
the red lesions in the image. The segmented binary image was then passed to a custom
CNN architecture for the final classification. Bilal et al. [40] proposed a two-stage DR
detection system that first segmented the blood vessels and optic disk employing U-Net.
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In the second stage, they integrated Inception-V3 for classification. Jena et al. [8] used
U-Net to segment and delete the blood vessels and the optic disk. The segmented regions
were then removed from the original image and the green channel of the RGB image was
enhanced. Finally, the preprocessed image was passed through a shallow CNN architec-
ture, where the final classification layer, typically composed of a neural network with the
softmax activation function, was replaced with a support vector machine (SVM) classifier.
Nonetheless, the segmentation-based techniques required more resources since the system
needed to hold two models (the segmentation model and the classification model).

Recently, vision transformers have gained attention in a variety of disease classifica-
tions. Gu et al. [41] employed a vision transformer for DR classification. The fine-tuned
vision transformer accommodated a residual attention unit at its encoder to enhance the
performance. Yao et al. [42] employed Swin Transformer with transfer learning to classify
DR images from the Messidor dataset. With extensive hyperparameter tuning, the model
achieved 90% accuracy. Dihin et al. [43] also leveraged the Swin Transformer to classify DR
images. Regarding binary class classification, the model achieved 97% accuracy.

According to the studies discussed in this section, Table 1 presents a brief overview
of the methods, results, and their limitations. The majority of research works have three
dominant problems. The issues include low classification performance, high computational
complexity, and less diversity in the dataset. Among the three prime issues, this paper
addresses the first two, presenting a lightweight DR classifier with high performance.
Moreover, we evaluated the proposed model against recent literature using different
evaluation metrics on the APTOS and IDRiD datasets.

Table 1. Comparison with different methods.

Paper Method Dataset Accuracy Limitation

Usman et al. [2] ResNet152, PCA DR and CSME 93.67% Experiment conducted on one dataset
Bilal et al. [40] U-Net, Inception-V3 Messidor-2, EyePACS-1,

and DIARETDB0
EyePACS-1: 97.92%, Messidor-2: 94.59%, DIARETDB0:
93.52%

Has a relatively high computational cost.

Dihin et al. [43] Swin Transformer APTOS 96% (Binary Classification) No comparison provided and works only on binary classification.
Yao et al. [42] Swin Transformer Messidor 98.66% Experiment limited to one dataset and lacks detailed experimental outcomes.
Gu et al. [41] Vision Transformer DDR, IDRiD DDR: 91.54% IDRiD: 87.92% Quadratic self-attention time. Therefore, resource-consuming.
Farag et al. [27] CNN, DenseNet169 APTOS 82% Low classification performance.
Mondal et al. [29] GAN, DenseNet101, ResNext APTOS 86.08% Low classification performance.
Menaouer et al. [30] VGG with custom CNN APTOS 90% High computation and results are biased toward the majority class.
Mustafa et al. [34] ResNet50, DenseNet121, PCA Messidor-2, EyePACS,

APTOS, DDR
Messidor-2 95.58%, EyePACS: 89.20%, APTOS: 89%, DDR:
76.81%

High computation and lacks detailed comparison with existing methods.

Mungloo et al. [31] ResNet50 APTOS, Mauritian APTOS: 82% Mauritian: 79% Low classification performance
Das et al. [32] EfficientNetB4 EyePACS 79.11% Low classification performance
Alahmadi [26] Custom two-stream CNN APTOS 85% Low classification performance
Raiaan et al. [35] Lightweight CNN architecture Combined dataset

(Messidor-2, IDRiD, and
APTOS)

98.65% High number of trainable parameters.

Proposed Xception, Knowledge Distillation APTOS, IDRiD APTOS: 99.04% IDRiD: 94.17% Experiment conducted on two datasets only.

3. Methodology

This section can be divided into three main steps. The first step is data preprocessing,
which is described in Section 3.1. This process involves improving the quality of the original
image. The second step involves constructing a robust teacher model, followed by a student
model, which is trained through knowledge distillation. Section 3.2 illustrates this process
in detail. Thirdly, we conducted an ablation study to select the best hyperparameters. The
study is presented in Section 3.3. Figure 1 presents the overview of the full pro.

