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Abstract: Road crack detection is an important indicator of road detection. In real life, it is very
meaningful work to detect road cracks. With the rapid development of science and technology,
especially computer science and technology, quite a lot of methods have been applied to crack
detection. Traditional detection methods rely on manual identification, which is inefficient and
prone to errors. In addition, the commonly used image processing methods are affected by many
factors, such as illumination, road stains, etc., so the results are unstable. In the research on pavement
crack detection, many research studies mainly focus on the recognition and classification of cracks,
lacking the analysis of the specific characteristics of cracks, and the feature values of cracks cannot
be measured. Starting from the deep learning method in computer science and technology, this
paper proposes a road crack detection technology based on deep learning. It relies on a new deep
dictionary learning and encoding network DDLCN, establishes a new activation function MeLU,
and adopts a new differentiable calculation method. The technology relies on the traditional Mask-
RCNN algorithm and is implemented after improvement. In the comparison of evaluation indicators,
the values of recall, precision, and F1-score reflect certain superiority. Experiments show that the
proposed method has good implementability and performance in road crack detection and crack
feature measurement.

Keywords: crack detection; deep learning; dictionary learning; encoding networks; crack measurement

1. Introduction

Crack is a common road disease, which can provide important data for road mainte-
nance. Under the background of the rapid development of modern high-tech, computer
science technology represented by machine learning and image processing technology has
developed rapidly, providing new tools for the analysis and treatment of cracks. Deep
learning evolved through machine learning, where models are trained through computa-
tion. Moreover, the deep learning method can extract features and analyze data according
to the characteristics of the original image, and the accuracy of the calculation is higher
than that of the traditional method.

Previously, the traditional method was mainly based on the texture, edge, or contrast
of the crack and other characteristics to obtain the specific position and size of the column.
This method has certain effects on specific datasets. Subsequent is the use of image pro-
cessing methods. At present, there are many algorithms for extracting road cracks based
on image processing [1]. However, the background structure of pavement crack images
is very complex, there are different types of noise, and they are subject to a lot of external
interference. In order to improve the accuracy of crack extraction, to reduce these interfer-
ence factors, it is necessary to preprocess the original image. Sealed et al. [2] proposed an
algorithm to remove pavement markers and then detected crack pixels based on a local
minimum algorithm. Zou et al. [3] proposed a geodesic shadow removal algorithm, which
can eliminate the pavement shadow while preserving the cracks. At the same time, a
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crack probability map is established by using tensor voting, which enhances the connection
between cracks and makes the cracks have good continuity. Zhang Hong et al. [4] proposed
a noise reduction and enhancement method for cement pavement. According to the noise
spectrum characteristics of the picture, the relative position of the noise in the picture is
inferred and filtered by the filter, which can effectively remove the noise interference of
cement pavement. Ying [5] proposed an automatic detection method of pavement cracks in
digital images based on wavelet transform. This method uses the pavement crack image
enhancement algorithm to correct the uneven background illumination by calculating the
multiplicative factor that eliminates the background illumination change. This method can
effectively extract pavement cracks in a variety of pavement images.

The method discussed in this paper is a method of crack feature extraction and
analysis based on deep learning. Visual feature learning based on deep learning is a core
research problem in today’s computer vision tasks. Its key is to quickly learn visual feature
expressions with high discrimination and generalization through deep learning network
models, which is the result of the joint action of sample mining, the network model, and
the supervised optimization of the loss function. Among them, the loss function plays a
supervisory role in the model, which realizes the training and optimization of the network
model by punishing the error samples. In the current research on computer vision tasks, the
algorithmic models based on deep learning widely use deep metric learning loss functions
(usually applied to vision tasks such as image retrieval [6], image classification [7], and
object recognition [8]) and class-based probability loss functions (usually applied to vision
tasks such as object detection and image segmentation). They impact the discrimination
ability and efficiency of feature learning, in different scenarios and tasks, with different
challenges. The performance of the loss function is affected by sample mining. Excellent
sample mining methods can quickly and automatically select informative samples from
a large number of complex samples. In addition, the deep network model also affects
the performance of visual feature learning. Therefore, in order to ensure the efficiency,
discrimination, and generalization of visual feature learning, it is necessary to study the
design and improvement of algorithm frameworks for different scenarios and challenges
from the three aspects of the loss function, sample mining, and network model, so as to
meet the actual application requirements. Research on the key technologies of visual feature
learning aims to explore and mine the problems and challenges existing in deep learning
models and improve and optimize them, so as to obtain model sub-modules (e.g., sample
mining, objective function, and network structure) that can ensure the discrimination,
efficiency, and generalization of feature learning.

In recent decades, benefiting from the development of artificial intelligence technol-
ogy, various research efforts have been devoted to establishing road crack classification
models. Researchers are attempting to apply traditional machine learning or deep learning
algorithms to object crack detection [9–11]. These artificial-intelligence-based recognition
methods make precise identification of cracks possible. The key to artificial intelligence is to
learn features and apply the learned features to new data. Traditional machine learning al-
gorithms such as logistic regression [12], random forest [13], artificial neural networks [14],
support vector machine (SVM), etc., have been widely used in crack detection. Artificial
neural network models with appropriate thresholds have been used to separate crack pixels
from the background [15]. In order to overcome the shortcomings of traditional machine
learning that require prior knowledge to extract target features, deep learning techniques
represented by deep convolutional neural networks [16] have been widely applied in fields
such as image classification, object detection, and image segmentation and have shown
potential to compete with humans [17]. Unlike traditional machine learning, deep learning
models automatically learn the relationship between features and tasks. In recent years,
many high-performance deep convolutional neural network models based on the large
universal raw dataset ImageNet [18], such as AlexNet [19], VGGNet [20], ResNet [21], and
DenseNet [22], have been developed, and their classification performance is sufficient to
match humans [23]. Benefiting from these deep convolutional neural network models,
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many crack classification algorithms [24–28] based on deep convolutional neural networks
have been proposed and successfully applied in various fields [29–36].

