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Abstract: In the last decade, the event knowledge graph field has received significant attention
from both academic and industry communities, leading to the proliferated publication of numerous
scientific papers in diverse journals, countries, and disciplines. However, a comprehensive and
systematic survey of the recent literature in this area to obtain how the development of event
knowledge graph evolves over time is lacking. To address this gap, we performed scientometric
analyses utilizing the CiteSpace software of version 6.2.R4 package to extract and analyze data from
the Web of Science database, including information about authors, journals, countries, and keywords.
We then constructed four networks, including the author co-citation network, journal co-citation
network, collaborative country network, and keyword co-occurrence network. Analyzing these
networks allowed us to identify core authors, research hotspots, landmark journals, and national
collaborations, as well as emerging trends by assessing the central nodes and nodes with strong
citation bursts. Our contribution mainly lies in providing a scientometric way to quantitatively
capture the research patterns in the last decade in the event knowledge graph field. Our work
provides not only a structured view of the state-of-the-art literature but also insights into future
trends in the event knowledge graph field, aiding researchers in conducting further research in
this area.

Keywords: event knowledge graph; scientometric analysis; network analysis; CiteSpace

1. Introduction

An event or a group of events involves multiple actors at a specific place and time [1],
which usually take the indicators to capture meaningful information in the dynamic world.
As knowledge graph technology emerges, many researchers from a variety of fields have
leveraged knowledge graph for event-related studies to compose different types of event
knowledge graphs, focusing on modeling the correlation among events as well as mon-
itoring the event evolution process. An event knowledge graph is a knowledge base
constructed through taking events as the basic units and describing event information and
various relationships among events. In the event knowledge graph, the nodes represent
events and their attributes (e.g., occurring time, place, and participants) and the edges
represent the relationships between events, such as time sequence relationship, causality
relationship, sub-event relationship, and co-reference relationship. For instance, as shown
in Figure 1, a typhoon event knowledge graph involves a number of roles, such as people,
atmospheric environment, facilities, and landforms, all of which and their attributes act as
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nodes. As a building is a type of facility, there exist sub-event relationships (i.e., contains)
between facilities and the building. The collapse of a building causes injuries and deaths,
indicating that a causality relationship (i.e., causes) exists between the collapse of a building
and injuries sustained by people. In addition, the typhoon disaster information in a certain
space and time can be retrieved for decision support based on knowledge mining and
knowledge reasoning. As such, an event knowledge graph provides a reliable basis for
applications such as intelligent question-and-answer systems and decision analysis [2].
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Figure 1. A typhoon event knowledge graph.

In order to provide an insightful overview of the event-knowledge-graph-related
studies, some review papers have been published in recent years. Most of them either
survey part of the event knowledge graph, such as summarizing the event extraction
technologies [3], or focus on the construction technology and application of the event
knowledge graph [2]. The most comprehensive one was proposed by Guan et al. [4], which
summarized and discussed the event-knowledge-graph-relevant studies from four different
views, i.e., a history view, ontology view, instance view, and application view. However,
there is a lack of a review paper surveying the event-knowledge-graph-related studies to
obtain how this field evolves over time (e.g., influential authors, journals, and institutions).

Scientometrics is concerned with measuring and analyzing the scholarly literature,
focusing on the quantitative analysis of the “science of science” [5]. Fortunato et al. [6]
explained the “science of science” as exploring the universal patterns as well as the domain-
specific patterns (e.g., evolution patterns, system architecture, and performing mechanism)
based on a large amount of scientific data. Accordingly, employing a scientometric analysis
for a literature survey allows us to quantitatively analyze and map patterns in the scientific
literature in order to understand the research topics, emerging trends, and knowledge
structure of the surveyed field.

With the aim of filling the aforementioned gap, we collected the relevant publications
from the Web of Science (WoS) database, based on which the scientometric analysis was
conducted using the CiteSpace software of version 6.2.R4 package. The research networks,
including the author co-citation network, journal co-citation network, collaborative country
network, and keyword co-occurrence network, were generated and analyzed in order to
obtain future trends, development history, and future directions. The findings are beneficial
for those who have an intention to capture a full picture of the event knowledge graph field.

The rest of the paper is structured as follows. Section 2 introduces the background
knowledge related to event-graph-related technologies. Section 3 briefly describes the
methodology for the scientometric analysis adopted in this study. The results are analyzed
and discussed in Section 4. Section 5 draws some conclusions.
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2. Background Knowledge

This section provides insights into the background knowledge of the event knowledge
graph. The general workflow of constructing an event knowledge graph is presented
in Figure 2. It mainly includes data acquisition, event extraction (i.e., composing the
nodes in the graph), and event relation extraction (i.e., composing the edges in the graph).
More details regarding each step are introduced in the following sections. Since the tex-
tual data extracted from news websites, books, reports, etc., have been mostly used for
event knowledge graph construction, we mainly focused on providing the general back-
ground knowledge concerning textual data analysis for event knowledge graph research
in this section. Other technologies such as image processing technology are not included
due to the limited space, but they are involved in multiple types of network analysis
in Sections 3 and 4 to capture the overall research development in the event knowledge
graph field.
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2.1. Data Acquisition

