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Abstract: Predicting the remaining useful life (RUL) of wind turbine generator rolling bearings can
effectively prevent damage to the transmission chain and significant economic losses resulting from
sudden failures. However, the working conditions of generator bearings are variable, and the collected
run-to-failure data combine multiple working conditions, which significantly impacts the accuracy
of model predictions. To solve the problem, a local enhancement temporal convolutional network
with multistage degenerate distribution matching based on domain adaptation (MDA-LETCN)
is proposed, extracting degradation features of wind turbine generator bearings and predicting
their remaining service life in composite working conditions. This method first utilizes the local
enhancement temporal convolutional network (LETCN) to extract time series features and used the K-
means method for unsupervised division of the degradation status of rolling bearings. Secondly, the
multistage degradation stage distribution matching (MDSDM) module is proposed to learn domain-
invariant temporal features at different stages of bearing degradation under composite working
conditions. Finally, the model is transferred to the target bearing using some health data that are easily
available from the target bearing to solve the problem of individual differences in the degradation
of generator bearings in different wind turbines. Comparative experiments were conducted using
actual wind farm data, and the results showed that MDA-LETCN has high prediction accuracy.

Keywords: rolling bearings; deep learning; remaining useful life prediction; wind turbine;
domain adaptation

1. Introduction

Wind energy, as a renewable and clean energy, has developed rapidly worldwide.
Wind turbines (WT) are an important equipment for converting wind energy into electricity.
With the gradual increase in operating time, transmission chain failures gradually appear [1].
As one of the important parts of the transmission chain, the rolling bearing is affected
by the wind speed and operates under the condition of variable speed for a long time,
which is prone to failure, affecting the stability of the WT operation and even leading to
casualties [2–4]. In addition, the replacement of rolling bearings has a long cycle and high
cost. Consequently, monitoring the operational status of WT generator rolling bearings
and predicting their remaining useful life (RUL) hold significant importance in preventing
escalating maintenance costs and averting catastrophic accidents caused by bearing failures.

WTs are usually equipped with condition monitoring systems (CMS) to monitor
the operating status of key components of the transmission chain for a long time and
periodically collect vibration signals [5,6]. Because of the long collection time, the full life
information can be collected, which provides the possibility for RUL prediction of rolling
bearings of WTs.

RUL prediction methods can be broadly categorized into two groups: physical model-
based methods [7,8] and data-driven methods [9,10]. Physical model-based requires the
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development of precise physical models to describe the degradation process of WTs. How-
ever, the transmission chain structure of WTs is very complex and the working conditions
are changeable, so it is difficult to establish an accurate physical model. Data-driven RUL
prediction models have received increasing attention with the rapid development of artifi-
cial intelligence [11–13]. Xiang et al. [14] proposed a novel multihierarchy network based on
multiordered neurons and realized RUL prediction for gearbox and bearings. Ni et al. [15]
developed a new health indicator (HI) for RUL prediction of bearings using a Bayesian
optimization gated recurrent unit network (GRU). Yang et al. [16] added two attention
gates to GRU to construct a bidirectional structural prediction bearing RUL. However, all
the methods used in the above research can be classified as the improvement of recurrent
neural network (RNN), whose training mode is based on recurrent recursive structure
and can only process one sample at a time, which leads to the shortcoming of long-term
dependence and affects RUL prediction effect.

Temporal convolutional neural network (TCN) represents an enhancement of con-
volutional neural network (CNN). By extending causal convolution, temporal features of
historical data can be extracted, while also possessing the advantages of CNN’s expandable
acceptance domain and parallel computing. Compared with RNN structures such as GRU,
TCN not only avoids information leakage from the future to the present but also improves
prediction efficiency and has excellent prediction ability [17,18]. Wang et al. [19] proposed a
competitive TCN that enhances feature extraction capabilities and improves the accuracy of
the model’s RUL prediction for rolling bearings. Peng et al. [20] proposed a novel multiscale
temporal convolutional transformer that takes into account both long-term and short-term
potential degradation features of bearings, effectively capturing long-term dependency
coupling while improving local feature learning ability. The superiority of this proposed
method was empirically validated using experimental datasets.

In the above studies, the effectiveness was verified using the laboratory accelerated
bearing life dataset. However, the laboratory accelerated life experiments were all con-
ducted under a single working condition, and the data structure was good. During the
actual operation of WTs, the speed of the generator bearings varies with the wind speed.
However, the CMS of WTs collects vibration signals regularly, so it is difficult to collect
the run-to-failure data at a certain fixed speed. This time variation in speed will affect
the degradation rate of the bearing and increase the amplitude fluctuation of working
parameters in condition monitoring, which is a great challenge to the RUL prediction of
practical engineering WT generator bearings [21]. Domain adaptive (DA) is an important
branch of transfer learning. DA maps the features of different working conditions into a
new feature space with the same distribution as much as possible, which is an effective
solution for predicting bearing RUL under different working conditions [22–24]. Miao
et al. [25] used selective convolutional RNN to extract features from vibration signals and
proposed a co-operative domain alignment method to learn domain-invariant features. Hu
et al. [26] proposed a deep feature disentanglement transfer learning network to reduce the
distribution differences of features under different working conditions. Rathore et al. [27]
used multi-kernel maximum mean discrepancy (MMD) to achieve DA under different
working conditions.