Visual feature learning based on deep learning is considered to be a challenging task in
the era of artificial intelligence, especially when deep learning is widely used and prevalent.
Rapid and accurate expression of features can be widely and successfully used in social
practice, which is an important research problem at present, for example, video analysis
and face recognition in the field of intelligent security, scene recognition and road crack
detection in the field of traffic, product search and matching recommendation in the field
of daily life, image positioning and scene recognition in the field of unmanned driving, etc.
The above fields require high discrimination, efficiency, and generalization of visual feature
learning, which is related to people’s quality of life and social security. However, current
research faces different problems in different scenarios, which is far from meeting the actual
needs. Therefore, the research on the key technologies of visual feature learning based on
deep learning has practical needs and social significance.

Fundamentally, the ultimate goal of deep learning is to build a machine learning
architecture that consists of multiple processing layers that learn multiple levels of ab-
straction to represent data. The use of this method greatly improves the development
level of speech recognition, visual target recognition, target detection, and other subjects.
Deep learning finds complex structures in large datasets and expresses them through a
backpropagation algorithm.

As the most prominent deep learning algorithm in the supervised algorithm, the
convolutional neural network has gradually become the most popular algorithm in the
field of image recognition and a hot research tool. Scholars have applied convolutional
neural networks to civil infrastructure inspection and monitoring and have made numerous
achievements. The results of [37] suggest that automatic pavement crack detection is an
effective intelligent health monitoring method [38]. Researchers use the research of CNN
on crack detection mainly obtaining network models in three ways: one is the self-created
shallow neural network; the second one is to directly use the existing network model
with good performance; and the third one is based on the existing deep feature extraction
network to make improvements.

In the early stage of research, scholars conduct crack detection research by self-building
shallow convolutional neural network models. Zhang et al. [39] proposed the use of CNN
for crack detection in 2016. Their study showed that CNN in pavement crack detection
outperforms traditional machine learning techniques. However, the class labels assigned to
individual pixels are still based on the local area around the pixel in context, which leads
to an overestimation of the crack width. Zhang et al. [40] proposed an efficient network
based on CNN in 2017. The network architecture, called CrackNet, is used to automatically
detect pavement cracks on asphalt surfaces.

Popular models in recent years include the following: FCN (2018 and 2019) [41] and
SegNet (2019) [42]. In the research on pixel segmentation of cracks in the past two years, a
large number of scholars have targeted cracks on the basis of existing models. Seam detec-
tion has proposed its own model, such as ACNet (2020) based on CrackWeb (2021) [43] and
U-HDN (2020) [44]; DeepCrack is proposed based on SegNet (2019) [45]; HCNNFP is proposed
based on DeepCrack (2021) [46]; RRCE-Net is proposed based on the CE-Net (2021) [47].

In the research on pavement crack detection, most scholars mainly focus on the
recognition and classification of cracks and lack the analysis of the specific characteristics
of cracks. In this paper, based on the deep learning of computer science and technology, a
road crack detection technique based on deep learning is proposed, which uses a new deep
dictionary learning and coding network, establishes a new activation function, and uses
a new differentiable programming method. The contribution of this paper is to combine
deep learning with the encoding network, and on this basis, a new activation function
is introduced for calculation. Of course, this is also the difference between the proposed
method and other methods. Experiments show that the proposed method is operable and
has good performance in road crack detection and crack characteristics measurement.



Appl. Sci. 2023, 13, 12299 4 of 20

2. Methods
2.1. Deep Learning
2.1.1. Fundamental Theory

Deep learning is a computing model that expresses the relevant rules inside the sample
data through continuous training and learning. Deep learning will give us a lot of help
in the process of calculation, such as image parsing, sound recognition, and the use of
text. Through repeated training and repeated learning, deep learning enables computers
to achieve the same ability to analyze and process problems as the human brain. The
effect of deep learning exceeds that of many previous technologies, and it reflects the rapid
development of computer science and technology [48,49].See the next section for a detailed
introduction, and see Figure 1.
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2.1.2. Convolutional Neural Network

Input layer. The input layer is the structure of the nonlinear input. In image processing,
the image itself is the input layer. Grayscale images or three-channel RGB images can be
used as input images.

Summary layer. A parameterized convolution kernel (usually 3 × 3 or 5 × 5) is added
up by multiplying it with local input features in the form of a sliding window. The main
purpose of the convolution operation is to extract different features of the input GPR image,
and this is achieved by the convolution operation on each convolution kernel and the
input matrix. The operation of the convolution kernel mainly includes the cross-submatrix
multiplication and convolution kernel matrix. The initial weights of the convolution kernel
matrix were randomly generated by the system and were adjusted by using the stochastic
gradient descent method in the training process. The accumulated partial values are
obtained by crossmultiplication.

Pooling layer. The pooling layer is usually sandwiched between continuous convolu-
tional layers to compress the amount of data and parameters, achieve feature dimensionality
reduction, and reduce model overfitting. For GPR images, the main function of the pooling
layer is to compress the image.