To effectively extract events and event relationships, multiple data sources have been
used in the existing studies. They can be obtained through downloading directly, web
crawling, and application programming interfaces (APIs). Table 1 lists 10 public datasets
that can be directly downloaded for event knowledge graph construction, including the
year when they were first available, the research fields they support, the language they are
in, and a brief introduction. The datasets cover a wide range of fields, including disasters,
network security, and news forums. The majority of them are textual data, which involve
abundant information for entity and relationship extraction to compose event knowledge
graphs. Despite that, the event information, such as occurring time, occurring place, and
event content, can be extracted from news websites (e.g., BBC News, Sina News, and
Sohu News) by leveraging web crawling technologies. As mobile phones and Internet of
Things (IoT) devices emerge, people are able to post what they witness and experience on
various platforms (e.g., social media platforms like Twitter and Sina Weibo) anytime and
anywhere. As such, both real-time and historical event-related information can be collected
with certain criteria (e.g., setting spatial extent or keywords) through the provided APIs
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either for free or at a cost. The collected data lay a solid foundation for event knowledge
graph construction, providing abundant spatial, temporal, and semantic sources to extract
event entities and relations.

Table 1. Some public datasets used for event knowledge graph construction.

Dataset Year Field Language Description

MUC-4
https://www-nlpir.nist.gov/

related_projects/muc/muc_data/
muc_data_index.html (accessed on

1 November 2023)

1996 General English It contains
1700 documents.

ACE 2005
https://catalog.ldc.upenn.edu/

byproject (accessed on 1
November 2023)

2005 General English, Chinese, and
Arabic

It contains 8 categories and
33 sub-categories of events.

CEC
https://github.com/shijiebei200

9/CEC-Corpus (accessed on 1
November 2023)

2009 Disaster Chinese

It contains 322 documents
covering earthquakes, fires,
traffic accidents, terrorist

attacks, and food
poisoning emergencies.

TAC KBP 2017
https://tac.nist.gov/2017/KBP/
Event/index.html (accessed on 1

November 2023)

2017 General English, Chinese, and
Spanish

It contains 202 documents
collected from news

and forums.

WIKIEVENTS
https://github.com/231sm/

Low_Resource_KBP (accessed on 1
November 2023)

2020 General English

It contains 246 documents,
6132 sentences, and

3951 events obtained from
Wikipedia.

CySecED
https://aclanthology.org/2020

.emnlp-main.433.pdf (accessed on
1 November 2023)

2020 Network security English
It contains 292 documents

covering 30 types of
network security incidents.

MAVEN
https://github.com/THU-KEG/
MAVEN-dataset (accessed on 1

November 2023)

2020 General English

It contains 4480 documents
collected from Wikipedia
covering 118,732 events

that can be categorized into
168 types.

FewEvent
https://github.com/231sm/

Low_Resource_KBP (accessed on 1
November 2023)

2020 General English

It expanded ACE2005 and
TACKBP 2017 by

importing new events from
FreeBase and Wikipedia,
including music, movies,

sports, education, etc.

2.2. Event Extraction

Based on the structured, semi-structured, and unstructured data, the events can be
extracted using a pattern-matching-based method, machine-learning-based method, and
deep-learning method. The extracted events constitute the nodes of an event knowl-
edge graph.

The pattern-matching-based method extracts events based on specifically defined
patterns, which can be acquired through text analysis (e.g., lexical analysis and syntactic
analysis) with domain knowledge. The target data are then matched with the corresponding
patterns to detect and extract a certain type of event. In the very beginning, the supervised
learning method was combined with manually labeling corpus to construct a domain-
specific model for event extraction [7,8]. To reduce labor costs, some weakly supervised
learning methods were proposed to extract events, where only a small number of patterns
were required to be manually predefined, and new patterns were incrementally learned
from either the original corpus or the external knowledge base (e.g., WordNet) [9–11]. The

https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html
https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html
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https://aclanthology.org/2020.emnlp-main.433.pdf
https://aclanthology.org/2020.emnlp-main.433.pdf
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pattern-matching-based method is effective for domain-specific event extraction, but it is
difficult for the formulated model to cover all event types.

The machine-learning-based method is based on statistical learning, which transforms
the event extraction task into a classification problem and selects appropriate features input
into classifiers to complete the extraction task. Chieu et al. [12] first applied the maximum
entropy model and defined simple features (e.g., named entities and time expressions) to
build a classifier to extract events from lecture announcements. The semantic role features
as well as global features were input into the Conditional Random Field (CRF) model for
event extraction and achieved good results on the TimeML event dataset [13,14]. Ahn [15]
combined two machine learning models, i.e., the K-Nearest Neighbors (KNN) model and
the maximum entropy model, to build a classifier for each module, using features such as
lexical features, context features, and dependency features to complete each subtask. The
machine-learning-based method involves a complex process, including feature engineering
and natural language processing, which may result in the accumulation and propagation
of errors that negatively affect the extraction results.