Figure 1. Overview of the proposed method.
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3.1. Data Preprocessing

The datasets used to evaluate the proposed system were the Asia Pacific Teleophthalmol-
ogy Society (APTOS) 2019 dataset [44] and the Indian Diabetic Retinopathy Image Dataset
(IDRiD) 2018 [45]. The APTOS dataset consists of 3662 retinal images of five classes (no DR,
mild, moderate, severe, and proliferate) while the IDRiD dataset only consists of 516 DR
images. For the imbalanced datasets, the majority of their images are in the no DR class.
Table 2 presents the details of the dataset distributions. A sample of the APTOS dataset is
presented in Figure 2. Likewise, the IDRiD dataset consists of the same types of images. Im-
age enhancement techniques can vastly influence the classifier’s performance and increase
visibility [46,47]. Therefore, the proposed system incorporates a series of image-processing
algorithms, which can be mainly divided into four stages. A brief illustration of these
stages is presented in Figure 3. The algorithms are described below.

Figure 2. Sample of the APTOS dataset.

Figure 3. Image preprocessing stage.

Table 2. Data distribution of the APTOS and IDRiD datasets.

Grade APTOS IDRiD

Normal 1805 168
Mild 370 25
Moderate 999 168
Serve 193 93
Proliferative 295 62
Total 3662 516

3.1.1. Image Denoising

Fundus images typically have noise issues. Therefore, the images are passed through a
Gaussian kernel to remove the noise [48]. The Gaussian kernel emphasizes the central pixel,
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gradually reducing the weights of its surrounding pixels. The priority of the surrounding
pixels depends on the standard deviation of the kernel. A larger standard deviation
produces a wider Gaussian curve that results in more smoothing. The process of Gaussian
filtering can be illustrated with Equations (1) and (2). Here, G is the filter and σ is the
standard deviation. In the first step, the filter is calculated using Equation (1).

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

Subsequently, the filter is applied to the input image, Iinput, which produces the smooth
image Ismoothed.

Ismoothed(x, y) =
k

∑
i=−k

k

∑
j=−k

Iinput(x + i, y + j) · G(i, j) (2)

In this research, the kernel has a standard deviation of 10 at the X-axis and 0 at the
Y-axis. The kernel produces a smooth image on the horizontal axis and no blurring on
the vertical axis. The justification for using only horizontal smoothing on retinal images
comes from the fact that many important anatomical features, including blood vessels,
lesions, and other important features, predominately have horizontal orientations. In order
to enhance these structures and reduce noise that primarily affects horizontal components,
smoothing along the X-axis is applied.

Finally, the input image and the smooth image are alpha-blended. Alpha blending is
an approach used for combining two images by assigning a weight (alpha value) to each
pixel, which determines how much the pixel from one image affects the final result. This
algorithm is applied to subtract the blurred image from the original image. The refined
image has enhanced contrast with attention to the edges and details. Equation (3) illustrates
the detailed process of alpha blending. In this equation, α and β are two constants used to
determine the weights of the original image, Iinput, and the smooth image, Ismoothed. Finally,
an offset, C is added to the resulting image to adjust the brightness. For this experiment,
the values of α, β, and C are 4, −4, and 128, respectively.

Irefined(x, y) = α · Iinput(x, y) + β · Ismoothed(x, y) + C (3)

3.1.2. ROI Selection

The majority of the images contain a dark background, which is irrelevant to the model.
Therefore, the region of interest (ROI) is selected to enhance the model’s accuracy. The ROI
selection process involves segmenting the image using Otsu’s thresholding [49]. For that,
the RGB image is first converted into a grayscale image. Subsequently, Otsu’s algorithm
is applied, which returns a threshold. The process of determining the threshold can be
explained via Equation (4). In this equation, in order to determine the threshold, kOtsu, the
algorithm iterates over all possible thresholds, k. Here, q1(k) and σ2

1 (k) are the probability
variances of the background pixels. Similarly, q2(k) and σ2

2 (k) are the probability variances
of the foreground pixels, respectively.

kOtsu = arg min
k

[
q1(k) · σ2

1 (k) + q2(k) · σ2
2 (k)

]
(4)

Ioutput(x, y) =

{
1, if Iinput(x, y) > kOtsu

0, otherwise
(5)

After calculating the global threshold, as explained in Equation (5), the intensity values
above the threshold are then marked white and the rest are black. Since the background is
dark, the algorithm can easily segment the background from the retinal section. Based on
the segmentation, a bounding box is drawn, covering the white region. This box works
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as the selection boundary of the ROI. Therefore, the input image is cropped based on the
bounding box.