The active layer. There are a large number of neurons in a neural network, and the rela-
tionship between them is mathematically expressed as an activation function. The individual
neurons can transfer information between each other, and it is very complex information.
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Pull down the layers. By adding dropout layers between active and fully connected
layers, the possibility of model overfitting can be effectively reduced. The dropout layer
can reduce the influence of overfitting neurons in each layer on subsequent computations
by randomly disconnecting some neurons.

Connection layer. The connections of the connection layer are very comprehensive
and able to map information. The construction of fully connected layers can enhance
the robustness of image classification, but the fully connected layers are not sensitive to
the spatial structure of the image and are not suitable for object localization and image
segmentation. In addition, the parameters of the fully connected layer are large, which can
easily cause overfitting.

Output layer. The output layer has different output forms for different requirements.
For the classification problem, the output layer is the classifier, and the output layer is
the target class. For object location and segmentation problems, the output of the neural
network also includes the location of the object.

2.2. Deep Dictionary Learning and Encoding Networks

The reconstruction ability of the signal can be reconstructed by a good dictionary,
so sparse representation is a key step in dictionary learning, and it has been studied
since the 1990s. Dictionary learning was first proposed by S. Mallat et al. [50] in 1993.
Their over-complete dictionary theory laid a solid foundation for dictionary learning. B.A.
Olshausen et al. [51,52] proposed a form of dictionary learning based on sparsity, which
promoted the development of sparse representation and aroused more scholars’ longing
for dictionary learning. Due to the fact that some dictionaries are manually designed under
certain mathematical constraints and are not flexible enough to represent complex natural
image structures, in recent years, researchers have shifted to learning dictionaries directly
from image data and developed many dictionary learning methods [53–56]. The purpose
of dictionary learning is to obtain a sparse representation of the original signal, and the
resulting sparse representation has strong representation ability for the original data [57].
Dictionary learning can compress the vast majority of redundant information in existing
data, thereby obtaining information with a certain utilization value. Dictionary training
is the process of reconstructing raw data, that is, obtaining the corresponding dictionary
matrix through training. Such dictionaries can be divided into two types. The first type is
fixed dictionaries, such as the Discrete Cosine Transform (DCT) dictionary [58], Curve let
dictionary [59], Wavelets dictionary [60], etc. The second type is an adaptive dictionary,
which learns the features of the specified image to better achieve sparsity and is suitable
for special signals.

Dictionary learning is widely used in image processing. It has been applied in many
aspects in practice and can solve problems very well, such as removing noise from images,
restoring images through various transformations [61], analyzing the pixel composition
of images [62], distinguishing sounds [63], and classifying images according to different
situations [64]. The content of this paper is crack detection to identify and analyze the crack
image. We adopt a method that combines dictionary learning and deep learning, which has
good representation ability and is called DDLCN [65]. DDLCN combines the advantages of
both and uses a new learning encoding layer to replace the original convolution layer. The
core of DDLCN is to replace the traditional convolution layer with a dictionary learning
encoding layer for efficient computation.

DDLCN has better function calculation ability, which mainly stems from its ability to
deal with nonlinear problems linearly. See Figure 2. It takes into account the basic vector in
the coding layer and carries out a deeper layout, and the extraction of each feature is more
explicit. It is layered in multiple directions, and the data representation is more optimized.
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Figure 2. Framework of DDLCN.

2.2.1. Feature Extraction Layer

F is a feature extractor, and we adopt it to extract a set. The set is m-dimensional
local descriptors which are defined Y = [y1, . . . , yl ] ∈ Rm∗l from the input image I.
The l represents the total number of local descriptors. We only use a single feature extractor
to highlight the effectiveness of the proposed method. To further improve performance,
multiple feature extractors can be used.

The feature extractor we used has its own characteristics compared with other such
feature extractors, which can perform feature transformation without changing its metric
boundary (SIFT) [66]. F is the feature extractor, Y = [y1,. . ., yl] ∈ Rm∗l , I is the image, and
the specific process can be described as yi = F(I), i ∈ [1,. . ., l].

2.2.2. Dictionary Learning and Encoding

Next, we proceed to the operations of dictionary learning and encoding. The number
of dictionaries of the first order bits of each layer’s dictionary is denoted as q, and p images
are selected from them for training. r is the total number of datasets. Note that this process
is random, and the number of dictionaries is denoted by D1 = r ∗ q. After that, we have the
following formula:

min
Vi

[
1
2
||yi −Viai||22

]
s.t.||ai ||1<=λ (1)

Next, each encoding layer performs a subtransformation, which is the specific operation
we perform for encoding. Of course, this process takes place after learning V, the body
structure of the encoding, and γ1 =

[
γ1

1, γ1
2, . . . , γ1

l
]
∈ RD1∗l . In general, coding goes like this:

min
γ1

i

[
l

∑
i=1

1
2
‖yi −Vγ1

i ‖
2
2 + β‖γ1

i Θζ1
i ‖1

]
s.t.1Tγ1

i = 1 (2)

After multiple dictionary learning and feature encoding, we can get a deeper dictionary
learning and encoding framework:

min
γn

i

[
1
2
‖dn−1

i − Dnγn
i ‖

2
2 + β‖γn

i Θζn
i ‖1

]
s.t.1Tγ1

i = 1 (3)

Through deep learning and coding, the input image can be clearly expressed, which is
the operation of DDLCN for output features. In addition, what we can see is that DDLCN
improves the separability and reduces the possibility of excessive error. In the equation
above, ζn

i is one of the basis vectors adopted in the feature representation, γn
i is the nth
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layer coding, dn−1
i ∈ Dn−1 is at the (n − 1) coding layer, and it is expressed by a vector. To

remove constraints, let us do it at another level. The diagram is shown in Figure 3.
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As an example, let us look at a two-level framework of tasks, augmented with a
transpose, which is augmented from the representation of the first level of code. This shows
that we are able to obtain such a result that the feature representation can be finally realized.
Here is the formula: [

γ1
i
(
vj
)
, γ1

i
(
vj
)[

γ2
j (u1), γ2

j (u2), . . . γ2
j (us2)

]]T
(4)

By concatenating the codes, we can get a D1 × (1 + D2)-dimensional vector, which
is the final encoded representation we want. Not only that, DDLCN has good perfor-
mance in each task because it can perform well in iteration and can complete better
feature representation [67–70].