Compared with the pattern-matching-based method and the machine-learning-based
method, the deep-learning-based method directly transfers data to the constructed network
to extract events, which does not require manual feature engineering or domain expert
knowledge. The strong portability and high flexibility have prompted more and more
researchers to explore event extraction techniques based on deep learning in recent years.
Chen et al. [16] described event extraction as a two-stage multi-classification task, including
trigger word extraction and event entity extraction, where the Bidirectional Encoder Rep-
resentations from Transformers (BERT) model, Long Short-Term Memory (LSTM) model,
and Bidirectional Long Short-Term Memory (Bi-LSTM) model were adopted [17–21]. In
order to leverage syntactic representations for connecting words with their informative
contexts, the Graph Convolutional Networks (GCN) [22], Edge-enhanced GCN [23], Graph
Transformer Networks [24], and Graph Edge-conditional Attention Networks with Hier-
archical Knowledge Graphs [25] were introduced to detect events in sentences and they
performed well on some test datasets (e.g., ACE2005). Instead of splitting the event ex-
traction task into the above-mentioned two stages that may result in propagation errors,
Nguyen et al. [26] proposed a joint model based on the Recurrent Neural Networks (RNN)
to perform trigger word detection and event entity extraction. The joint models had been
applied for detecting events in the legal field [27] and financial field [28]. Despite learning
the patterns embedded in the sentences for event extraction, Du et al. [29] proposed a multi-
grained model based on Bi-LSTM to dynamically fuse paragraph-level representations,
where the dependency relationship between these two types of representations at different
granularities was captured using the Conditional Random Fields (CRF) model. Huang and
Peng [30] further improved the performance of capturing dependency relationships by
introducing the Deep Value Network (DVN). Integrating sentence-level information with
paragraph-level information to extract events has become one of the research hotspots in
recent years, but research on the paragraph level is still immature, leaving a lot of room
for exploration.

2.3. Event Relation Extraction

The relations among events are extracted to compose the edges connecting the nodes
(i.e., event entities) in event knowledge graphs. Since the relations are various and complex,
especially those expressed in natural language, the pattern-matching-based approach has
been widely used for such purposes by predefining a set of specific phrases as constraint
rules to extract event relations. Table 2 lists some commonly used types of event relations,
their meaning, and the phases for extraction, including causal relation, consequent relation,
conditional relation, and concurrency relation.
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Table 2. The commonly used event relations.

Relation Meaning Extraction Templates

Causal relation One event (cause) causes another event
(effect) to occur.

because, due to, because of, therefore, thus,
result in, lead to, thereby, lie in, since, thanks to,

due to the fact that

Consequent relation Partial order relation in which two events
occur one after another in time.

then, before, after, earlier, later, accordingly,
subsequently, in consequence, consequently

Conditional relation One event is the condition for another event.
unless, “if . . . then. . .”, otherwise,

“provided/given/assuming/supposing/in the
event/on the condition that. . .”, as long as

Concurrency relation The two events happen side by side.
“not only . . . but also”, at the same time,

simultaneously, “either . . . or”, alongside,
together with

The pattern-matching-based method is easy to use, but it highly depends on human-
made rules with less flexibility. As deep learning methods emerge, which show great
potential for information mining, a number of deep learning models have been trained to
extract and infer event relations in recent years. For instance, Liu et al. [31] incorporated
the knowledge from the ConceptNet [32] and increased attention to contextual information,
based on which an event mention masking mechanism was designed to uncover causal
relationships in the historical text data. Experimental results showed that this method was
effective and exhibited strong robustness in cross-subject applications. Cheng et al. [33]
took the temporal relation extraction as a classification task that concatenated word vectors,
part-of-speech vectors, and dependency relation vectors as features imported into the bidi-
rectional Long Short-Term Memory (LSTM) model. Han et al. [34] proposed a joint-learning
model that identified event entities and temporal relations at the same time by sharing
event representations to reduce error transmission between the two steps. With the same
purpose, an improved framework was constructed to enhance the performance of deep
neural networks through the use of probability-based distribution constraints constructed
using domain knowledge. This approach also applied the Lagrangian relaxation method to
the task of temporal relation extraction, achieving optimal performance [35].

There may exist inconsistency, incompleteness, and redundancy among the extracted
event entities and event relations. Measures such as entity alignment and coreference
analysis are implemented to event knowledge fusion to finalize the event knowledge graph
construction. The event knowledge graph G can be represented as G = (V, R), where V
refers to a set of events and R refers to a set of event relations. The fused event knowledge
can be organized as triples to be stored, managed, and visualized in a graph database (e.g.,
Neo4j database).

3. Methodology

Figure 3 illustrates the process of conducting the scientometric analysis of the literature
in the field of “event knowledge graph”, which includes data collection, author co-citation
network analysis, journal co-citation network analysis, collaborative country network
analysis, and keyword co-occurrence network analysis. The documents to be analyzed
were collected by setting a combination of fields (e.g., “Topic” = “event” And “Document
type” = “review” And “Language” = “English”) as the conditions in searching the WoS
database. The returned documents were further imported into CiteSpace to conduct the
above-mentioned multiple-network analysis, based on which the representative scholars,
core journals, hot research topics, and research trends in the event graph field can be
identified. More details can be found in the following sections.
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graph field.

3.1. Data Collection

With the aim of investigating the development history and the future trends of the
event knowledge graph in the last decade, we collected the documents on the Web of
Science (WoS) that were published between 1 January 2012 and 31 December 2022. To
perform a broad search, the filter was set to (Topic = (event graph *) OR (events graph)) for
all literature. The language was selected as English and the content was set to full records
and citations, with a total of 510 unique documents returned. Among all documents,
49.4% are papers, 45.2% are conference proceedings, 3.1% are online publications, 1.4%
are conference abstracts, and 0.9% are book chapters. As conference abstracts and book
chapters took a small proportion and were not significant in the following network analysis,
we cleaned, de-weighted, and filtered the data and finally obtained 412 valid documents.
Furthermore, we counted the number of publications per year to obtain an overview of how
the research popularity of the event knowledge graph has changed over the past 10 years.
Figure 4 shows a steady increase year by year, reflecting that the event knowledge graph
has attracted more and more attention from scholars in recent years.
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3.2. CiteSpace Tool for Scientometric Analysis

In this study, we selected the CiteSpace software of version 6.2.R4 to conduct the
scientometric analysis of the documents obtained in Section 3.1, since it is an efficient tool
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developed by Java language that enables research network analysis and visualization [36].
A variety of networks can be built and analyzed ranging from co-occurrence networks to
co-citation networks, including author co-citation networks, journal co-citation networks,
collaborative country networks, and keyword co-occurrence networks in this work.