The methods mentioned above primarily involved transferring models from one
working condition to another. However, the full life data of WT generator bearings is a
combination of multiple working conditions. It is not realistic to establish a model for
each working condition. More importantly, it is impossible to separate the run-to-failure
data with equal time intervals and roughly the same working conditions for training
the model. Therefore, designing an RUL prediction method for WT generator bearings
under composite working conditions is of great significance for practical engineering
applications. So, a local enhancement time convolutional model with multistage degenerate
distribution matching based on domain adaptation (MDA-LETCN) for WT generator
bearing RUL prediction is proposed in this paper. This method proposes local enhancement
TCN to learn the temporal features of generator bearing data and uses the K-means for
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unsupervised and divides the bearing degradation state into three stages: healthy state,
slight degradation, and severe degradation state. Secondly, a multistage degradation stage
distribution matching (MDSDM) is set up, and MDSDM aligns the distribution of features
at different degradation stages, promoting the model to learn the degradation laws at
different stages under composite working conditions. Finally, part of the health data of the
target bearing is used to reduce the degradation of individual differences in the generator
bearings of different WTs by DA, and the model is transferred to adapt to the target bearing.
Experimental verification was conducted using actual WT life cycle data from a wind
farm in Shandong and compared with advanced methods. The results showed that the
prediction accuracy of the proposed method is higher. The novelties of this work are
as follows:

(1) RUL prediction methods for WT generator bearings under composite working con-
ditions are proposed, which utilizes TCN with local enhanced residual module to
extract temporal features and unsupervised K-means to partition the degradation
status of generator bearings.

(2) Aiming at the problem that the prediction accuracy of the full life data of WT generator
bearings is affected by the cross-fusion working conditions, the MDSDM module is
proposed, which can reduce the influence of composite working conditions on the
model and help the model learn the degradation features independent of working
conditions.

(3) In view of the different degradation trends of WT generator bearings caused by
working conditions, fault types, and other reasons, the DA module is added to the
model to improve the prediction accuracy of the model in the target domain bearings.

The rest of this paper is structured as follows. Section 2 introduces WT generator
bearing data, data preprocessing, and the construction method of HI. Section 3 presents the
details of the MDA-LETCN. Section 4 introduces the prediction results of MDA-LETCN
and compares them with advanced methods in six tasks. Section 5 makes some conclusions.

2. Description of the Datasets and Data Preprocessing

In this section, the WT generator bearing data used is introduced, and the methods for
data preprocessing and health indicator construction are also introduced.

2.1. Description of the Datasets

The lifetime vibration data of WT generator bearings in this paper were obtained from
23 WTs with an installed capacity of 1.5 MW, located within a wind farm in Shandong,
China. The generator bearings in this wind farm were of the NU1030M model. Since July
2017, the generator bearings of the three WTs 10#, 19#, and 21# have been collected, which
were degraded from healthy operation to severe failure then were replaced by the wind
farm. After replacement, the faulty bearings were disassembled, as shown in Figure 1. In
this paper, the criterion for bearing failure is based on the replacement of bearings within
the wind farm. This CMS records a vibration signal every hour, with a single sampling
time of 1.28 s and a sampling frequency of 12,800 Hz; the data collection system is shown
in Figure 2. Figure 3 is the time-domain signals of the entire life of the three WTs from
operation in July 2017 to bearing replacement. To represent the degradation trends of WT
bearings, time-domain features (TF) are extracted based on vibration acceleration [28–30],
as shown in Table 1.
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Table 1. Time domain degradation feature.

Features Equations Features Equations

Peak TF1 = max|xt| Kurtosis TF7 = 1
T·TF4

5

T
∑

t=1
(xt − TF2)

4

Mean absolute value TF2 = 1
T

T
∑

t=1
|xt| Square root amplitude TF8 =

(
1
T

T
∑

t=1

√
|xt|
)2

Peak to peak TF3 = max(xt)−min(xt) Crest factor TF9 = TF1
TF4

Root mean square(RMS) TF4 =

√
1
T

T
∑

t=1
x2

t
Clearance factor TF10 = TF1

TF8

Standard deviation TF5 =

√
1

T−1

T
∑

t=1
(xt − TF2)

2 Impulse factor TF11 = TF1
TF2

Skewness TF6 = 1
T·TF3

5

T
∑

t=1
(xt − TF2)