3.1.3. Unsharp Masking

In digital image processing, unsharp masking is a popular image improvement tech-
nique. By drawing attention to borders and limits, it seeks to improve the appearance
of sharpness and fine details in an image [50,51]. This process can be divided into three
steps. Firstly, it applies a low-pass filter to the original image to capture the low-frequency
components, resulting in a blurred image. Let the original image be Iinput and f be a
low-pass filter. Now, the blurred image, Iblurred, can be obtained using Equation (6).

Iblurred = Iinput ∗ f (6)

In the second stage, the blurred image is subtracted from the original image to obtain
the mask, which contains only high-frequency components. The resulting Imask is the
element-wise subtraction of pixel values from the original image and the blurred image.
Equation (7) presents the mathematical illustration of this stage.

Imask =
x

∑
i=1

y

∑
j=1

Iinput(i, j)− Iblurred(i, j) (7)

Finally, the mask is amplified and added to the original image. Let the amplification
value be denoted with k, which is 1 for this research. Now the final unsharp mask image is
retrieved, performing the operations mentioned in Equations (8) and (9).

Imask = Imask × k (8)

Ioutput =
x

∑
i=1

y

∑
j=1

Imask(i, j) + Iinput(i, j) (9)

3.1.4. Gamma Transformation

Gamma transformation, a nonlinear operation, is commonly used in image processing
to modify an image’s brightness levels [52]. It involves modifying the intensity distribu-
tion of the pixels by applying a power law function to the pixel value. Let us consider
Iinput to be the image before the gamma transformation and Igamma to be the gamma-
transformed image. Therefore, the process of gamma transformation can be explained
through Equation (10).

Igamma = Iγ
input (10)

The exponent of the power law equation, the gamma value, controls the overall
brightness and contrast of an image. The image becomes darker when the gamma value is
raised as the transformation compresses the lower intensity values while maintaining the
higher ones. In contrast, lowering the gamma value widens the range of lower-intensity
values and compresses the higher ones, making the image appear brighter. Due to the
integration of unsharp masking, some of the less important regions are highlighted, which
can have a negative impact on the model. Therefore, the gamma transformation is applied
to reduce the brightness. After a thorough analysis, the value of gamma, −5.047, is carefully
selected for this study. After the transformation, the intensity values are stretched to the
original range of 0 to 255. Let the image after gamma transformation be denoted with
Igamma, the maximum intensity value after gamma transformation with Imax, and the
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minimum value with Imin. Therefore, the image after contrast stretching, Istretched, can be
produced using Equation (11).

Istretched(x, y) =
255

Imax − Imin
· (Igamma(x, y)− Imin) (11)

Finally, the images are resized to 224 × 224 to fit into the pre-trained classifier’s input
dimension. Figure 4 presents the changes in the image after each stage. Although some
images are visually less appealing to the human eye, in the context of the full image, the
blood vessels and exudates are more emphasized than less important regions. The system,
however, does not integrate any data augmentation techniques.

Figure 4. Change in retinal images after a series of preprocessing.

3.2. Model Construction

In this stage, the teacher model is constructed first, followed by the student model.
Finally, the student model is trained through the distillation loss and cross-entropy. The
subsequent sections present these steps in detail.

3.2.1. Teacher Model

The teacher model employed in our system consists of two high-performing image
classifiers: Swin Transformer and ResNet152V2. The Swin Transformer was developed
as an advancement to the Vision Transformer (ViT). The major issue faced in vision trans-
formers involves the quadratic time complexity associated with computing self-attention
since each patch needs to look into every other patch to compute self-attention. Swin
Transformer introduced a solution to this problem by integrating shifted windows and hi-
erarchical transformer architecture. In the shifted window mechanism, images are divided
into fixed-size windows. To compute self-attention, the patches in a particular window
only focus on the other patches of that window, which dramatically reduces resource
consumption. The shifted window mechanism also allows the architecture to gain a higher
contextual understanding beyond a mere window-centric focus. The hierarchical block
architecture, on the other hand, combines features across different scales. This mechanism
significantly improves the classification performance, making Swin Transformer one of the
most powerful image classifiers available [53].