2.3. A New Activation Function

Now that we have established our new deep learning framework, let us address
some of the details. DDLCN has better depth representation ability, but in order to better
transform nonlinear problems into linear problems for calculation, we need to introduce
a new activation function. This activation function is improved from ReLU to avoid the
vanishing gradient problem and allow more reliable parameter learning.

Why do we use a new activation function? Or why are activation functions so im-
portant? Taking the convolutional neural network (CNN) as an example, the activation
function can be regarded as a special layer in the CNN model, namely the nonlinear map-
ping layer. After the linear transformation of the convolutional neural network, a nonlinear
activation function is superimposed on the back of the convolutional neural network, and
the data distribution is remapped under the action of the nonlinear activation function to
increase the nonlinear expression ability of the convolutional neural network. From the per-
spective of imitating human neuroscience, the action process of activation functions on data
in the model is to simulate the processing process of biological neurons for electrical signals.
The function process of biological neurons is to set a certain threshold to activate or inhibit
the received electrical signals to carry out the propagation of biological information and
signals. To simulate the action process of biological neurons, the ideal activation function
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should be to directly output the input data into “0” and “1” through a certain threshold.
However, the convolutional neural network model requires the activation function to have
the properties of continuity and differentiability in the process of forward propagation and
error backpropagation. Obviously, the ideal biological neuron activation function does not
meet the requirements. The self-function property of the activation function determines
the advantages and disadvantages of the action process. It has become an important re-
search topic to study the properties of activation functions, analyze the correlation between
the properties of activation functions and their advantages and disadvantages, and find
activation functions that are efficient in time, space, and feature collection.

The activation function is the core of the deep neural network structure. Currently,
common activation functions include sigmoid and tanh functions in the sigmoid system,
ReLU in the ReLU system [71], LReLU functions, etc. However, there is a gradient vanish-
ing problem during the backward transfer of functions in the sigmoid system, which greatly
reduces the training speed [72]. The ReLU function can effectively alleviate the problem of
gradient vanishing by training deep neural networks in a supervised manner, without rely-
ing on unsupervised layer-by-layer pre-training, significantly improving the performance
of deep neural networks. Moreover, ReLU can output piecewise linear functions, meeting
the characteristics of local approximation. As the number of segments increases, the approx-
imation error of the function decreases until the required approximation error is achieved.
Krizhevsky A et al. [19] tested the commonly used activation functions ReLU, sigmoid,
and tanh and demonstrated that the performance of ReLU functions is superior to sigmoid
system functions. The PRe LU function is an improved version of the ReLU function, which
is unsaturated and can alleviate the problem of mean shift and neuronal death.

The activation function we used is an activation function called Mexican ReLU (MeLU
for short) [73] that can be computed efficiently. Our ultimate goal is to be able to compute
efficiently. MeLU is built from PReLU and several Mexican hat functions to achieve our
goal, which is efficient computation. Its biggest feature is that it can improve the network
expression ability. It has a very large number of parameters, the total is a hyperparameter,
made up of many learnable parameters.

2.3.1. Mexican ReLU

MeLU is a sum of multiple Mexican hat functions and PReLU, which is a piecewise
linear activation function. Its parameter is a hyperparameter. This parameter tends to be
perfect, and therefore, it has good expressive ability. Meanwhile, the range of its learning
parameters is infinite, which can range from 0 to infinity. Additionally, its gradient is
uneven and will not saturate anywhere. It can approximate any continuous function on
a compact set if and only if the number of its parameters approaches infinity. Finally, it
should be pointed out that its optimization steps are more simplified because parameter
changes only occur within a very small range.

MeLU is expressed by the following formula:

φa,λ(x) = max(λ− |x− a|, 0) (5)

It can be seen that MeLU has good integration and can solve a variety of unexpected
situations in training. It is called a “Mexican hat” function because it is represented
graphically like a Mexican hat, and the associated derivative in the middle is decreasing,
resulting in a shape that is somewhat similar to the shape of a wavelet. The relevant
parameters are recursively chosen, positional determined, and trainable. MeLU is rendered
by the following expression:

yi = MeLU(xi) = PEeLU(xi) + ∑k−1
j=1 cjφaj ,λj(xi) (6)
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2.3.2. Applications and Features

MeLU works well for transfer learning because of its features. Its expression is
continuous and differently computed in every segment of the range. MeLU’s approximation
is reflected in its hidden layers.

MeLU has a fairly large number of parameters, which means that it can be represented
adequately, but it also brings some problems. The most obvious problem that can arise is
that support is overfitting at a certain point.

We use MeLU to maximize the superiority of computation in its support phase. We
will introduce the specific calculation mode in the next section.