3 Shape factor TF12 = TF4
TF2

2.2. Data Preprocessing

Firstly, WTs are powered by wind, so the speed of the generator vibration signals
collected by CMS at regular intervals is not constant. It is evident that fluctuations in
speed will inevitably impact the amplitude, peak value, and other features of the vibration
signal. This will cause great difficulties for the RUL predicting of generator bearings. To
solve this problem, firstly, considering that WTs do not generate electricity when the speed
falls below 1000 RPM or above 1800 RPM, data within this range should be filtered and
deleted. Secondly, when the wind direction changes sharply in a short period of time,
the yaw system of the WT automatically starts, which may lead to unstable operation
of the generator, and the data under such speed are excluded. Finally, if the limited
speed range is too small, the available data will be greatly reduced. Based on the above
principles, this paper selected the vibration signal with the speed of 1100 RPM–1600 RPM to
extract features.

Secondly, when RUL is predicting, the acquired signals need to meet an equal interval.
Considering the actual operating conditions, the degradation process is slow, so it is
assumed that the degradation state of the bearing is the same in one day so that a vibration
signal meeting the speed range can be selected in the 24 data a day to represent the running
state of the day. The predicted time interval is one day.

Finally, in the actual operation of WTs, there are inevitable shutdowns for maintenance,
which will lead to the loss of vibration signals from generator bearings. Additionally, due
to the uncertainty of wind speed, it is challenging to ensure that the speed of all 24 vibration
signals collected in a day falls within the previously mentioned speed range. Therefore, it
is necessary to complete the missing data. This paper utilizes the interpolation method for
completion operations. Figure 4 shows the CTF image of RUL features after the original
12 TFs and complete time domain features (CTF) of the WT No. 10#.

2.3. HI Construction

HI is very important in RUL prediction of bearings, and RMS can reflect the degrada-
tion status of bearings and is commonly used as an indicator for dividing bearing status as
HI. However, the generator bearing speed in the run-to-failure data in the actual wind farm
is not fixed, and there must be random fluctuations in the RMS calculated under composite
working conditions, which is not a typical phenomenon of bearing degradation and will
seriously affect the prediction effect. To reduce the random fluctuations in RMS, this paper
uses the Savitzky–Golay filter (SG) to smooth RMS and obtains SRMS as the HI and the
other 11 features as model inputs [31,32].
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SG is a smoothing technique that relies on interval polynomial fitting, with the ability
to filter out random fluctuations in the data without changing the shape and trend of the
original data. The key to SG smoothing is to use a (k − 1)-order polynomial to fit points
centered on the selected data point within a window length of 2m + 1, and the polynomial
formula is:

y = a0 + a1x + a2x2 + · · ·+ ak−1xk−1 (1)

Then, for 2m + 1 points in the window, there are 2m + 1 equations:
y−m
y1−m

...
ym

 =


1 x−m · · · (x−m)

k−1

1 x1−m · · · (x1−m)
k−1

...
...

. . .
...

1 xm · · · (xm)
k−1

+


e−m
e1−m

...
em

 (2)

Using matrix form, it can be represented as:

Y = AX + E (3)

where Y is the fitting vector, A is the coefficient matrix, X is the independent variable
matrix, and E is the residual. The above equation can usually be solved by using the least
square method.

¯
A =

(
XTX

)−1
XTY (4)
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¯
Y = X

¯
A = X

(
XTX

)−1
XTY (5)

The window slides in chronological order until all data points are fitted, resulting in a
smoothed-curve SRMS.

3. The Proposed New Method MDA-LETCN

Figure 5 shows the network structure of MDA-LETCN. MDA-LETCN is composed of
a temporal features extraction module, a degradation state division module, an MDSDM, a
DA module, and a regression module. The temporal feature extraction module consists of
a TCN with locally enhanced residuals (LERES), which is employed to extract temporal
features. The degraded state division module utilizes K-means for the unsupervised divi-
sion of degraded states based on the temporal features extracted by LETCN. The MDSDM
module is used to match the distribution differences of different degradation stages, learn
domain-invariant degradation features, and eliminate the problem of unsatisfactory predic-
tion accuracy caused by feature amplitude fluctuations in the composite working conditions
of WT generator bearings. The DA module is used to reduce the distribution differences be-
tween source and target domain and improve the prediction accuracy in the target domain.
Finally, the final prediction result is obtained by the regression module.
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3.1. Temporal Feature Extraction Module

In this paper, the temporal convolution structure is used to extract the time information
of generator bearings’ degradation process. TCN is a network structure based on CNN,
which is composed of causal convolution, dilated convolution, and residual modules,
which can learn the temporal features of time series in parallel and avoid leakage.

