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Abstract: Automatic recognition of hand postures is an important research topic with many appli-
cations, e.g., communication support for deaf people. In this paper, we present a novel four-stage,
Mahalanobis-distance-based method for hand posture recognition using skeletal data. The proposed
method is based on a two-stage classification algorithm with two additional stages related to joint
preprocessing (normalization) and a rule-based system, specific to hand shapes that the algorithm is
meant to classify. The method achieves superior effectiveness on two benchmark datasets, the first of
which was created by us for the purpose of this work, while the second is a well-known and publicly
available dataset. The method’s recognition rate measured by leave-one-subject-out cross-validation
tests is 94.69% on the first dataset and 97.44% on the second. Experiments, including comparison
with other state-of-the-art methods and ablation studies related to classification accuracy and time,
confirm the effectiveness of our approach.

Keywords: hand posture recognition; static gesture recognition; Polish finger alphabet; American
finger alphabet; multistage classification; Mahalanobis distance

1. Introduction

Automatic recognition of static hand gestures, also referred to as hand postures or
hand shapes, is an important and long-developed research topic. Its primary application is
to provide technological support for people with hearing loss and deafness [1]. Recognition
algorithms can also be applied in real-time automotive interfaces [2], gaming (e.g., virtual
reality video games) [3], smart home automation [4], etc.

In recent years, algorithms for the automatic recognition of objects in color images
have mainly been based on deep learning techniques. The goal of this paper is to prove
that effective hand posture recognition can be performed by an algorithm that does not
require a large amount of training data or a time-consuming training process, and does
not use hand-crafted or automatically generated features. We propose an approach in
which deep learning is used only at the stage of hand detection, e.g., by the MediaPipe
library, and the recognition is based only on hand joint coordinates. The means to achieve
this goal is a two-stage classification algorithm with two additional stages related to joint
preprocessing (normalization) and a rule-based system, specific to hand shapes that the
algorithm is meant to classify. The additional advantage of our method is the ability to
perform well and run in real time even with a low-resolution, low-quality laptop camera.

The contributions of this paper are as follows.

1. A novel four-stage hand posture recognition method based on posture-specific rules
and Mahalanobis distance;

2. A novel lightweight dataset consisting of hand skeletal data recorded from 12 people;
3. Comparative evaluation of the proposed algorithm with related approaches on a

popular, publicly available dataset.
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The rest of the paper is arranged as follows. Related works are presented in Section 2.
The proposed hand shape recognition algorithm is presented in Section 3. Section 4
discusses the benchmark datasets and the experiments carried out on them. Section 5
concludes the paper.

2. Related Work

Recently, deep networks have been developed to obtain articulated hand models called
skeletons [5,6]. These networks use color images from normal cameras and are an attractive
alternative to hardware solutions requiring specialized RGB-D sensors [7,8]. Approaches
using the potential of these networks to recognize static hand configurations have appeared
in the literature.

Once the skeleton data is determined, various classification methods are used. There
are known solutions using k-nearest neighbors classifier (KNN) [9], support vector machine
(SVM) [10–12], rule-based classifier [13], artificial neural networks (ANN) [14–17], random
forest (RF) [12,18], gradient boosting (GB) [11,12], and various models based on deep
learning [15,18–30].

The authors of [19] used an artificially generated skeleton data to tune up a deep
network trained on real samples. The authors of [15] showed that it is reasonable to train a
deep network on hybrid data containing color images and skeletons.

One of the challenges when recognizing finger alphabets is the high similarity of the
shapes considered. To solve this problem, a hierarchical approach, in which groups of
classes with similar hand shapes are identified first, has been proposed [16].

There are also descriptions of useful applications in the literature, e.g., the Sign-to-911
system, which is an emergency call service for sign language users [31], a doctor–patient
dialogue system [27], or a solution supporting medical consultation [29]. Lightweight
algorithms are being developed that could be run on mobile devices with limited computing
resources [10].

Works are also described in which skeletal hand models are used to build educational
games for learning the finger alphabet or sign language [20,32–34].