ResNet152V2 is a CNN architecture that is based on ResNet [54]. The backbone
of this model is the residual connection. The skip connections used in residual blocks
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allow the network to retain information extracted from previous blocks and propagate
throughout the network. This also erases the vanishing gradient problem, which allows
large model construction.

As presented in Figure 5, the proposed teacher model is a fusion model made of Swin
Transformer and ResNet152V2. The features extracted from both networks follow a batch
normalization for smoother convergence. Since ResNet152V2 returns two-dimensional
features, global average pooling (GAP) is employed for converting the 2D feature maps to
the 1D feature vector. GAP was found to be a more efficient approach for this task than
flattening. Finally, features from both networks are fused and passed to a dropout layer,
where 50% of features are randomly dropped to regularize the model. A 50% dropout
rate in the teacher model ensures that the model does not overfit in the highly imbalanced
dataset. This learning is then transferred to the student model, eliminating the need for
additional regularization. The dropout layer then follows a dense layer, which is composed
of 256 neurons, and is activated with the SeLU activation function. SeLU is a simple yet
effective activation function developed to address the dying ReLu problem [55]. The final
layer consists of two and five neurons, with softmax activation for binary and multi-class
classifications, respectively. The optimizer chosen for this task is Adamax, which provides
smoother and faster convergence [56].

Figure 5. The proposed teacher model.

3.2.2. Student Model

The student model selected for DR detection is made of the Xception [57] backbone.
Xception is a high-performing CNN architecture that replaces the inception module of the
Inception network with a modified depthwise separable convolution (DWSC). DWSC is a
lightweight convolution module that is composed of depthwise convolution, followed by
pointwise convolution. DWSC has been widely used in MobileNets due to its efficiency
in reducing computational complexity, without compromising performance [58]. In the
modified DWSC, integrated into Xception, however, pointwise convolution is applied
first, which then follows depthwise convolution. Due to the lightweight nature and high
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performance of Xception, it is an ideal fit for the student model. Furthermore, many studies
have found that the model performs exceptionally well in DR classification [59,60]. As
shown in Figure 6, the Xception backbone is fine-tuned with a modified CBAM block.

Figure 6. The proposed student model.

CBAM is a widely used attention module that encompasses both channel attention
and spatial attention [28]. Therefore, integrating CBAM into the architecture boosts the
performance. As presented in Figure 7, the spatial attention module of CBAM usually
consists of a convolutional layer with a kernel size of 7. Due to the involvement of a
large kernel, CBAM requires large computational power. Therefore, the modified CBAM
integrates a depthwise separable convolution (DWSC) to reduce the future size by a factor
of 2, leading to fewer computations. Moreover, the final convolutional layer leverages
dilated convolution with a dilation rate of 2. The dilated convolution can capture large-scale
features without consuming high resources.

3.2.3. Training the Student Model with Knowledge Distillation

Knowledge distillation is a cutting-edge method used to transfer information from a
more complicated teacher model to a simpler student model. Generally, larger models have
higher classification accuracy than lighter ones [61]. By constricting a larger model with
higher performance and a light model with lower performance, we force the lighter model
to imitate the behavior of the larger one, while focusing on cross-entropy loss to improve its
classification performance. This process is generally referred to as knowledge distillation.
In knowledge distillation, the larger model is known as the teacher model, and the lighter
model is the student model. In this experiment, a hybrid ResNet152V2 and Swin Trans-
former architecture is employed as the teacher model. The main objective is to transfer the
teacher model’s high-level decision boundaries and feature representations to the student
model, Xception, so that it can imitate them and gain access to its discriminative power.

As presented in Figure 8, both the teacher and student models receive the same input
data during training, and the student model is tuned to produce predictions that are both
accurate and consistent with the softer, more nuanced outputs of the teacher model. This
alignment is accomplished by combining supervised loss, which guarantees accurate class
predictions, and distillation loss, which incentivizes the student to match the probability
distributions of the teacher, typically by using a temperature parameter to regulate the
output softness of the teacher. Knowledge distillation produces a more compact model with
competitive performance by successfully transferring the teacher model’s comprehensive
understanding and generalization abilities to the student. To train both models, we used
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the categorical cross-entropy loss function and Adam optimizer. The training process
lasted for 100 epochs. The hyperparameter temperature value is 10, making the probability
distribution of the teacher model more soft.