Causal dilated convolutions

Figure 5 shows the structure of the causal dilated convolutions (CDC) network, which
is composed of causal convolution and dilated convolution. Causal convolution learns
temporal features based on current and historical information to predict the value at the
next moment, that is, using {x1, x2, · · · , xt} to predict the value of xt+1. The formula is:

p(x) =
T

∏
t=1

p{ xt+1|x1, x2, · · · , xt} (6)

If only the causal convolution learning temporal feature is relied on, the model needs
to build deeper and have a larger convolution kernel size to increase the receptive field to
achieve the ideal effect. This results in increased model complexity. To solve this problem,
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the dilated convolution and the combination with causal convolution can greatly reduce
the complexity of the model. The receptive field for CDC with expansion rate d is:

kl = (d− 1) ·
(

kl
c − 1

)
+ kl

c (7)

where kl
c is the convolution kernel of l-layer causal convolution and kl is the receptive field

size of l-layer CDC. The final output value of the model depends on the coverage of the
model. In order to ensure the low complexity and large receptive field of the model, with
each additional layer, the expansion rate of the current layer will increase at the rate of b,
and the receptive field width of each layer can also be expressed as:

w = 1 +
L−1

∑
l=0

(k− 1) · bl = 1 + (k− 1)
bl − 1
b− 1

(8)

where the dilated rate d = bl and l represents the number of layers in the model. When
inputting layers, l = 0 and k is the size of the convolutional kernel.

It is worth noting that dilated convolution can cause voids in the receptive field. To
prevent information loss, a residual structure as shown in Figure 6 is added to TCN. This
residual structure includes two layers of CDC. After each CDC, the weights are normalized
using weight normalization and the ReLU function is used as the activation function to
prevent model overfitting. Finally, the result obtained after 1 × 1 convolution is added to
the results of the two CDC, and the output is:

out = ReLU(x + f (x)) (9)

where f (.) represents two CDC-WN-ReLU-Dropout operation transformations. This resid-
ual structure not only ensures the integrity of information but also extracts sufficiently long
time series features.
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TCN utilizes CDC and residual structure to extract long-term temporal features of
time series but ignores the importance of local features. In this paper, MDA-LETCN adds a
local enhancement module to the residual module of TCN, which pays attention to local
features while extracting long-term historical information and improves the prediction
accuracy of model RUL.

LETCN adds a local information enhancement module in the residual module to
improve the original 1 × 1 convolution to the structure shown in Figure 7. First, the
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features of input signal x are extracted by the convolution operation with convolution
kernels of 3, 5, and 7, respectively.

oi = convi(x), i = 1, 2, 3 (10)
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Then, the three output signals are spliced according to dimension:

o = concat(o1 + o2 + o3) (11)

Next, the features of the three channels are compressed by 1 × 1 convolution kernel
and integrated by activation function to obtain the weight of each time point:

w = Sigmoid(conv1×1(o)) (12)

Finally, the output of the LERES is:

out = ReLU(w ∗ o + f (x)) (13)

The model uses mean square error (MSE) as the loss function, i.e.:

Lr = MSE(yi, ŷi) =
1
N

N

∑
i=1

(yi − ŷi)
2 (14)

3.2. Multistage Degradation State Division

In the existing studies, the degradation state of rolling bearings is divided either
manually based on expert experience or by setting thresholds for HI, but the two have a
large degree of subjective awareness in the process of division, which cannot be promoted.
In addition, the life data of WT generator bearings are in a composite working condition,
and fluctuating speed will lead to an increase in the feature amplitude. This also makes the
selection of thresholds extremely difficult. To solve the above problems, this section sets a
clustering module in the network, and unsupervised divides the bearing degradation state
while learning the bearing degradation features.

Considering the actual operating status of WTs during the operation and maintenance
process of wind farms, this paper divides the operating status of generator bearings into
three stages: health, slight degradation, and severe degradation, as shown in Figure 8.
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addition, the life data of WT generator bearings are in a composite working condition, and 
fluctuating speed will lead to an increase in the feature amplitude. This also makes the 
selection of thresholds extremely difficult. To solve the above problems, this section sets a 
clustering module in the network, and unsupervised divides the bearing degradation 
state while learning the bearing degradation features. 

Considering the actual operating status of WTs during the operation and mainte-
nance process of wind farms, this paper divides the operating status of generator bearings 
into three stages: health, slight degradation, and severe degradation, as shown in Figure 
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In order to reduce the impact of feature amplitude fluctuations caused by compos-
ite working conditions on the division of degraded states and improve the accuracy of
the model in classifying degraded states, the clustering loss is added during the model
training process:

LC =
1
2

N

∑
i=1
‖xi − cxi‖

2
2 (15)

where cxi is the cluster center of xi, and cluster loss will make the model learn more effective
features for degenerate-state recognition based on learning time series.