Table 1 briefly characterizes a selection of recent works on static gesture recognition
based on algorithmically determined skeletal information.

Table 1. Recent works on static gesture recognition based on algorithmically determined skeletons.

Work Domain Classifier # Classes l-o-s-o Accuracy [%]

[14] Thai Finger Alphabet ANN 30 no 84.57
[19] Irish Finger Alphabet CNN 23 no 71.00
[10] Japanese Finger Alphabet SVM 24 no 100.00
[18] Arabic Finger Alphabet RF 30 no 99.70

+ control signs
[11] American Finger Alphabet GB 26 no 99.39
[20] Static gestures from ResNet2+1D 36 yes 96.20

Greek Sign Language
[35] American Finger Alphabet SVM 51 no 98.98

+ numbers and words
[16] American Finger Alphabet ANN 29 no 94.07

+ control signs
[36] American Finger Alphabet ANN 38 no 94.29

+ static gestures
[13] Japanese Finger Alphabet rule set 46 no 52.83
[22] Static gestures from CNN 15 no 98.90

Indian Sign Language
[12] Kazakh Finger Alphabet RF, SVM, GB 31 no 98.80

For some of the works described, the table shows only that part of the results concern-
ing static gestures. In some cases, there is no information on the number of users making
gestures. In addition, the authors rarely use leave-one-subject-out validation, which verifies



Appl. Sci. 2023, 13, 12347 3 of 13

the reliability of the method for gestures shown by people who are not present in the
training dataset.

Solutions based on deep learning dominate. However, a recent review article [37]
points out the lack of comprehensive, representative, and annotated datasets, especially
for languages other than American Sign Language (ASL). Therefore, training deep models
from scratch is tedious and expensive. With this in mind, it is worth turning to solutions
that use the potential of trained networks generating skeleton data, require only fine-tuning
using a limited training set, and use domain knowledge. The approach proposed in this
work fits into this group. The proposed multistage method uses a small training set and
a priori knowledge about the recognized shapes acquired by analysis of the one-stage
classification confusion matrix and the considered shapes comparison.

3. Proposed Method

Our method is based on the Mahalanobis distance, which is a measure of the dis-
similarity between two points in multidimensional space [38]. It takes into account the
correlations between variables, making it especially useful in tackling the problems of
multivariate data classification or clustering.

Given two points x and y, and covariance matrix Cov, the Mahalanobis distance d is
defined as:

d(x, y) =
√
(x− y)TCov−1(x− y) (1)

A four-stage hierarchical classification method is proposed. Stage I is the preprocessing
of skeletal data. During stage II, a preliminary classification is performed, some classes
are rejected as less likely, and the remaining classes are selected for further processing. In
stage III, a set of rules is applied to reject some joints for letters identified as problematic
(challenging). The idea is to focus on the most distinctive part of the input data when
dealing with frequently misclassified shapes. The final classification is carried out in stage
IV, where only the remaining classes and joints are considered. The general scheme of the
algorithm is presented in Figure 1. The input of the algorithm consists of an unknown
sample, i.e., a posture to be classified, and the training samples, i.e., postures based on
which the classification is performed. Stage III requires training, which is performed on a
limited and disjoint dataset prior to recognition. During this process, inverse covariance
matrices and mean representations are constructed. Thus, training and testing are not
simultaneous. The training dataset can also be used to determine the rules used in stage
III. Running stages I, II, and III on the training data can help identify difficult hand shapes.
The following is a detailed description of the individual stages.

Figure 1. General scheme of the recognition algorithm.
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3.1. Stage I

We consider a hand skeleton as a set of N joints (knuckles) where each joint Pi is
described by three coordinates: Px

i , Py
i , Pz

i calculated based on a color image using
the MediaPipe library. The skeletons are in a clockwise coordinate system in which the
horizontal X axis is directed to the left, the vertical Y axis is facing up, and the Z axis
coincides with the optical axis of the camera and is turned towards the observed objects.
All 21 joints and their descriptions are presented in Figure 2.

Figure 2. Hand skeleton joints generated by the MediaPipe library.