The co-citation networks refer to the fact that two documents have a co-citation re-
lationship, i.e., they appear in the bibliography of another document. In this work, we
conducted analysis of both the author co-citation network and the journal co-citation
network. In these two networks, the nodes are set as cited authors and journals, respec-
tively. The co-citation relationship between them is represented by the links between the
nodes. Through constructing and analyzing those networks in CiteSpace, we can identify
the representative nodes of great significance in these networks, e.g., core authors and
influential journals.

The co-occurrence networks refer to the fact that collaboration exists if different
countries or keywords are present in a paper at the same time. Each network consists
of nodes and links. In a co-occurrence network generated through CiteSpace, the nodes
are set to collaborating countries and keywords, respectively. The node size indicates
the frequency with which an author, an institution, or a country publishes a paper. The
interaction between them is represented by the link between a pair of nodes. The strength
of their collaborative relationship is represented by the thickness of the link. In CiteSpace,
the number of co-occurrences is a parameter for calculating the strength of collaborative
relationships. Based on the help document of CiteSpace, the strength is computed by the
cosine method, i.e.,:

Cosine
(
cij, si, sj

)
=

cij
√sisj

where si is the frequency of node i, sj is the frequency of j, and cij is the number of co-
occurrences of si and sj. The cosine value is between 0 and 1, where the higher the cosine
value, the higher the strength of a collaborative relationship. In this paper, we study and
analyze collaborative country networks and keyword co-occurrence networks.

With regard to the visualization of the co-citation and co-occurrence networks, they
are both color-based. The color of a link reflects the time slice when the co-occurrence or
co-citation relationship was first created. The earliest years are in grey and purple, the
middle ones are in green, and the most recent years are in orange and red.

Among all those aforementioned networks, betweenness centrality, citation frequency,
and citation burst are usually used as effective metrics to quantitatively interpret the
networks. The betweenness centrality of a node is the proportion of all geodesic lines
(shortest paths) between pairs of other vertices including that vertex [37], the score of
which falls between 0 and 1. The higher the betweenness centrality score, the greater the
importance and influence of that node. To discriminate, we use circles to highlight the
nodes with high betweenness centrality. The greater the thickness of the circle, the higher
the betweenness centrality score. The citation frequency refers to the times of a node being
cited in a certain period of time, based on which we can understand the influence of a node
and its popularity in the event knowledge graph field. The greater the citation frequency
of the node citations, the larger the node size, indicating that the node (e.g., author and
journal) has received significant attention in a given time period. The citation in a particular
time slice is represented by a single-color ring. Thus, the temporal citation patterns of
a node are indicated by the concentric rings around it. The citation burst is defined as
the burstiness (i.e., sudden increase) of the nodes with regard to its citation frequency
over time [38,39]. If the number of citations of a node increases significantly in a certain
period of time, it is marked as a “burst” node. In Citespace, the citation burst is detected
based on the method proposed by Jon Michael Kleinberg in 2002 [39], which introduces
the parameter γ ranging from 0 to 1 for burst detection. As γ is close to 0, it pays more
attention to those nodes during short time intervals. While γ is close to 1, it considers all
nodes more balanced, including those with longer time intervals. In this work, the γ was
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set as 1 in order to take all nodes into account for citation burst detection. The citation
burstiness can help researchers grasp the research development trends.

In addition, we conducted cluster analysis for the author co-citation network and
journal co-citation network to clarify the domain scope as well as the research hotspots and
trends. In CiteSpace, the clustering analysis mainly adopts the spectral clustering method,
which divides clusters into a number of groups based on co-occurrence relationships.
Specifically, an affinity matrix describing the similarity of pairs of data points based on
a given sample dataset is first defined, following which the eigenvectors of the matrix
are calculated, and then different data points are clustered based on the eigenvectors.
In this study, the generated clusters were labeled with a set of representative terms for
interpretation, which were extracted from the noun phrases (e.g., titles, abstracts, and
keywords) in the documents based on the log-likelihood ratio (LLR) algorithm that is
provided by CiteSpace. With regard to cluster Cj, the feature vector Vij is composed of the
word wi frequency (α), concentration (β), and dispersion (γ). The label of the cluster is
generated by calculating the LLR of each word based on the following equation.

LLR = log
p
(
Cj\Vij

)
p
(
Cj\Vij

) ,

where p
(
Cj\Vij

)
and p

(
Cj\Vij

)
are the density function of Vij in the cluster Cj and Cj,

respectively. Those words with high LLR are the selected labels of the cluster.
The modularity (i.e., Q value) and silhouette (i.e., S value) are used as key indicators

to help us understand the structural properties of the academic networks in the event
knowledge graph field. The modularity of a network measures the extent to which a
network can be decomposed into multiple components or modules. This metric provides
a reference for the overall clarity of a given decomposition of the network [38]. A high Q
value indicates that the nodes in the network are tightly connected within clusters and are
sparsely connected with other clusters, namely the network has a pronounced grouping
structure. The silhouette of a cluster measures the quality of a clustering configuration, and
the S value ranges from −1 to 1 [38]. The higher the S value, the higher the homogeneity of
the nodes within the cluster. A Q value over 0.3 and an S value over 0.7 are often desirable
for network cluster analysis, meaning that the community structure of the network is
significant and the clustering results have high confidence [40].