Figure 7. The modified CBAM block.

Figure 8. Knowledge distillation process overview.

3.3. Ablation Study

We conducted an ablation study on the student model to find the optimal values of
the hyperparameters. Table 3 contains the accuracy of the APTOS and IDRiD datasets with
respect to the changes in the hyperparameters. The results show that the Adamax optimizer
outperforms Adam and RMSProp by a small margin on the APTOS dataset. On the IDRiD
dataset, however, Adam outperforms Adamax by a slight margin. In this conflicting
situation, we selected Adamax since it provides a smoother convergence compared to
Adam [62]. The best performance is provided by a learning rate of 0.001 on both datasets.
Similarly, 100 epochs produce the best performance. Therefore, the best configuration is
selected as an Adamax optimizer with a 0.001 learning rate and 100 epochs of training.
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Table 3. Investigation of the hyperparameters on the student model.

Hyperparameter Value Accuracy on APTOS Accuracy on IDRiD

Adam 0.9843 0.9270
Optimizer Adamax 0.9861 0.9236

RMSProp 0.9702 0.9061

0.1 0.9636 0.9346
Learning Rate 0.005 0.9690 0.9308

0.001 0.9781 0.9383

20 0.8256 0.8642
Epoch 50 0.9411 0.9259

100 0.9904 0.9417

4. Results

This section presents the results obtained from the experiment along with a thorough
comparison with recent literature.

4.1. Experimental Setup

The experiment is conducted on Kaggle. The programming language used for this
experiment is Python (version 3.7.6). Six Python libraries are leveraged to ease up the
experiment: TensorFlow, matplotlib, sklearn, pandas, NumPy, and OS.

4.2. Result Analysis

The evaluation process employs various evaluation metrics, including accuracy, preci-
sion, recall, F1 score, and the Matthews correlation coefficient (MCC). Among these metrics,
MCC is the most informative one since it accommodates all the coordinates [63]. The
metrics can be calculated using the following equations.

Accuracy =
TP + TN

TP + PP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 − score =
2 × Precision × Recall

Precision + Recall
(15)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(16)

For further evaluation, we present the confusion matrix and the receiver operating
characteristic (ROC) curve. Various models have been tested for the teacher model. Table 4
presents a short description of the teacher models. While the proposed teacher model has
over 254 million parameters, its only responsibility is to train the student model. Given
that the student model is intended for use in real-world applications, it is essential that its
architecture be lightweight, emphasizing efficiency and practicality in operational contexts.
Tables 5 and 6 present a comparison of different teacher models on the APTOS and IDRiD
datasets, respectively. Figures 9 and 10 present graphical overviews of the comparison
on the APTOS and IDRiD datasets, respectively. Among the eight models, the proposed
fusion model based on Swin Transformer and ResNet152V2 performs the best. Traditionally,
fusion models perform better than single-model classifiers. Moreover, the suggested teacher
model incorporates two different feature extractors (CNN and transformer), which have
totally different methods for feature extraction. Therefore, the extracted features only have
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a few overlaps. Additionally, Swin Transformer is a recent image classifier that outperforms
traditional classifiers. Therefore, with small fine-tuning, the model is able to achieve
high performance.

Figure 9. The teacher model performance comparison on the APTOS dataset.

Figure 10. The teacher model performance comparison on the IDRiD dataset.

Table 4. Teacher model information and parameters.

Model Size (MB) Total Parameters Trainable Parameters

Inception-ResNet-v2 216.5 54.35 M 0.4 M
ViT Base 350.1 87.46 M 0.3 M
Inception-ResNet-v2 + ViT Base 568.7 141.81 M 0.9 M
ResNet152V2 + ViT Base 584.4 145.81 M 0.6 M
DenseNet121 + ViT Base 379 94.51 M 0.7 M
MobileNetV3Large + ViT Large 1010.7 308.52 M 0.7 M
ResNet152V2 + ViT Large 1230.9 363.86 M 1.2 M
ResNet152V2 + Swin Transformer 1460.3 254.26 M 1.4 M
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Table 5. Comparison with different teacher methods on the APTOS dataset.