3.3. Multistage Degradation Stage Distribution Matching (MDSDM)

There is a significant distribution difference between the three degradation stages
of TW generator bearings during operation from health-state degradation to bearing re-
placement. If the model has high prediction accuracy in each degradation stage, the
prediction model must learn the domain-invariant time dependence in different degrada-
tion stages of generator bearings. However, the signals of generator bearings collected by
the CMS are under composite working conditions, which will seriously affect learning the
domain-invariant features. In this paper, an MDSDM module is proposed. By reducing
the distribution difference between different degradation stages, the model can learn the
domain-invariant degradation features between the multi-degradation stages and improve
the prediction RUL accuracy of the model for generator bearings. For the same type of
bearing, the internal physical degradation mechanism will not be affected by the composite
working condition. So, MDSDM can effectively extract the degradation features of the
bearing under the composite working condition. For the feature sets Di and Dj of different
degradation stages, the loss of MDSDM is:

LMDSDM(Di, Dj) =
T

∑
t=1

λt
i,jd(xt

i , xt
j) (16)

where xl
i ∈ Di and xl

j ∈ Dj are the t eigenvalues of the i and j stages, respectively, λt
i,j is the

importance of distribution, and d is the distance function, defined as the cosine similarity
function in this paper. In this paper, the importance of dynamic evaluation of temporal
features is observed, that is, dynamic update parameter λt

i,j. Firstly, the source domain is
used to take Lr + αLC as the loss pretraining model, enabling the model to better learn the
temporal features in the bearing degradation process. In the training process, the initial
weight is set to the same value, that is, λt

i,j = 1/T, t = 1, 2, · · · , T. Then, with the increase
in iterations during formal training, if the distribution distance of n iterations is greater
than n − 1 iterations, the distribution difference becomes larger, so the weight is increased
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to better reduce the distribution difference. Otherwise, the weights remain the same. The
updating process of distributed importance is as follows:

λn+1,t
i,j =

 λn,t
i,j ×

(
1 + σ

(
λn,t

i,j − λn−1,t
i,j

))
λn,t

i,j − λn−1,t
i,j ≥ ε

λn,t
i,j otherwise

(17)

where λn,l
i,j represents the distribution difference of the tth feature between stage i and stage

j during the nth iteration process, σ(x) = 1/(1 + e−x), ε→ 0 . From Equation (17), it can
be seen that σ(x) > 0; when λn,t

i,j − λn−1,t
i,j ≥ ε, λn+1,t

i,j will increase. Then, the final weight

values are obtained by regularizing the λn+1,t
i,j = λn+1,t

i,j /
(

T
∑

t=1
λn+1,t

i,j

)
.

3.4. Domain Adaptation

In the same wind farm, the bearing models of the WT generators are the same, and
their degradation process is the same theoretically. However, the location of each WT and
the degradation reasons for bearings are different from the others due to factors such as
assembly and lubrication. So, the degradation state of each WT is different. After learning
the degradation features from one WT generator bearing, the model is directly applied to
the generator bearing of another, and the prediction effect will be worse.

Before the prediction of a new WT, we can easily obtain the vibration data of the health
state of the WT generator bearings. In this paper, the lifetime data used in training are
added as the source domain, the predicted bearing is taken as the target domain, and part
of the normal data of the target is taken as the training set. The model is transferred to
the model available in the target domain through DA between the source domain and the
health state of the target domain. Therefore, the model adds DA losses:

LDA
(

DS
1 , DT

1
)
= MMD

(
DS

1 , DT
1
)

=

∣∣∣∣∣
∣∣∣∣∣ 1
|DS

1 |
2

|DS
1 |

∑
i=1

|DS
1 |

∑
j=1

k
(

xs
i , xs

j

)
+ 1
|DT

1 |
2

|DT
1 |

∑
i=1

|DT
1 |

∑
j=1

k
(

xt
i , xt

j

)
− 1
|DS

1 |
1
|DT

1 |
|DS

1 |
∑

i=1

|DT
1 |

∑
j=1

k
(

xs
i , xt

j

)∣∣∣∣∣
∣∣∣∣∣ (18)

where xs
i ∈ DS

1 and xt
i ∈ DT

1 represent the health status data in the source and tar-
get domain, respectively, MMD(.) represents MMD function, and k( , ) represents the
kernel function.

In this paper, the degradation state of WT generator bearings is divided into three
stages and the distribution between each two stages is aligned. Therefore, it is necessary to
match (3 × 2)/2 = 3 times; then, the final loss function is:

L = Lr + αLC +
1
3

β
i 6=j

∑
i,j

LMDSDM(Di, Di, λ) + γLDA

(
DS

1 , DT
1

)
(19)

where α, β, and γ are hyperparameters and Lt
r is the regression loss of the training set.

3.5. RUL Prediction

As per Section 3.2, the degradation status of the generator bearings is categorized
into three stages: healthy, slight degradation, and severe degradation. In the process of
predicting RUL, since there is no degradation in the healthy data, it is not meaningful to
predict the RUL of generator bearings in a healthy state. Therefore, in this paper, the first
time point within the mild degradation stage is determined as the starting time of bearing
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degradation, denoted as the first predicted time (FPT), and RUL prediction for the bearings
commences from this time point. The degradation labels for the data can be represented as:

ys
RUL =

ns − i
ns − FPT

(20)

where n is the number of data in the source domain; when yRUL = 1, the generator bearing
just runs to FPT; then, the model begins to predict RUL; when yRUL > 1, the bearing is in a
healthy state and, when yRUL < 1, this indicates that the bearing is degraded.