The first stage of the proposed recognition method involves initial processing of hand
skeletons to make the recognition invariant to hand size, location, and orientation around
the Z axis perpendicular to the camera lens. The size invariance is achieved by dividing all
coordinates of each joint by the sum of distances between joints 0 and 9, and between joints
9 and 10. We decided to include not only the segment representing palm size (0–9) but also
the segment representing the longest finger length (9–10). Our motivation to normalize
hand size according to both segments was the observation that the fingers-to-palm ratio
varies between people and the differences can be significant [39]. The decision to exclude
the segments between joints 10–11 and 11–12 was made upon the observation that these
joints are often imprecisely calculated because they are occluded by other hand parts in
some gestures.

The invariance of the hand location is achieved by translating the whole skeleton so
that joint 0 is always at (0, 0, 0) m coordinates. The final step of data preprocessing involves
making the method invariant to the orientation of the hand around the Z axis by rotating
the whole skeleton so that the segment between joints 0 and 9 is vertical. It is important to
verify whether among the recognized gestures there exist any whose shape is identical, and
the only difference is their orientation. If such gestures exist, the normalization of hand
orientation should be omitted.

3.2. Stage II

Stage II requires training using a set of M hand posture classes. The training procedure
is described in Algorithm 1.

After the inverse covariance matrices Covi and the mean representatives Meanx
i ,

Meany
i , Meanz

i for all classes and joints are calculated in the training procedure, the initial
classification of an unknown sample U can be performed as in Algorithm 2.
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Algorithm 1: Training procedure of the stage II of the proposed method.

foreach posture class Cj, 1 ≤ j ≤ M do
foreach joint Pi, 1 ≤ i ≤ N do

Calculate covariance matrix Covi for all coordinates based on samples from
a training dataset

Cov′i ← inverse of Covi
Meanx

i ←mean x coordinate of all training samples
Meany

i ←mean y coordinate of all training samples
Meanz

i ←mean z coordinate of all training samples
end

end

Algorithm 2: Classification procedure of the stage II of the proposed method.
IniC = Ø
foreach posture class Cj, 1 ≤ j ≤ M do

mismatches = 0
foreach joint Pi, 1 ≤ i ≤ N do

Calculate Mahalanobis distance d of the unknown sample U and
representative sample Meanx

i , Meany
i , Meanz

i based on inv. covariance
matrices Cov′i

if d > ε then
mismatches← mismatches + 1

end
end
if mismatches ≤ AllowableMisNum then

Add Cj to set IniC
end

end
if IniC is empty then

No class is recognized and the algorithm ends
else if IniC has one element then

The element of IniC is the final recognized class of the algorithm
else

Go to stage III
end

where AllowableMisNum is a number of joints whose Mahalanobis distance to other
samples is allowed to be greater than ε. If there are more such joints, the class of the
representative sample is not added to the set of initially recognized classes IniC, which
is the result of the second stage of the algorithm. Otherwise, the class is added to IniC.
AllowableMisNum and ε are parameters of the method. It should be noted that if IniC is
empty or has only one element, then stages III and IV are omitted. In the first scenario, no
class is recognized by the method; in the second case, the first and only element of IniC is
the final recognized class.

3.3. Stage III

In this optional stage, a user should provide rules specific to the shapes that the
algorithm is supposed to recognize. In each rule, the decision about removing particular
joints is made based on the conditions under which the coexistence of particular posture
classes in IniC is verified.

We found that our main dataset with all 16 static gestures of the Polish finger alphabet
(letters: A, B, C, E, I, L, M, N, O, P, R, S, T, U, W, Y) requires only three rules to significantly
improve the performance of the algorithm. The rules are as follows:
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• If IniC contains classes O and S or IniC contains classes S and T, then remove all joints
except THUMB_IP, THUMB_TIP, and INDEX_FINGER_TIP;

• If IniC contains classes M and E, then remove all joints except PINKY_TIP;
• If IniC contains classes L and C, then remove all joints except INDEX_FINGER_TIP.

The best way to develop rules is to perform an initial validation with only stages I, II,
and IV, generate a confusion matrix, and find classes that have been confused with each
other most often. Then, key hand joints, crucial to distinguish between those classes have to
be chosen, and all joints except these should be removed from the next classification stage.