4. Results and Discussion

In this section, the results regarding the aforementioned four types of networks are
analyzed, visualized, and discussed, including author co-citation network, journal co-
citation network, collaborative country network, and keyword co-occurrence network.

4.1. Author Co-Citation Network Analysis

This section identifies the core researchers who have made critical contributions in the
field of event knowledge graphs through conducting the author co-citation network analysis
in CiteSpace. The analysis covers the timespan from 2012 to 2022, focusing on the top
10 authors per one-year slice, which is usually the number selected for network construction
by most studies. Due to the fact that the WoS contains incomplete, unrecognized characters
or missing author information and privacy protection terms, some author information
is not provided. In this study, the anonymous authors were excluded from the analysis.
As shown in Figure 5, the author co-citation network includes 391 nodes and 1256 links.
The nodes represent the independent authors. When two authors are cited in the same
document, a link is formed to connect them, indicating there exists a co-citation relationship
between the two authors. Each color represents a time slice (i.e., one year). The concentric
rings with different colors reflect the author’s co-citation patterns over time.
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In Figure 5, the larger the node size is, the more frequently cited the author is. Those
who have a high citation frequency can be regarded as the core authors in the event
knowledge graph field. It reveals that Mikolov Tomas has the highest citation frequency
of 30 during each time slice, whose node holds the largest radius in the whole network,
followed by Perozzi Bryan and Grover Aditya with 20 citations and 18 citations, respectively.
It illustrates that their publications related to event knowledge graphs are more popular
and acknowledged by other scholars in the relevant fields. It is worth mentioning that those
authors are all interested in artificial intelligence, computer science, and neural networks
through exploring their research interests published on the Google Scholar website.

Table 3 lists the top five authors in the event knowledge graph field regarding the
betweenness centrality scores. It shows that Schruben Lee has the highest centrality of 0.1, a
faculty from the University of California, Berkeley. His current research focuses on discrete-
event simulation, risk analysis, and sampling methods. He acts as the intermediary to build
the shortest path between two authors and has played a critical role in connecting all authors
to compose the research network since the year of 2012. In the most recent years, Mikolov
Tomas from the Czech Institute for Information Robotics and Networking has become
well recognized, whose work has been widely cited and acknowledged by academics.
Overall, those who own high betweenness centrality can be regarded as the promoters of
co-operative and interdisciplinary research concerning the event knowledge graph.

Table 3. The top five authors based on betweenness centrality for the years 2012 to 2022.

Author Full Name Betweenness
Centrality Average Year

Schruben L Schruben Lee 0.10 2012
Liu Y Liu Yu 0.08 2014

Mikolov T Mikolov Tomas 0.05 2018
Levin DA Levin David Asher 0.05 2012

Li H Li Huaqing 0.04 2012
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The authors with strong citation bursts are rendered by the thick red rings enclosing
the nodes in Figure 5, indicating the duration of the citation bursts. The thicker the red ring,
the higher the citation burst score of the author. Table 4 summarizes the top five authors
by ranking their citation burst scores. All the strong citation bursts have occurred in the
past five years. The highest score was obtained by Mikolov Tomas, with a citation burst of
9.51, which is much higher than other authors. It reveals that his research related to event
knowledge graphs has been increasingly gaining attention from scholars and frequently
cited since 2018. The other four authors Perozzi Bryan, Grover Aditya, Nguyen Thien
Huu, and Tang Jian hold similar citation burst patterns over time, illustrating that the event
knowledge graph has become a hot research direction and more and more scholars have
placed focus on this direction recently.

Table 4. The top five authors sorted by the citation burst for the years 2012 to 2022.

Author Full Name Citation Burst Begin (Year)

Mikolov T Mikolov Tomas 9.51 2018
Perozzi B Perozzi Bryan 6.42 2020
Grover A Grover Aditya 5.6 2018

Nguyen TH Nguyen Thien Huu 5.42 2019
Tang J Tang Jian 4.92 2018

We further conducted a cluster analysis to identify author groups with similar co-
citation patterns in the event knowledge graph field. The authors with similar academic
influence and co-operative relationships are grouped in the same cluster. As shown in
Figure 6, there are four significant clusters retrieved from the networks. The modularity
indicated by the Q value, which equals 0.8789 and is over 0.3, reflects that the modulariza-
tion of the author co-citation network is significant. The members are homogeneous within
the same cluster and can be distinguished from other clusters since the weighted average S
value equals 0.9488, which is larger than 0.7, proving the clustering results are reasonable
and desirable.
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Table 5 shows the details of these clusters in descending order according to the cluster
size, i.e., the number of authors included in the cluster. The S value, the mean year, and
the labels generated by the LLR method of each cluster are also presented to interpret
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the clustering results. All of the S values are larger than 0.7, showing that the results
make sense for grouping the authors who conducted similar research into one cluster. For
instance, cluster #0 appearing around 2017 serves as the main study area in the field and
contains 62 authors, representing 15.857% of the total number of nodes in the network. The
S value of this cluster equals 0.978, indicating that the authors within this cluster are highly
homogeneous. The topic of this cluster concerns the flow graph analysis based on the
streaming data in order to model and monitor the event evolution process. The other three
clusters occur in earlier years, reflecting the research hotspots, including domain-specific
event modeling and simulation, automatic loop detection, and causality-associated graph
neural network technologies, applied in the event knowledge graph domain.