This paper designs an RUL prediction model based on actual WT generator bearings’
run-to-failure data collected from a wind farm in Shandong. The training process is
as follows:

Step 1: The collected vibration signals are filtered according to the date and bearing
speed; then, TFs are extracted from filtered data and the missing data are completed.
Next, the SG filter is used to smooth the RMS to obtain the SRMS. The source domain
is DS =

(
xs

1, xs
2, · · · , xs

ns

)
and ns is the number of source domain. The target domain

is DT =
(

xt
1, xt

2, · · · , xt
n′t

)
, n′t is the number of health-state data that the target domain

participates in training, and xs
n and xt

n both contain 11 features. DS and DT together form
the training set, with the remaining samples from the target domain used as the test set.

Step 2: The TFs of bearing vibration signals are constructed as time series. The data of
T continuous TFs points are intercepted as a time series.

x1 x2 · · · xT
x2 x3 · · · xT+1
...

...
. . .

...
xN−T xN−T+1 · · · xN

 =


d1
d2
...

dN−T

 (21)

Step 3: Using source domain time series samples, with Lr + αLC as the loss function
and SRMS as the data label pretraining model, the objective is to learn the degradation
features of source domain data and the segmentation of degradation stages. Based on the
classification of the degradation status of the source domain bearing data, the FPT for the
source domain bearings is determined, and then the RUL labels for the source domain
bearings are calculated using Equation (20).

Step 4: Equation (19) was used as the loss function to train MDA-LETCN. Based on
the source domain data in the training set, the LETCN module was used to learn the time
characteristics of bearing degradation and the MDSDM module was used to reduce the
difference in feature distribution of each degradation stage based on the division results of
the bearing degradation state by the pretraining model so as to learn the domain-invariant
degradation characteristics of bearings. For the target domain data in the training set,
which only contains health status data, the DA module is used to align the health status
feature distribution in the source domain and the target domain so as to migrate the model
to the adaptive target bearing.

Step 5: Using the test set test model results, once the FTP of the target bearing is
identified by the model, RUL prediction for the target bearing is started.

Figure 9 shows the diagnostic process of MDA-LETCN.
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4. Case Studies

In this paper, the whole-life data of three WT generator bearings collected by a wind
farm in Shandong are used for experiments. Data details and data preprocessing are
described in Section 2. Six transfer tasks, as shown in Table 2, are constructed to test and
validate the effectiveness of MDA-LETCN. The first 300 healthy samples were selected in
the target domain to participate in model training.
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Table 2. Transfer learning tasks.

Task Source Target

Task1 10# 19#
Task2 10# 21#
Task3 19# 10#
Task4 19# 21#
Task5 21# 10#
Task6 21# 19#

4.1. Parameter Settings

In the calculation of HI, there are two parameters m and k in SG filtering. Figure 10
shows the SRMS curve of the 10 # WT when the two parameters take different values. It
can be seen that the selection of these two parameters will directly affect the filtering effect
of SG. When k = 2, the larger the m, the better the smoothing effect. At a fixed m value, the
higher the k value, the worse the smoothing effect. After comprehensive consideration, this
paper selects m = 30 and k = 2. Figure 11 shows the SRMS curve of the three WTs after SG
filtering. It can be seen that SRMS retains the degradation trend of WT bearings based on
smooth curves.
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Figure 10. SRMS curves are obtained from different parameters in SG: (a) m = 5, k = 2; (b) m = 15, k = 2;
(c) m = 25, k = 2; (d) m = 30, k = 2; (e) m = 35, k = 2; (f) m = 45, k = 2; (g) m = 25, k = 3; (h) m = 30, k = 3;
(i) m = 30, k = 4.
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Figure 11. SRMS curve of three WTs after SG filtering.

The MDA-LETCN proposed in this paper needs to cover all time series, with four residual
modules set, each with a convolutional kernel size of 3 and channel of 32. α = 0.005, β = 0.001,
and the learning rate is 0.005.

To verify the effectiveness of MDA-LETCN in predicting RUL, root mean square error
(RMSE), mean absolute error (MAE), and score were used as evaluation indicators.

RMSE =

√√√√√ N
∑

i=1
(yi − ŷi)

N
(22)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (23)

Score =
1
n

n

∑
i=1

Ai (24)

where:

Ai =

{
e− ln (0.5)·(Eri/5) i f Eri ≤ 0
eln (0.5)·(Eri/20) i f Eri > 0

(25)

Eri =
yi − ŷi

yi
· 100 (26)

where yi is the actual RUL, ŷi is the predicted RUL, and N is the number of data points
participating in the test.