2.4. Improved Calculation Method

Earlier, we improved the activation function; now, we want to solve the calculation
problem in the new framework. We employ a novel differentiable approach for deep
dictionary learning. The method has improved discriminate power and jointly learns the
depth metric and the associated depth transform. We use DeTraMe-Net [74] to ensure
the flexibility and anti-interference of the framework structure, and it also has a strong
learning ability.

2.4.1. Methodology Overview

What we need to do is rephrase the deep dictionary network to ensure that it has
strong discriminate ability and can provide us with scale solutions. The first and most
important thing is to transform it into a deep cascading pairing structure. Secondly, the
convolution neural network and RNN are combined to achieve differentiable training.
By decoupling metrics and double frame operators (pseudoinverse of dictionaries) into
two independent variables, additional flexibility and computational power are introduced.
Therefore, by integrating the RNN part into various CNN architectures, such as Plain
CNN [75] and ResNets, different new DeTraMe networks can be obtained.

We want to make a deep connection between the DDL method and the combination
of linear layers and RNNS and focus on improving its computational power. This is
because converting dictionary learning to transform learning and q-metric learning and
converting DDL to DeTraMe-Net is an effective way to realize the connection of linear
layers and RNNS.

The q measure can also be viewed as a nonlinear activation function. The advantage
is that nonlinear operators (soft max, max pooling, average pooling) are rarely used in
existing architectures. The transformation is used for the dictionary, and the Q-measure
uses the dual frame operator for the dictionary and finally uses two independent variables
for learning. It will have a stronger discriminatory power and be able to learn the program
as soon as possible.

2.4.2. Joint Depth Metrics and Transformation Learning

First, we complete the proximal explanation. We need to identify an equivalent and
profound solution for MD.

MD could be solved exactly by a proximal operator, and it is related to transform
learning with a metric Q:

MD(x) = proxQ
λψ(Fx− c) (7)

Q = DT D + aI, F = Q−1DT , c = Q−1d (8)

Indeed, for every D ∈ Rm∗k, a ∈ Rk, x ∈ Rm; we have the following equation:

LR(D, a, x) =
1
2

(
‖x‖2 − 2xT Da + aT

(
DT D + aI

)
a
)
+ λψ(a) + dTa =

LR(D, a, x) +
1
2

(
‖x‖2 − ‖Fx‖2

Q − ‖c‖
2
Q

)
+ xT Dc (9)
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Obviously, computing the proximity operator is equivalent to determining the optimal
sparse representation of x ∈ Rm.

MD(X) = argmin
a∈Rk

LR(D, a, x) = proxQ
λψ(Fx− c) (10)

Next, we proceed to the multi-layer representation. Deep dictionary learning models
are able to represent more comprehensively and concisely:

ŷ = φ ◦ As+1 ◦ proxQ(s)

λψs
◦ A(s) ◦ proxQ(s−1)

λψs−1
◦ . . . ◦ proxQ(1)

λψ1
◦ A(1)

(
x(0)

)
(11)

The affine operators A(r) mapping zr−1 ∈ Rkr−1 to z(r) ∈ Rk, 1 ≤ r ≤ s, by a shift term
c(r), by an analysis transform W(r), it has the following representation:

∀r ∈ {1, . . . , s}, A(r) : Rkr−1 → Rkr , z(r−1) 7→W(r)z(r) − c(r) (12)

With k0 = m1, W(1) = F(1), ∀r ∈ {2, . . . , s},

W
(r)

= F(r)p(r−1),

W(s+1) = Cp(s)

∀r ∈ {1, . . . s},

Q(r) =
(

D(r)
)T

D
(r)

+ aI,

F(r) =
(

Q(r)
)−1(

D(r)
)T

,

c(r) =
(

Q
(r)
)−1

d
(r)

. (13)

Equations (11) and (12) show that our model is feasible and widely used. This effect can
be achieved because we introduce some quantitative and qualitatively different measures
for these operators. In FNN, the activation function is called the proximity operator of a
convex function [76]. Next, it is time to adopt a method for efficient learning.

2.4.3. Measurement Expression and Framework Implementation

Reformulations (11)–(13) are very useful and have huge advantages. If we want to
get enough benefits from the algorithmic framework developed by FNNs, then we must
calculate the following equation accurately:

proxQ
λψ(Z) = argmin

U∈Rk∗N

1
2
‖U − Z‖2

F,Q + λψ(U) (14)

Among the rest, ‖ · ‖F,Q =

√
tr
(
(·)Q(·)T

)
is the norm, and it is Q-weighted Frobenius.

It is apparent that Z is a matrix where the N samples associated with the training set
have been stacked columnwise. A similar convention is used to construct X and Y from(

xj
)

1≤j≤N and
(
yj
)

1≤j≤N .
An elastic-net-like regularization is chosen by setting

ψ = ‖ · ‖1 + lk∗N
[0,+∞) +

β

2λ
‖ · ‖2

F with β ∈ (0,+∞) (15)

We observed that the last quadratic term has a positive influence on increasing stability
and avoiding overfitting. Equation (14) is actually equivalent to solving the next problem:

minimize
U∈[0,+∞)k∗N

1
2
‖D(U − Z)‖2

F +
α

2
‖U − Z‖2

F +
β

2
‖U‖2

F + λ‖U‖1 (16)
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Various iterative splitting methods can be used to discover the unique minimization
of the optimized convex function [77,78]. Our goal is to develop an algorithmic solution for
which classical NN learning techniques can be applied in a fast and convenient manner.
We show next the following property.