3.4. Stage IV

The final stage of the recognition algorithm is a typical classification method that
recognizes the hand shape based on a set of classes reduced in stage II and a set of joints
reduced in stage III. Any classifier can be used, although it is strongly recommended that it
does not require a training process or that the training is very fast, since a model cannot
be trained before the end of stage II (it requires a reduced set of classes). In our case, the
common k-nearest neighbor (kNN) classifier was applied with the Euclidean metric and
k (number of neighbors) set to 1. These values of the kNN parameters led to the most
accurate classification in all experiments with each dataset.

4. Experiments and Discussion
4.1. Datasets

To validate our approach, we used two datasets. The first is a novel SPAS dataset
(Skeletons of Polish finger Alphabet Static gestures). It consists of 16 classes of static hand
gestures corresponding to letters of the Polish finger alphabet (PFA): A, B, C, E, I, L, M,
N, O, P, R, S, T, U, W, and Y. The hand shapes are shown in Figure 3. The remaining
letters were not included, since they involve motion. Each gesture was shown five times by
12 subjects (9 male and 3 female) for a total of 960 gestures. The dataset was recorded with
a simple laptop camera providing color images with a resolution of 640 × 480 pixels. The
recording program was running in a continuous stream and each frame was processed by
MediaPipe to generate hand skeletons, from which those corresponding to PFA letters were
saved to separate files. The SPAS dataset is very lightweight (624 KB) since it contains only
skeletal data without color images. It can be considered challenging because it includes
the letters O, S, and T, whose PFA representations have very similar hand shapes. It is
also worth noting that the resolution of images, based on which the skeletal joints were
calculated, is relatively low compared to modern high-quality cameras. Therefore, the SPAS
dataset is suitable for verifying whether the recognition method performs well even with
older devices and does not require large input data, which is obviously related to faster
processing time and lower memory consumption. The SPAS dataset, along with Python
scripts for its processing, can be downloaded from our website [40].

The second dataset is the Massey University (MU) ASL digits dataset [41], which is
referred to in our article as MU-ASL-digits. It consists of the 10 classes of static hand gestures
corresponding to digits of the American finger alphabet. The hand shapes are shown in
Figure 3. Each gesture was shown 5 to 25 times by five subjects for a total of 700 gestures
stored as color images with various resolutions (they are cropped to contain only hands).

MediaPipe hand detection performs well only with images provided to it in a stream,
since it is supported by contextual information from previous frames. If the method does
not see a context, skeletons are often calculated with a low detection confidence level, which
results in imprecise joint matching. In extreme cases, all joints are placed in completely
wrong positions. Unfortunately, all popular static hand gesture datasets consist of separate,
unrelated images. We only managed to generate skeletons with a high confidence level
from MU-ASL-digit among several tested datasets. This was achieved by tricking the
MediaPipe detector by showing it other gestures of the same class before detecting each
hand. This artificial context was sufficient to generate high-confidence skeletons. However,
the trick was unsuccessful with the Massey University ASL alphabet dataset and with
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several other popular datasets. Therefore, we decided to compare our method with the
other approaches using only the MU-ASL-digits dataset. It is worth noting that this issue
does not mean that the method has serious practical limitations. It only makes it difficult
(or impossible) to validate on datasets with images unrelated to each other. The issue does
not affect the method implemented as a program recognizing gestures in real time.

(a) (b)

Figure 3. Hand shapes from the datasets used in our experiments: (a) Polish finger alphabet letters,
(b) American finger alphabet digits.

The following rules were applied in stage III of the algorithm for MU-ASL-digit dataset:

• If IniC contains classes 4 and 6, then remove all joints except PINKY_TIP;
• If IniC contains classes 5 and 6, then remove all joints except THUMB_TIP and PINKY_TIP;
• If IniC contains classes 5 and 8, then remove all joints except THUMB_TIP and

MIDDLE_FINGER_TIP;
• If IniC contains classes 4 and 9, then remove all joints except INDEX_FINGER_TIP;
• If IniC contains classes 2 and 7, then remove all joints except INDEX_FINGER_TIP,

MIDDLE_FINGER_TIP, and PINKY_TIP.