Model Binary Class Accuracy Binary Class MCC Multi-Class Accuracy Multi-Class MCC

Inception-ResNet-v2 0.9618 0.9236 0.7844 0.6601
ViT Base 0.9127 0.8250 0.7190 0.5666
Inception-ResNet-v2 + ViT Base 0.9591 0.9180 0.8158 0.7207
ResNet152V2 + ViT Base 0.9741 0.9484 0.8786 0.8199
DenseNet121 + ViT Base 0.9673 0.9352 0.8240 0.7387
MobileNetV3Large + ViT Large 0.9482 0.8983 0.7763 0.9834
ResNet152V2 + ViT Large 0.9891 0.9781 0.9468 0.9186
ResNet152V2 + Swin Transformer 0.9932 0.9864 0.9891 0.9061

Table 6. Comparison of different teacher models on the IDRiD dataset.

Model Binary Class Accuracy Binary Class MCC Multi-Class Accuracy Multi-Class MCC

Inception-ResNet-v2 0.8350 0.5976 0.5243 0.3367
ViT Base 0.8447 0.6812 0.4757 0.2867
Inception-ResNet-v2 + ViT Base 0.9515 0.8970 0.9126 0.8809
ResNet152V2 + ViT Base 0.9515 0.8913 0.9126 0.8838
DenseNet121 + ViT Base 0.9519 0.8664 0.8046 0.6814
MobileNetV3Large + ViT Large 0.9515 0.8838 0.6990 0.5943
ResNet152V2 + ViT Large 0.9515 0.8970 0.9029 0.8721
ResNet152V2 + Swin Transformer 0.9903 0.9873 0.9601 0.9301

For the student model, nine lightweight state-of-the-art image classifiers were con-
sidered. Table 7 holds the details of the classifiers. Among them, Xception performed the
best and EfficientNetV2B0 performed the worst. Three versions of the EfficientNet models
were considered. EfficientNet architecture achieved high performance in various image
classification tasks; however, the models failed to achieve acceptable results in DR classifi-
cation. Although Xception did not have the fewest parameters and was relatively larger
in size, it outperformed all other models, taking into account the comparative analysis,
with a remarkable accuracy of 86.23% on the APTOS dataset, with an acceptable size. With
knowledge distillation, the accuracy increased to 87.99%. The multi-class accuracy of the
student model on the two datasets is presented in Figure 11. Tables 8 and 9 present the com-
parisons of different student modes with and without knowledge distillation, respectively,
on the APTOS dataset. Likewise, Table 10 presents a comparison on the IDRiD dataset. The
knowledge distillation process also improved its accuracy by 2.38%.

Table 7. Student model information and parameters.

Model Size (MB) Total Parameters Trainable Parameters

NASNetMobile 19.4 4.5 M 0.2 M
DenseNet201 73.7 18.8 M 0.4 M
MobileNetV2 10.4 2.6 M 0.3 M
MobileNet 13.6 3.5 M 0.2 M
ResNet50 92.5 24.2 M 0.5 M
EfficientNetV2B0 24.6 6.3 M 0.3 M
EfficientNetB7 248.7 64.7 M 0.6 M
EfficientNetB4 70.2 18.2 M 0.4 M
Xception 82 21.4 M 0.5 M
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Figure 11. Multi-class accuracy of different student models on the APTOS and IDRiD datasets.

Table 8. Comparison of base models on the APTOS and IDRiD datasets.

Model Multi-Class Accuracy
(APTOS)

Multi-Class MCC
(APTOS)

Multi-Class Accuracy
(IDRiD)

Multi-Class MCC
(IDRiD)

NASNetMobile 0.8158 0.7134 0.7723 0.6363
DenseNet201 0.8322 0.7523 0.8208 0.7190
MobileNetV2 0.8022 0.6911 0.7903 0.5047
MobileNet 0.8336 0.7450 0.7894 0.6809
ResNet50 0.7531 0.6152 0.6239 0.4216
EfficientNetV2B0 0.4748 0.0000 0.5170 0.4003
EfficientNetB7 0.4911 0.0000 0.4658 0.3583
EfficientNetB4 0.6112 0.3917 0.5062 0.6419
Xception 0.8623 0.8194 0.9041 0.8850

Table 9. Comparison of different student models on the APTOS dataset.