The solution of Equation (16) is obtained as an iteration of the form:

Ut+1 = ReLU
((

h1T
)

ΘZ + W̃(Ut − Z)− b1T
)

(17)

Among the rest, W̃ is a symmetric k∗k matrix, h ∈ [0, 1]k, b ∈ [0,+∞)k, and one more
point 1 = [1, . . . , 1]T ∈ RN .

By a complete subdifferent calculus, the solution U to the problem (14) satisfies the
following important optimal condition:

0 ∈ Q(U − Z) + βU + λ∂ψ̃(U) (18)

where ψ̃ = ‖ · ‖1 + lk∗N
[0,+∞)

. For Equation (16), every i ∈ {1, . . . , k}, and j ∈ {1, . . . , N}, and
the following equality holds:

0 ∈
k
∑

l=1
qi,l

(
ul j − zl j

)
+ βui,j +


(−∞, λ], ui,j = 0
λ, ui,j > 0
Φ, ui,j < 0

(19)

Let us adopt a block-coordinate approach and update the i row of U by fixing all the
other ones. As Q is a positive definite matrix, qi,i > 0, and Equation (19) implies that all of
these things can be expressed and calculated.

Although W̃, h, and b are defined on the basis of matrix Q, for more flexibility, we
will treat them as decoupled variables. Then, given independent W̃, h, and b, they can be
viewed as an RNN structure for which Ut is the hidden variable and Z is a constant input
over time. By taking advantage of existing gradient backpropagation techniques for RNNs,(

W̃, h, b
)

can thus be directly computed in order to minimize the global loss L. This shows
that q-metric learning has been recast as the training of a specific RNN.

Note that Q is a k× k symmetric matrix. In order to reduce the number of parameters
and increase the ease of optimizing them, we choose a block-diagonal structure for Q. In
addition, for each of the blocks, either an arbitrary or convolution structure can be adopted.
Since the structure of Q is reflected by the structure of W̃, this leads to fully connected
or convolution layers where the channel outputs are linked to nonoverlapping blocks of
the inputs.

We finally transformed our deep dictionary learning network approach in an alterna-
tion of linear layers and specific RNNs. This not only simplifies the implementation of the
resulting DeTraMe-Net by making use of standard NN tools but also allows us to employ
well-established stochastic gradient-based learning strategies.

3. Results

In this paper, an improved road crack detection technology based on Mask-RCNN is
proposed by using an improved deep dictionary learning network framework DDLCN,
using a new activation function MeLU, adopting a new differentiable calculation method,
combining with the traditional RCNN algorithm, and then classifying and recognizing the
pavement crack images. The basic feature information of the outlet surface is extracted
and calculated.
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3.1. Improved Algorithm and Model Constructing
3.1.1. Other Deep Learning Methods

For a more intuitive comparison, we briefly introduce the other two methods.

Improved U-Net Method

Parallel convolution module introducing cavity convolution. Set the size of the char-
acteristic graph of the input parallel convolution module as M × N × K. The first branch
road passes through 3 × 3 after ordinary convolution (Padding = Same); an M × N × K/4
feature map is obtained, which focuses on local information near the center point. The
second branch passes 3 with a rate of 3 × 3. After hole convolution (Padding = Same),
an M × N × K/4 feature map is obtained, which focuses on global information. Then,
stack the two outputs to get an M × N × K/2 feature map, complete the fusion of local
information and global information, and help improve the accuracy of crack segmentation.
After the convolution of the parallel convolution module, the ReLU activation function
of the modified linear unit is added to improve the expression ability of the network. In
addition, a batch normalization layer BN is added between the convolution and ReLU
activation functions in the U-Net network to speed up the network training speed, enable
the network to converge faster, and prevent the network from overfitting.

The attention mechanism is similar to visual attention, allowing the network to focus
on the target in the image and ignore redundant information. SENet is a simple and effective
channel attention mechanism with low complexity and a small amount of computation.
It improves the network segmentation effect by changing the weight of the feature map
channel. SENet includes three parts: squeeze, exception, and channel weighting. In order
to reduce the impact of background and noise and improve the feature recovery capability
of the decoder, the parallel convolution module is integrated with the SENet attention
mechanism, the channel relationship of the dual scale information feature map is adjusted,
the weight of the channel containing the crack feature information is increased, the weight
of other channels is reduced, and the weight distribution of features such as the crack edge
and shape is strengthened, so as to capture more important semantic information. It can
better realize the detection of concrete cracks under a complex background [79].

Mask-RCNN Method

The Mask-RCNN algorithm is composed of a basic network, region candidate network
(region proposal network (RPN)), classification network, and Mask partition network.
The basic network is composed of a residual network that removes the full connection
layer and uses feature pyramid networks (FPNs) to resample images, fuse the two feature
maps, and output feature maps with different depths, so that the feature map has more
complete image information for subsequent operations. The purpose of RPN is to use the
trained parameters in the generated candidate box to provide a candidate region alignment
layer of interest for the classification network (Region of Interest Align, RoIAlign). The
input of RPN is the feature map after feature extraction, and many candidate boxes are
generated on the feature map. RPN first realizes binary category judgment and boundary
box prediction for candidate boxes and then uses the nonmaximum suppression method
to filter candidate boxes, reducing invalid candidate boxes and leaving valid candidate
boxes, so as to improve the efficiency of the classification network and regression tasks to
be carried out later.