The rules applied for the SPAS dataset are the same as those presented as an example
in Section 3.

Figure 4 presents two postures from MU-ASL-digits with the MediaPipe skeletons.

Figure 4. Postures of digits 7 and 0 from the MU-ASL-digits dataset with drawn skeletal joints
obtained from MediaPipe.
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4.2. Validation Protocol

Our approach was verified using leave-one-subject-out (LOSO) k-fold cross-validation,
where k was the number of subjects (12 for SPAS and 5 for MU-ASL-digits). We decided to use
this validation protocol because it simulates real-life cases where the people whose gestures
are being recognized usually do not participate in the creation of a training dataset. All
methods compared with our approach were also verified using LOSO k-fold cross validation.

4.3. Results

In our experiments, we had to set the parameters of our method, AllowableMisNum
and ε, separately for SPAS and MU-ASL-digits to achieve the best performance. The value
of AllowableMisNum was set to 1 for SPAS and 0 for MU-ASL-digits. ε was set to 9 for SPAS
and 8.6 for MU-ASL-digits. The impact of parameter values on classification accuracy is
discussed in Section 4.5. Our method achieved a recognition rate of 94.69% with a standard
deviation of 3.54%.

The confusion matrices are presented in Figure 5. For the SPAS dataset, the most
frequently confused letter pairs are S-T (twelve times), O-S (ten times), and C-L (six times).
All of the hand shapes corresponding to these letters are visually similar. In the case
of MU-ASL-digits, the most frequent misclassifications are digits 4–8 (seven times) and
4–5 (six times). Interestingly, three times, the digit 7 was classified as ’no digit’. Such
mistakes when a particular gesture is classified as ’no gesture’ almost always result from
the incorrectly detected skeleton by MediaPipe.

(a) (b)

Figure 5. Confusion matrices of the proposed method on the benchmark datasets: (a) SPAS and
(b) MU-ASL-digits. The column named ’no’ represents the case where no gesture was recognized.

We compared our approach with other methods found in the literature on the MU-
ASL-digits dataset. For a fair comparison, we ensured that all the methods were validated
by the same protocol. The results are presented in Table 2. Our method achieved the
best recognition rate, outperforming the second best method (DeReFNets) by 1.3 percent-
age points.

Table 2. Comparison of the proposed method with other existing approaches on MU-ASL-digits.

Method Recognition Rate [%]

Non-Negative Matrix Factorization + Compressive Sensing [42] 87.8
AlexNet ‘FC6’ + PCA and SVM [43] 95
Set of Geometric Features + Fisher Vector and SVM [44] 95.3
DeReFNets [45] 96.14
Our method 97.44
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4.4. Ablation Study

The classification accuracies of the whole method compared to versions with particular
stages removed are presented in Table 3. Additionally, for the SPAS dataset, the confusion
matrices for the reduced method are presented in Figure 6.

As one can see, stages II and III are important and their removal leads to lower
effectiveness of the method on both datasets. However, the greatest deterioration of the
results (about 20 percentage points) is visible in the case of MU-ASL-digits.

Based on the confusion matrix of the algorithm without stage III, we can see that the
most frequently confused letter pairs are S-T and O-S. The rules applied in stage III are
crucial to greatly reduce the number of such mistakes. Stage II, in turn, affects mainly
the recognition of the letter U. It is probably due to the unusual hand shape of this letter,
which sometimes makes it difficult for MediaPipe to detect all hand joints correctly. Even
with some inaccurately detected joints, the algorithm is able to filter most of the remaining
classes based on Mahalanobis distance to their representative samples.

Table 3. Recognition rates/stanard deviations [%] of the whole algorithm compared to versions with
particular stages removed.