Model Binary Class Accuracy Binary Class MCC Multi-Class Accuracy Multi-Class MCC

NASNetMobile 0.9591 0.9180 0.8022 0.7060
DenseNet201 0.9673 0.9346 0.8472 0.7738
MobileNetV2 0.9645 0.9298 0.8308 0.7408
MobileNet 0.9714 0.9429 0.8527 0.7747
ResNet50 0.9372 0.8748 0.7135 0.5720
EfficientNetV2B0 0.6985 0.4643 0.5157 0.0000
EfficientNetB7 0.8226 0.6510 0.5102 0.0000
EfficientNetB4 0.8663 0.7312 0.6371 0.4530
Xception 0.9673 0.9345 0.8799 0.8194
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Table 10. Comparison of different student models on the IDRiD dataset.

Model Binary Class Accuracy Binary Class MCC Multi-Class Accuracy Multi-Class MCC

NASNetMobile 0.9130 0.7980 0.7819 0.6696
DenseNet201 0.9252 0.6341 0.8304 0.7507
MobileNetV2 0.9530 0.8490 0.8941 0.8290
MobileNet 0.9158 0.4480 0.8836 0.6973
ResNet50 0.8224 0.6020 0.8579 0.6138
EfficientNetV2B0 0.7757 0.4583 0.5970 0.4801
EfficientNetB7 0.7280 0.4561 0.5412 0.4397
EfficientNetB4 0.7273 0.1267 0.5170 0.4003
Xception 0.9623 0.9094 0.9279 0.892

Since Xception performed the best among the nine classifiers, it was further modified
by integrating a modified CBAM block. Although the integration of the CBAM module
increased its size by 20 megabytes, it ameliorated its binary class accuracy by 3.27% and
multi-class accuracy by 11.04% on the APTOS dataset. Moreover, there was an enhancement
of 1.82% in binary class accuracy and 1.38% in multi-class accuracy on the IDRiD dataset.
This significant performance improvement can be attributed to the modified CBAM block’s
improved adaptability, which improves feature prioritization and selection. Given that
the original Xception model, while powerful, may include extraneous features from its
pre-training on ImageNet, the CBAM module effectively focuses on the salient features
that are specifically pertinent to diabetic retinopathy. This feature improvement leads to a
significant increase in classification accuracy, demonstrating the effectiveness of the CBAM
module in enhancing the model’s representational capabilities. On the APTOS dataset, the
proposed student model thereby achieves 0.99045, 0.9907, 0.9905, 0.9903, and 0.9856 in the
accuracy, precision, recall, F1 score, and MCC, respectively, on multi-class classification, and
a full 1.0 in all metrics for the binary class classification. The confusion matrix, presented
in Figure 12, shows that only four moderate images are misclassified as mild and severe.
Other than moderate, no other types have more than two misclassifications. Moreover,
the confusion matrix emphasizes that the impact of class imbalance on the results is
insignificant, as there are no extra predictions in the majority class (no DR). The ROC curve
represents the model’s ability to discriminate true positive instances from false positive
instances. The proposed model’s ROC curve, presented in Figure 13, shows a perfect
area under the curve with the highest value of 1.0. These results illustrate the model’s
discriminate ability in classifying DR images. Similarly, on the IDRiD dataset, it achieves
0.9805, 0.9811, 0.9805, 0.9804, and 0.9576 in accuracy, precision, recall, F1 score, and MCC,
respectively, on multi-class classification, and 0.9417, 0.9429, 0.9417, 0.9415, and 0.9217 in
accuracy, precision, recall, F1 score, and MCC, respectively, on binary classification. The
confusion matrix, presented in Figure 14, shows that—similar to the APTOS dataset—the
model also faces some challenges in classifying two mild-type DR images in the IDRiD
dataset. Other than that, one moderate image and one severe DR image are misclassified as
mild and proliferate DR, respectively. The ROC curve presented in Figure 15 also certifies
its discriminative ability in differentiating true positive instances from false positive ones
with an average ROC of 0.99.
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Figure 12. Concision matrix of the student model on the APTOS dataset.

Figure 13. ROC curve of the student model on the APTOS dataset.
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Figure 14. Concision matrix of the student model on the IDRiD dataset.

Figure 15. ROC curve of the student model on the IDRiD dataset.