4.2. Results of Degradation State Divided and Prediction RUL

Figure 12 shows the division results of degraded states when the generator bearings of
three WT generators are, respectively, used as training datasets. It can be seen that there are
differences in the degradation trends of the three WTs but, before a significant degradation
trend occurs, all three WTs maintain a healthy state for a long time. This part of the data
contains less degradation information, so the point that is initially classified as slightly
degraded is chosen as the FPT.
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Figure 12. The degradation stage division results for three datasets.

Figure 13 shows the state division of MDA-LETCN for the target domain among six
transfer tasks. It can be seen that MDA-LETCN can still accurately classify the degradation
status of bearings in the target domain. Although there are a few advanced or delayed
points between the two states, the degradation process of bearings is a continuous and
slowly changing time series process, and there will be no sudden changes or significant
differences between the two points and small deviations are also acceptable.
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Figure 13. The degradation stage division results.

Figure 14 shows the spectrum of the WTs in the three degradation processes. Three
signals are extracted from each state in time order. It can be seen that the spectrum
amplitude in the healthy state is low and there is no obvious fault frequency. When the
bearing enters a slightly degraded state, the fault features appear in the high-frequency
part of the spectrum. When bearings enter the severe degradation state, the high-frequency
amplitude of the spectrum is larger and the low-frequency part has fault features.
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Figure 14. Comparison of spectral maps at different degradation stages.

The length of the input time series will affect the prediction effect of MDA-LETCN. If
the time series is too short, the model cannot learn more temporal features; if they are too
long, the model must increase network layers to cover the entire time series, which greatly
increases the computational complexity and training time. To observe the relationship
between time series length and model prediction effect, the time series length was set as
15, 20, 30, 40, and 50, respectively. For MDA-LETCN to cover the entire time series of each
sample, the model is set to three LERES layers when the length is 15, four LERES layers
when the length is 20 and 30, and five LERES layers when the length is 40 and 50. The
number of channels per layer is 32. Figure 15 shows the evaluation indicators results of
different time series lengths. Overall, RMSE and MAE are lower, and the score is higher
when the time series length is 30 and 40. However, when the time series is 40, the number
of model layers increases and the training time is longer. So, the length of the time series is
set to 30.
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Figure 16 shows the RUL prediction results of target domain bearing in the six transfer
tasks listed in Table 2 after the model recognizes the FPT of target bearings. At this
time, the time series length is 30. It can be seen from Figure 16 that the model has the
best prediction effect for Task3 (19#-10#), followed by Task1 (10#-19#), indicating that the
degradation trend of 10#WT and 19#WT is close and the migration effect is the best. Task4
(19#-21#) has the worst predictive effect, but the overall predicted degradation trend is still
close to the true degradation trend. The results show that MDA-LETCN can effectively
learn the constant degradation trend between the source domain and the target bearing
domain, accurately predict the RUL of WT generator bearings, provide a theoretical basis
for predictive maintenance of WT generator bearings, effectively reduce maintenance costs,
and improve system operation reliability.
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4.3. Ablation Experiment

To verify the rationality of the structure setup of MDA-LETCN, ablation experiments
were designed. The MDA-LETCN consists of LETCN, MDSDM, and DA. Three ablation
models LETCN + MDSDM, LETCN + DA, and TCN + MDSDM + DA were constructed, and
the experimental results of the three ablation models are shown in Table 3. MDA-LETCN
has the best prediction effect, while the effect of the three ablation models decreases in
different amplitudes. It shows that LETCN, MDSDM, and DA all contribute to the RUL
prediction accuracy of the model. The average RMSE, MAE, and Score of LETCN + DA in
the six tasks are 0.162, 0.143, and 0.218, respectively, and the prediction effect is the worst.
The results show that it is difficult to learn the effective degradation features of generator
bearings under composite working conditions only by using DA and LETCN. The effect
of TCN + MDSDM + DA is second only to MDA-LETCN, indicating that local feature
enhancement can improve the model’s ability to learn degraded features.
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Table 3. Results of ablation experiments.

LETCN + MDSDM LETCN + DA TCN + MDSDM + DA MDA-LETCN

RMSE MAE Score RMSE MAE Score RMSE MAE Score RMSE MAE Score

Task1 0.154 0.145 0.307 0.148 0.127 0.238 0.122 0.108 0.304 0.063 0.048 0.494
Task2 0.127 0.118 0.275 0.176 0.143 0.201 0.127 0.114 0.353 0.077 0.066 0.399
Task3 0.177 0.159 0.278 0.139 0.124 0.256 0.119 0.095 0.411 0.056 0.044 0.554
Task4 0.167 0.144 0.233 0.181 0.169 0.198 0.164 0.137 0.301 0.084 0.068 0.403
Task5 0.159 0.136 0.254 0.172 0.158 0.224 0.157 0.135 0.396 0.069 0.056 0.545
Task6 0.154 0.139 0.273 0.153 0.136 0.191 0.124 0.123 0.388 0.064 0.052 0.475