Table 5. The summary of the clusters of author co-citation network.

Cluster ID Size Silhouette Mean
(Year) Label (LLR)

0 62 0.978 2017 flow graph analysis; data flow;
online analysis

1 39 0.979 2012 dependency; domain-specific
modeling; business process simulation

6 23 0.993 2013
automatic loop detection; application

structure detection; performance
monitoring

10 14 0.994 2012
causality-associated graph neural

network; bio-event extraction;
news event

4.2. Journal Co-Citation Network Analysis

The journal co-citation network is a network structure used to analyze and visualize
citation exchanges and relevance between journals. In this network, each journal is rep-
resented as a node and the citation relationship between journals is represented as links
connecting nodes. As shown in Figure 7, the journal co-citation network contains 124 nodes
and 639 links. The larger the node size, the higher the number of event-knowledge-graph-
related publications contributed by this journal. Table 6 lists the information of the top
five journals with regard to the frequency of publications, including journal name, its
newest impact factor, frequency of publications, and average year. It can be seen that the
node of “AAAI CONF ARTIF INTE” (AAAI Conference on Artificial Intelligence) with the
largest radius has the highest publication frequency of 61 and the average year of those
publications is 2018. In the previous years, the event-knowledge-graph-related documents
were published in journals such as “IEEE Transactions on Knowledge and Data Engineer-
ing” and “IEEE Transactions on Pattern Analysis and Machine Intelligence”, which are all
highly impacted and fall in the categories of computer science, knowledge engineering,
and data mining.

Table 6. The top five journals sorted by the frequency of publications for the years 2012 to 2022.

Abbreviation Full Name Impact Factor Frequency of
Publications Average Year

AAAI CONF ARTIF INTE AAAI Conference on Artificial
Intelligence Conference journal 61 2018

IEEE T KNOWL DATA EN
IEEE Transactions on
Knowledge and Data

Engineering
8.9 52 2015

IEEE T PATTERN ANAL
IEEE Transactions on Pattern

Analysis and Machine
Intelligence

23.6 35 2013

J MACH LEARN RES Journal of Machine Learning
Research 6.0 31 2014

COMMUN ACM Communications of the ACM 22.7 29 2012
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As shown in Figure 7, the outermost purple ring around the node indicates the be-
tweenness centrality of the journal. The thicker the purple ring, the higher the betweenness
centrality of the journal. Such a purple ring appears only when the betweenness centrality is
larger than 0.1. The information of the top five journals with higher betweenness centrality
in the journal co-citation network is presented in Table 7, including journal abbreviation,
full name, impact factor, betweenness centrality score, and the average year of publications.
The betweenness centrality scores of the journals including “Communications of the ACM”,
“IEEE Transactions on Knowledge and Data Engineering”, and “IEEE Transactions on
Pattern Analysis and Machine Intelligence” are all around 0.20, and they play important
intermediary roles connecting different journals that have a co-citation relationship in the
event knowledge graph field before 2015. In the most recent years, the journal “IEEE
Transactions on Systems, Man, and Cybernetics: Systems”, with a betweenness central-
ity of 0.14, stands out as the core journal related to event knowledge graphs, promoting
interdisciplinary collaboration and knowledge exchange.

Table 7. The top five journals based on betweenness centrality for the years 2012 to 2022.

Abbreviation Full Name Impact Factor Betweenness
Centrality Average Year

COMMUN ACM Communications of the
ACM 22.7 0.23 2012

IEEE T KNOWL DATA EN
IEEE Transactions on
Knowledge and Data

Engineering
8.9 0.22 2015

IEEE T PATTERN ANAL
IEEE Transactions on Pattern

Analysis and Machine
Intelligence

23.6 0.19 2013

IEEE T SYST MAN CY-S
IEEE Transactions on
Systems, Man, and

Cybernetics: Systems
8.7 0.14 2020

J MACH LEARN RES Journal of Machine Learning
Research 6.0 0.13 2014
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As the number of citations of a journal increases rapidly in a certain period of time, the
journal is identified as owning a strong citation burst. As shown in Table 8, the journal titled
“PLOS ONE” has the strongest citation burst, with a score of 5.38, which lasted two years
from 2018 to 2020. There were also some strong citation bursts in the most well-known
and highly impacted journals, including “Science” and “Nature” during 2015 and 2019,
proving that the top-level research regarding event knowledge graphs had been widely
acknowledged and increasingly cited by the academic community during those periods.
The journal “Artificial Intelligence” constitutes the longest citation burst lasting four years
(from 2013 to 2017), during which the event-knowledge-graph-related publications in
“Artificial Intelligence” were cited more frequently than expected by peers.

Table 8. The top five journals sorted by citation burst for the years 2012 to 2022.