SPAS MU-ASL-Digits

whole algorithm (stages: I, II, III and IV) 94.69/3.54 97.44/3.07
stages: I, II, and IV 90.62/4.63 83.6/5.25
stages: I and IV 87.08/6.08 76.64/5.72

(a) (b)

Figure 6. Confusion matrices of the proposed method with particular stages removed on the SPAS
dataset: (a) stages I, II, and IV and (b) stages I and IV.

The classification times of the whole method compared to versions with particular
stages removed are presented in Table 4. The times were measured on a laptop with an
Intel Core i5 8300H CPU. The average classification time of a gesture from the SPAS dataset
is 4.2 ms with a standard deviation of 2.2 ms. The average time of a simple classification
using only stage I and IV of the algorithm (data preprocessing and kNN) is 18.2 ms with a
standard deviation of 4.6 ms. The whole algorithm is much faster because stage IV has the
longest computation time and it can be greatly reduced by excluding a majority of classes
in stage II and, in some cases, many skeletal joints in stage III. The gain from the reduction
in stage IV computation time is greater than the combined time of stage II and stage III.

However, it should be mentioned that the presented times were measured without
detecting a hand and creating skeletal data by MediaPipe. The average hand detection time
in our experiments with the SPAS dataset was 50 ms with a standard deviation of 10 ms.

The learning time of our method on the entire SPAS dataset considered as a training
set is 0.8 s. This means that learning is almost instantaneous for datasets of this size, which
can be considered another advantage of our method.
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Our method can run as a real-time video streaming application with more than
10 frames per second and high effectiveness, even if a person showing gestures is not
present in the training set, which confirms the correctness of the validation tests performed.

Table 4. Average classification times/standard deviations [ms] of the whole algorithm compared to
versions with particular stages removed.

SPAS MU-ASL-Digits

whole algorithm (stages: I, II, III, IV) 4.2/2.2 1.2/0.4
stages: I, II, IV 4.5/2.4 1.5/0.4
stages: I, IV 18.2/4.6 10.2/0.5

4.5. Impact of Parameters

The impact of the method parameters ε, AllowableMisNum, and k (the number of
neighbors of the kNN classifier) on the classification accuracy with the SPAS and MU-ASL-
digits datasets is presented in Figures 7–9. ε has little impact on accuracy within the range
of [7.8–9.4] for both datasets. The impact of AllowableMisNum on the SPAS dataset is
small, especially within the range of [0–3]. Interestingly, AllowableMisNum showed a great
negative impact on MU-ASL-digits for any value different from 0. This may be related to
the fact that there are more rules in stage III for MU-ASL-digits. The number of neighbors k
shows an inverse correlation with the classification accuracy on both datasets. However, its
impact is much greater in the case of SPAS.

Figure 7. Impact of ε parameter on classification accuracy with SPAS (red curve) and MU-ASL-digits
(blue curve) datasets.

Figure 8. Impact of AllowableMisNum parameter on classification accuracy with SPAS (red curve)
and MU-ASL-digits (blue curve) datasets.
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Figure 9. Impact of the number of neighbors k on classification accuracy with SPAS (red curve) and
MU-ASL-digits (blue curve) datasets.

5. Conclusions

In this paper, we present a novel four-stage Mahalanobis-distance-based method for
hand posture recognition using skeletal data. The proposed method achieves superior
effectiveness on two benchmark datasets, the first of which was created by us for the
purpose of this work, while the second is a well-known and publicly available dataset.
The proposed method was validated using the challenging and practical LOSO k-fold
cross-validation protocol. A comparison with other state-of-the-art methods and ablation
studies related to classification accuracy and time confirm the usefulness of our approach.
Our method uses deep learning only on the hand detection stage; however, it manages to
outperform the other methods, some of which are entirely deep-learning-based.

In our experiments, hand skeletons were obtained using the MediaPipe library. This
was chosen because the authors believe that it is currently the most reliable of the publicly
available hand detection tools. The latest improvements in the field of the automatic
detection and tracking of human body parts allow us to assume that in the near future
such algorithms will be even more accurate, which in turn can probably improve the
effectiveness of our method.

Future work may include extending our algorithm so that it can recognize gestures
with motion and distinguish them from static gestures. This would enable the recognition
of all letters/digits of finger alphabets.
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