Compared with RoIpooling, Ro IAlign cancels quantization operation, thus reducing
the impact of dislocation caused by quantization operation on algorithm accuracy. The
function of the classification network is to predict the category of detected targets within
the RoIAlign range and adjust the position of RoIAlign to reduce the impact on algorithm
accuracy caused by the inaccurate position of RoIAlign. The principle of the mask segmen-
tation network is to classify the target to be detected pixel by pixel based on the RoIAlign
position and classification network results obtained previously [80].
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3.1.2. Improved Algorithm

In order to improve the detection accuracy of the Mask-RCNN algorithm for the
ground crack dataset, this paper improves the Mask-RCNN algorithm [81]. The main
improvements are as follows.

Improving the RPN network. In this paper, according to the size of the pavement
crack dataset, the nine target boxes with different sizes in the original RPN network are
changed to 64 × 64 and 128 × 128, which can improve the detection effect of small cracks
and the detection rate of the target detection frame.

Improving the FPN network. The original Mask-RCNN algorithm uses a top-down
approach to integrate high-level semantic features and low-level semantic features to
improve the classification ability of FPN. In this paper, the bottom-up method is used to
shorten the path of high-level semantic features to obtain low-level semantic features and
improve the precise positioning ability brought by the feature pyramid architecture.

Finally, the post-processing module is added, using the target detection box located by
the previously improved Mask-RCNN algorithm and using the Otsu threshold algorithm
of the adaptive threshold method to further distinguish the pavement cracks and the
pavement background in the detection box.

3.1.3. Model Constructing

The modified Mask-RCNN algorithm is a neural network consisting of a fully con-
nected layer containing at least one hidden layer. In this network, each node is an artificial
neuron, and the output of one artificial neuron can serve as an input to another artificial
neuron, and the output of each hidden layer neuron is transformed by the activation
function. A remarkable feature of MLP is the ability of the model to represent arbitrary
mathematical functions when the network is large enough.

In general, the more layers of the convolution neural network, the better the data
fitting effect. However, the longer the calculation time, the greater the probability of the
overfitting phenomenon. For small batches of data, the number of layers does not need to
be too high. In this paper, a five-layer network structure model is selected for training.

A five-layer convolution neural network is established. The first three layers are
convolution layers (Con layers), which are used to extract the characteristics of the crack
image. Each convolution layer is connected with a pool layer. The last two layers are
the full connection layer (Fc layer). After the full connection layer, a soft max classifier is
connected to achieve image classification. In order to prevent overfitting in training, each
pool layer is followed by a dropout layer to make some neurons randomly inactivated, so
as to ensure good results.

A total of 2000 runway images and crack images were used for the model training,
from which 20% of the data were randomly selected as the validation set to improve the
generalization ability of the model. The runway pictures and crack pictures we used were
collected from the school runway and the cracks in and around the school. We adjusted the
images to a uniform size and then performed training and detection. The environment is
Python 3.9, deep learning framework PyTorch, and Windows 10 system with NVIDIA GTX
2080Ti and 48 G memory.

The shape of the runway is more regular compared to the cracks. If the method we
use can first extract the features of the runway, we will be more confident in extracting
the features of the cracks. By extracting the runway, we find that the method is feasible
and effective, and the following is the extraction of the crack image.The results can be seen
in Figures 4 and 5.



Appl. Sci. 2023, 13, 12299 14 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21 
 

3.1.3. Model Constructing 

The modified Mask-RCNN algorithm is a neural network consisting of a fully con-

nected layer containing at least one hidden layer. In this network, each node is an artificial 

neuron, and the output of one artificial neuron can serve as an input to another artificial 

neuron, and the output of each hidden layer neuron is transformed by the activation func-

tion. A remarkable feature of MLP is the ability of the model to represent arbitrary math-

ematical functions when the network is large enough. 

In general, the more layers of the convolution neural network, the better the data 

fitting effect. However, the longer the calculation time, the greater the probability of the 

overfitting phenomenon. For small batches of data, the number of layers does not need to 

be too high. In this paper, a five-layer network structure model is selected for training. 

A five-layer convolution neural network is established. The first three layers are con-

volution layers (Con layers), which are used to extract the characteristics of the crack im-

age. Each convolution layer is connected with a pool layer. The last two layers are the full 

connection layer (Fc layer). After the full connection layer, a soft max classifier is con-

nected to achieve image classification. In order to prevent overfitting in training, each pool 

layer is followed by a dropout layer to make some neurons randomly inactivated, so as to 

ensure good results. 

A total of 2000 runway images and crack images were used for the model training, 

from which 20% of the data were randomly selected as the validation set to improve the 

generalization ability of the model. The runway pictures and crack pictures we used were 

collected from the school runway and the cracks in and around the school. We adjusted 

the images to a uniform size and then performed training and detection. The environment 

is Python 3.9, deep learning framework PyTorch, and Windows 10 system with NVIDIA 

GTX 2080Ti and 48 G memory. 

The shape of the runway is more regular compared to the cracks. If the method we 

use can first extract the features of the runway, we will be more confident in extracting the 

features of the cracks. By extracting the runway, we find that the method is feasible and 

effective, and the following is the extraction of the crack image.The results can be seen in 

Figures 4 and 5. 

Original  

image 

   

Processed 

image 

   

Figure 4. Feature extraction of runway. 
Figure 4. Feature extraction of runway.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21 
 

Original  

image 

   

Processed 

image 

   

Figure 5. Extracting crack features of road. 

3.2. Evaluation Indicators and Analysis 

The recall, precision, and F1-score are used to evaluate the performance of the pave-

ment crack test set images. The calculation formula is as follows: 

Recall = TP/(TP + FN)  

Precision = TP/(TP + FP) (20) 

F1 = 2 × Precision × Recall/(Precision + Recall)  

Formula: TP (true positive) represents the pixels of the correct crack, FP (false posi-

tive) represents the detected pixels of the crack that are actually the pixels of the crack 

background, and FN (false negative) represents the detected pixels of the crack back-

ground that are actually the pixels of the crack. 