Average 0.154 0.145 0.307 0.162 0.143 0.218 0.136 0.119 0.359 0.069 0.056 0.478

4.4. Comparison with Other Methods

To verify the superiority of the proposed method, it is compared with four ad-
vanced bearing RUL prediction methods. Convolutional long short-term memory net-
work (CLSTM) [33] combines convolution and LSTM to enhance the model’s ability to
learn degradation features. Variational autoencoder LSTM with local weighted deep sub-
domain adaptation network (VLSTM-LWSAN) [34] divides bearing degradation into 10
sub-domains and improves the prediction accuracy of the model on the target bearing
through sub-domain alignment. The deep transfer learning-based hierarchical adaptive
RUL prediction approach (TLHAM) [35] uses the MMD to divide bearing degradation into
four stages and uses pairwise combinations as the source domain and target domain for DA
to learn domain invariance at different degradation stages. It has shown good predictive
performance on test rig data. Multitask spatiotemporal augmented net (MTSTAN) [36],
a causal enhanced CNN with skip connections, enhances the robustness and universal-
ity of the model by establishing a multiwindow and multitask sharing mechanism. The
comparison results are shown in Table 4 and it can be seen that MDA-LETCN has the best
effect. CLSTM and MTSTAN do not have DA modules, resulting in the worst prediction
performance. The classification of bearing degradation states by VLSTM-LWSAN does
not conform to the degradation mechanism, so its effectiveness is only higher than that of
CLSTM and MTSAN. TLHAM divides the degradation process of bearings into three to
four stages based on the mechanism of bearing degradation but ignores the differences in
degradation among different bearings, which affects the prediction accuracy of the model.
The MDA-LETCN divides the degradation process of bearings into three states, taking into
account not only the composite working conditions of the run-to-failure data collected from
WT bearings but also the differences in the degradation of different bearings. Therefore,
the prediction effect of MDA-LETCN is the best.

Table 4. Results of comparison methods.

CLSTM VLSTM-LWSAN TLHAM MTSTAN MDA-LETCN

RMSE MAE Score RMSE MAE Score RMSE MAE Score RMSE MAE Score RMSE MAE Score

Task1 0.247 0.229 0.105 0.202 0.184 0.208 0.181 0.165 0.234 0.231 0.217 0.138 0.063 0.048 0.494
Task2 0.243 0.212 0.112 0.165 0.143 0.243 0.169 0.147 0.282 0.194 0.177 0.194 0.077 0.066 0.399
Task3 0.233 0.209 0.147 0.191 0.177 0.258 0.172 0.153 0.279 0.205 0.195 0.151 0.056 0.044 0.554
Task4 0.227 0.201 0.162 0.142 0.136 0.267 0.155 0.140 0.301 0.166 0.152 0.216 0.084 0.068 0.403
Task5 0.235 0.214 0.131 0.189 0.168 0.242 0.176 0.144 0.265 0.186 0.163 0.180 0.069 0.056 0.545
Task6 0.215 0.199 0.188 0.137 0.119 0.261 0.164 0.151 0.299 0.178 0.154 0.234 0.064 0.052 0.475

Average 0.233 0.211 0.141 0.171 0.155 0.247 0.170 0.150 0.277 0.193 0.176 0.186 0.069 0.056 0.478

5. Conclusions

This paper proposes the MDA-LETCN model to predict the RUL of bearings under
composite working conditions in response to the problem of composite working conditions
and differential degradation of the run-to-failure data of WT generator bearings. The
conclusions are as follows:

(1) MDA-LETCN can effectively extract the degradation features of WT generator bear-
ings from the run-to-failure data under composite working conditions and introduce
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DA to effectively improve the model’s prediction performance of target bearing RUL
based on the differences in the degradation processes of each bearing. Through com-
parative experiments on the generator bearing data of WTs, the methods proposed
in this paper, RMS, and MAE have the smallest and the highest scores, which are
superior to the comparative methods.

(2) In MDA-LETCN, unsupervised clustering is carried out on the extracted temporal
features to adaptively classify the degradation state of generator bearings under
composite working conditions, which can effectively improve the prediction effect of
the model.

(3) The MDSDM module measures and minimizes the distribution differences in dif-
ferent degradation stages, which can help the model learn the domain-invariant
time-dependent features in different degradation stages. Ablation experiments have
proved that the MDSDM module can effectively improve the prediction accuracy of
the model under composite working conditions.

It should be mentioned that, although MDA-LETCN has achieved high accuracy in
WT generator bearing RUL estimation, there are still some limitations that need to be
studied in our future work:

(1) MDA-LETCN is a data-driven black-box model and, in our future work, we plan to
introduce the mechanism model into the network to enhance the interpretability of
the model.

(2) Due to data reasons, this paper only studies the transfer learning prediction between
NU1030M bearings. In future work, transfer learning tasks between different types of
bearings will be studied to improve the robustness of the model.
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