Abbreviation Full Name Impact
Factor Burst Begin (Year) End (Year)

PLOS ONE Plos One 3.7 5.38 2018 2020
SCIENCE Science 56.9 5.24 2018 2019

ARTIF
INTELL

Artificial
Intelligence 14.4 5.22 2013 2017

PROC VLDB
ENDOW

Proceedings
of the VLDB
Endowment

2.5 5.16 2016 2019

NATURE Nature 64.8 4.34 2015 2018

In order to identify the distinguished groups of journals with high homogeneity,
we further conducted a cluster analysis of the journal co-citation network. As shown in
Figure 8, the network was grouped into six clusters, and they are rendered in different
colors. The modularity indicated by the Q value equals 0.4731 and the weighted mean
Silhouette S value equals 0.8173, both of which fall in the desirable ranges. As such, the
cluster analysis results prove to be reliable and meet our expectations, supporting scholars
to better understand the academic structure of the event-knowledge-graph-related research.
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The details concerning the six clusters are presented in Table 9, including the number
of journals included, S value, mean year, and the cluster labels generated by the LLR
method. Cluster #0 with the largest size took place in 2020 and was labelled as “attention
mechanism”, “semantics”, “feature extraction”, “knowledge engineering”, and “event
extraction”. It reveals that documents published in the journals included in this cluster
placed focus on the attention mechanism engaged for selecting effective features, aiding
event extraction in recent years. Cluster #1, cluster #2, and cluster #3 have similar sizes
and appeared around 2015, which concentrate on the logical process of event graph, the
sequential patterns of event graph, and chain event graphs, respectively. Cluster #4 with an
S value of 0.818 occurred in 2017 and involved temporal network analysis for the event
knowledge graph. Cluster #6 consists of a smaller number of members but has the highest
S value of 0.996, meaning that the journals within this cluster are the most homogeneous.
The labels illustrate that the cluster is concerned with directed graph and graph topology.

4.3. Collaborative Country Network Analysis

In this section, we analyzed and visualized the collaboration patterns of countries
worldwide by constructing the collaborative country network. The country information was
retrieved from the authors’ affiliation. Consequently, we obtained a network comprising
53 nodes and 107 links, where the nodes represent the countries and the links represent the
co-operative relationship between countries. The size of the node indicates the frequency of
the event-knowledge-graph-related publications of this country. As shown in Figure 9, the
node of the Peoples’ Republic of China owns the largest radius, of which the publication
frequency is 143, representing 26.384% of all publications (see Table 10). China’s prominent
position in the national collaboration network indicates that it is the source of many articles
in the event knowledge graph field. Another big source, including 82 publications, is the
Unites States of America (USA). Similar sizes were obtained for Germany, England, and
France with a publication frequency of 36, 28, and 24, respectively. The achievements made
by those countries significantly contribute to promoting event knowledge graph research.

Table 9. The largest six clusters in the journal co-citation network.

Cluster ID Size Silhouette Mean
(Year) Label (LLR)

0 29 0.818 2020

attention mechanism;
semantics; feature extraction;

knowledge engineering; event
extraction

1 25 0.923 2013
event graph; process mining;

logical process; model
transformation; directed graphs

2 24 0.794 2016
sequential pattern; event

sequence; bridge event; big
data; cognition graph

3 24 0.857 2014

chain event graphs; Bayesian
model selection; chain event

graph; causality; event
summarization

4 19 0.818 2017

temporal networks; graph
entropy; random walk with

restart; spike-based; targeted
event detection

6 7 0.996 2021

directed graphs; topology;
multi-agent systems;

eigenvalues and eigenfunctions;
protocols
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Table 10. The top five countries based on the publication frequency for the years 2012 to 2022.

Country Publication
Frequency Percentage Average Year

CHINA 143 26.384% 2012
USA 82 15.129% 2012

GERMANY 36 6.642% 2012
ENGLAND 28 5.166% 2013

FRANCE 24 4.428% 2013

The concentric rings of different colors around the nodes indicate the temporal patterns
of the documents published by a country. The color of the link aligns with the color of the
year when the collaboration between countries first appears. The thickness of the outmost
purple ring indicates the importance of this country for retaining the interlaced relationship
in the collaborative country network. Those countries with thicker purple rings have
higher betweenness centrality scores and play a more intermediary role in connecting all
countries engaged in event knowledge graph research. The top five countries in terms
of betweenness centrality are detailed in Table 11. It reveals that France has the highest
betweenness centrality score of 0.35 since 2013, which is the most important node bridging
the two countries within the collaborative country network with the shortest path. The
countries with a higher number of event-knowledge-graph-relevant articles, i.e., USA and
China, followed behind with a betweenness centrality score of 0.20 and 0.18, respectively.
Together with Australia and the Netherlands, these five countries contributed most to
international co-operation and interaction in the event knowledge graph field.

With regard to exploring the development trends of event-knowledge-graph-related
research in the past 10 years, we further conducted citation burst analysis in terms of
countries. As shown in Figure 10, the country with the strongest citation burst is England,
which meets the requirement of taking all nodes in the collaborative country network
for burst analysis. It includes the strength score as well as the begin and end years. The
burstiness (i.e., a sudden increase in the number of citations) lasted a period of three years
from 2014 to 2017 and reached a score of 3.02. It reveals that the event-knowledge-graph-
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related research conducted by England received a lot of attention from researchers during
those years.

Table 11. The top five countries based on betweenness centrality for the years 2012–2022.