4.3. Comparison with Existing Works

The majority of the works have leveraged various pre-trained CNN classifiers. This
research, however, employs a CNN and transformer-based fusion architecture to improve
the classification performance of a lightweight image classifier. Moreover, unlike many
studies, this study integrates various image preprocessing tasks to improve the image
quality where crucial regions in retinal images are highlighted. With an extensive ablation
study, we figured out the best configurations that have made our research stand out. A
comparison with existing works on the APTOS dataset is presented in Table 11, showing the
superiority of our model in classifying a wide range of DR. On the IDRiD dataset, however,
there are only a few research works available. Table 12 presents a comparison with some of
the existing methods on the datasets. The table illustrates that the model achieves superior
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performance when dealing with small datasets. With the high classification performance
consuming low resources, this model can be a vital solution for real-life DR classification,
especially for moderate devices.

Table 11. Comparison with existing literature on the APTOS dataset.

Architecture Accuracy Precision Recall F1 Score

DenseNet201 [64] 0.86 - - 0.7251
ResNet50 [31] 0.82 - - -
Texture attention, spatial attention [26] 0.851 - 0.903 0.984
DenseNet121 [65] 0.9730 - - -
Squeeze excitation-based dense network [65] 0.86 0.77 0.7 0.73
VGG16 and capsule network [66] 0.99 - - -
Semi-supervised auto-encoder graph network [67] 0.944 - 0.84 -
Improved ResNet-50 [68] 0.9825 0.9986 0.9584 0.99856
DenseNet-121 [69] 0.9836 0.98 0.98 0.98
Parallel CNN [10] 0.9727 0.96 0.95 0.95
Proposed 0.9904 0.9906 0.9904 0.9903

Table 12. Comparison with existing literature on the IDRiD dataset.

Architecture Accuracy Precision Recall F1 Score

ResNet [70] 0.9029 0.8875 0.9689 -
Cross-disease attention [71] 0.926 - - -
KNN [72] 0.94 - - -
GNN [73] 0.773 - - -
Proposed 0.9417 0.9429 0.9417 0.9415

4.4. Discussion

This research presents a robust DR image classifier that achieves state-of-the-art perfor-
mance by employing a lightweight image classifier and knowledge distillation concept. The
teacher model employed in this system is a fusion model composed of ResNet152V2 and
Swin Transformer. Although the teacher model has a relatively large size, the model is only
leveraged to train the student model. The Xception classifier is used as the student model
that achieves accuracies of 86.23% and 90.41% with only cross-entropy loss on the APTOS
and IDRiD datasets, respectively. The model’s performance improves by an average of
2.07% by combining distillation loss. The performance further improves by 11.05% with the
integration of modified CBAM on the APTOS dataset and by 1.38% on the IDRiD dataset.
The student model achieves an overall accuracy of 99.04%, which outperforms the teacher
model by 0.13% on the APTOS dataset. Nonetheless, on the IDRiD dataset, the student
model fails to outperform the teacher model, although the student model achieves a note-
worthy performance. Three major reasons can be attributed to the exceptional performance
of the student model. Firstly, the integration of the modified CBAM block plays a crucial
role in achieving high accuracy. Since the pre-trained classifiers are trained on ImageNet,
all the extracted features are not fully relevant to the classification process. Employing an
attention module helps boost performance. Secondly, the temperature hyperparameter
employed in the training process of the student model is set to 10, which is a higher value.
This allows the student model to learn from the distillation loss while primarily focusing on
the cross-entropy loss. Finally, the extensive ablation study with a series of preprocessing
techniques helped the model achieve a noteworthy performance.
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5. Conclusions

In this paper, we present a lightweight DR image classifier that achieves high classifi-
cation performance. The proposed solution involves four stages of image preprocessing:
image denoising, ROI extraction, unsharp making, and gamma transformation. The teacher
model is developed by fusing Swin Transformer and ResNet152V2. The student model,
on the other hand, is constructed using Xception and modified CBAM, which is trained
through both supervised loss (cross-entropy loss) and distillation loss. A comparison with
existing studies demonstrates the model’s superior performance. However, the research
work has certain limitations that can be addressed in future endeavors. Firstly, the model
can be further compressed employing various model compression tools, like ONNX, which
sometimes results in degraded performance. A study could be conducted to explore addi-
tional optimization techniques without compromising performance. Moreover, this study
only considers one dataset for evaluating the model’s performance. In the future, additional
datasets could be employed to assess the model’s generalization ability.
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