In this paper, compared with the original Mask-RCNN algorithm, the fracture detec-

tion experimental results are shown in Figure 6, and the comparison results of the evalu-

ation indexes recall, precision, and F1 values are shown in Table 1. 

Table 1. Comparison of the crack detection results. 

Method 
Evaluation Indicators% 

Recall Precision F1-score 

Improved U-Net algorithm 85.62 86.93 86.79 

Mask-RCNN algorithm 88.57 89.56 88.39 

The method of this paper 91.42 91.93 90.98 

From the comparison of the detection results in the example diagram of Figure 6, the 

improved algorithm can reduce the non-crack. The interference of the seam category im-

proves the detection accuracy and performs better than the two example algorithms. 

Figure 5. Extracting crack features of road.



Appl. Sci. 2023, 13, 12299 15 of 20

3.2. Evaluation Indicators and Analysis

The recall, precision, and F1-score are used to evaluate the performance of the pave-
ment crack test set images. The calculation formula is as follows:

Recall = TP/(TP + FN)

Precision = TP/(TP + FP) (20)

F1 = 2 × Precision × Recall/(Precision + Recall)

Formula: TP (true positive) represents the pixels of the correct crack, FP (false pos-
itive) represents the detected pixels of the crack that are actually the pixels of the crack
background, and FN (false negative) represents the detected pixels of the crack background
that are actually the pixels of the crack.

In this paper, compared with the original Mask-RCNN algorithm, the fracture de-
tection experimental results are shown in Figure 6, and the comparison results of the
evaluation indexes recall, precision, and F1 values are shown in Table 1.
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Table 1. Comparison of the crack detection results.

Method
Evaluation Indicators%

Recall Precision F1-score

Improved U-Net algorithm 85.62 86.93 86.79

Mask-RCNN algorithm 88.57 89.56 88.39

The method of this paper 91.42 91.93 90.98

From the comparison of the detection results in the example diagram of Figure 6,
the improved algorithm can reduce the non-crack. The interference of the seam category
improves the detection accuracy and performs better than the two example algorithms.

As can be seen from Table 1, the experimental results recall, precision, and F1-score of
the algorithm are higher than the improved U-NET algorithm and the original Mask-RCNN
algorithm, which proves the effectiveness and advancement of the algorithm.

Crack Feature Extraction and Quantification

After obtaining the binary images of cracks and markers, it is necessary to quan-
titatively evaluate the cracks by calculating the area, length, and average width of the
cracks. For the calculation of pixel scale, the marker size used is 296 mm × 227 mm green
rectangular paperboard, and the pixel scale is obtained by calculating the ratio of the actual
marker area to the pixel area S in the binary image of the marker [82]. The calculation
formula is

Scale =
296× 227

S
mm2/ pixel 2 (21)

The number of crack pixels and the number of skeleton pixels are counted, respectively,
to get the area and length of crack pixels, and then they are multiplied by the scale to get
the actual area and length. The average width is the ratio of area to crack length.

In order to verify the performance of the measurement method in this paper, without
considering the error of the human-marked dataset, the size of the manually marked crack
image is taken as the real physical size.

The test results of the system proposed in this paper in the test set are shown in Table 2.
The test results show that the crack detection system in this paper has high accuracy, in
which the average accuracy of the area measurement of the test sample is 0.935, the average
accuracy of the length measurement is 0.916, and the average width measurement accuracy
is 0.879. The proportion of sample error is shown in Figure 7.
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Table 2. Results of various indicators.

Error
Category Maximum Error Ratio Minimum Error Ratio Average

Error Ratio

Area 0.185 0.002 0.065

Length 0.187 0.016 0.073

Average width 0.215 0.004 0.115

4. Discussion

This article proposes a road crack detection technology based on deep learning meth-
ods in computer science and technology. It relies on a new deep dictionary learning and
encoding network DDLCN, establishes a new activation function MeLU, and adopts a new
differentiable computing method. This technology relies on the traditional Mask-RCNN
algorithm and is improved. The method proposed in this paper is operable and realizable.
However, as we can see from the results, its superiority is not so obvious. The method is
somewhat complex and difficult to understand, and the calculation process is also more
cumbersome. However, we believe that the application of deep learning combined with
a coding network is a breakthrough, whether it is the introduction of a new activation
function in this paper or the optimization of any link of deep learning after the combina-
tion of the two, and it is possible to produce different effects. Of course, this needs our
further exploration and discovery. In the future, it is more practical to continue to find new
coding networks according to this idea and see if they can be better integrated with deep
learning methods.

5. Conclusions

Road crack is one of the main disasters of road, and the detection method of road
crack is very important for road maintenance. In the research on road crack detection,
deep learning in computer science and technology has been gradually applied and devel-
oped rapidly. Based on the development of computer science and technology, this paper
proposes a road crack detection technology based on deep learning. It relies on a new
deep dictionary learning and coding network, establishes a new activation function, and
uses a new differentiable calculation method. The technology relies on the traditional
Mask-RCNN algorithm and is implemented after improvement. Experiments show that
the method has good operability and performance in road crack detection and crack feature
measurement. This technology improves the detection accuracy of the crack detection
algorithm to a certain extent and can effectively detect cracks and evaluate the specific
characteristics of cracks. In the future, this technology will be optimized to reduce the
amount of calculation and achieve better results.
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