Country Betweenness
Centrality

Degree
Centrality

Average
Year

FRANCE 0.35 18 2013
USA 0.20 13 2012

CHINA 0.18 12 2012
AUSTRALIA 0.16 12 2013

NETHERLANDS 0.15 9 2016
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4.4. Keyword Co-Occurrence Network Analysis

Keywords are an effective way to summarize the topics of a document. We conducted
keyword co-occurrence network analysis to observe the connections and development
of research topics in the event knowledge graph field. We selected the top 10 keywords
per year from 2012 to 2022 for analysis. As shown in Figure 11, the network consists of
211 nodes and 625 links. The nodes represent the distinct keywords. If the two keywords
appear in one document at the same time, a link is built between the two keywords to
illustrate their co-occurrence relationship. The color of the link refers to the year when
the co-occurrence relationship first appears. The size of the node illustrates how often the
keyword has been used in the surveyed documents. It can be seen in Figure 11 that the
nodes of “machine learning” and “deep learning” hold the largest sizes in the network,
which aligns with the elaboration in Section 2 that those two types of methods have been
widely used for event extraction and event relation extraction in the existing studies. The
nodes representing “natural language processing”, “knowledge acquisition”, “knowledge
representation”, and “graphs and networks” have similar sizes, indicating that those terms
concerning the key steps in the graph construction process are also hot research topics in
the event knowledge graph domain.
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Table 12 displays the top five keywords with the highest betweenness centrality scores,
which almost aligns with those keywords identified by the frequency of publications. The
high betweenness centrality score means the corresponding keyword plays an intermedi-
ary role in connecting all co-occurring keywords to compose the keyword co-occurrence
network. It reveals that those keywords are not only frequently used but also commonly
acknowledged in the event-knowledge-graph-related studies. In addition, those nodes with
significant influence appearing in different years reveal the evolution process of research
hotspots in the event knowledge graph field. For instance, the betweenness centrality score
of the node representing “machine learning” is significantly higher than other nodes, and
such a pattern appeared in 2013 when machine learning was intensively investigated in
multiple disciplines including event knowledge graph.

Table 12. The top five keywords based on betweenness centrality for the years 2012 to 2022.

Keywords Betweenness Centrality Average Year

Machine learning 0.2 2013
Model 0.06 2014

Deep learning 0.05 2016
Information visualization 0.05 2012

Activity recognition 0.05 2013

The top four keywords with the strongest citation bursts are presented in Table 13.
The higher the strength score, the stronger the citation burst. The term “deep learning”
holds the strongest citation burst with the highest score of 20.81 from 2018 to 2022. Another
keyword with the same time span of citation burst as “deep learning” is “knowledge
graph”, indicating that deep learning and knowledge-graph-related technologies have been
increasingly used for event knowledge graph research since 2018. The keyword “machine
learning” had been cited with significant burstiness from 2016 to 2020, illustrating that
machine learning methods had drawn significant attention from peers and had been a
hotspot research topic in the event knowledge graph field during those years. Despite that,
the topics about “neural networks” had achieved strong citation bursts from 2019 to 2020,
which was logical after the burstiness of “deep learning” since neural networks emerged as
a representative among varieties of deep learning methods. The citation burst analysis of
the keywords helps capture research trends as well as uncover hot research interests in the
event knowledge graph field during a specific time period.

Table 13. The top four keywords sorted by the citation burst for the years 2012 to 2022.

Keywords Burst Begin (Year) End (Year)

Deep learning 20.81 2018 2022
Machine learning 9.4 2016 2020
Neural networks 4.62 2019 2020
Knowledge graph 3.54 2018 2022

5. Conclusions

In this study, we utilized the CiteSpace software of version 6.2.R4 to conduct a scien-
tometric analysis of research on the event knowledge graph. Our aim was to investigate
research productivity and emerging trends in this field by collecting documents published
between 2012 and 2022 from the Web of Science database. In order to conduct our analysis,
we generated and visualized four types of networks based on the collected documents, i.e.,
the author co-citation network, journal co-citation network, collaborative country network,
and keyword co-occurrence network. Such network analysis yielded several noteworthy
results. The landmark authors and journals came from various disciplines, such as com-
puter science, knowledge engineering, and data mining, suggesting that event knowledge
graph research has obvious interdisciplinary characteristics that promote co-operation and
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communication among countries worldwide. The keywords, which were found either
frequently co-occurring or with high betweenness centrality, reveal hot research topics (e.g.,
machine learning and deep learning), which almost aligns with the elaboration in Section 2
that those two types of methods have been widely used for event extraction and event
relation extraction in existing studies. The research trends and directions indicated by the
keywords with strong citation burst show that machine learning, deep learning, and neural
networks have been sequentially engaged in event knowledge graph research since 2016.

Although our work produced notable results, there is still room for improvement in
future studies. As we only reviewed articles in English and collected solely from the Web
of Science database, some relevant research may have been excluded from this review. To
address this limitation, future studies could include articles written in other languages (e.g.,
Chinese) or recorded in other databases (e.g., Scopus) for further comparison and analysis.
Moreover, while citation analysis is a useful tool, it does not account for the quality or
relevance of citations. Some works may be cited frequently but not necessarily because they
are influential or accurate. Such a phenomenon can be potentially addressed by inviting
experts to review and screen those works that have been retrieved by the citation analysis to
determine whether they are cited necessarily and accurately. Furthermore, it is possible to
propose a new journal metric based on our work, which can be transformed into an active
literature tool as a plug-in in the existing software and would change the tone towards a
more engineering approach.
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