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Abstract: The Mahuagou gold deposit is among the most important gold deposits in the core of
the Huangling Anticline. However, the geochemical exploration on the surface of the mining area
presents challenges due to the thin overburden. This paper focuses on the overburden soil of the
Fengxiangshugou (FXS)-Mahuanggou (MHG) section as the research object. It utilizes chemical
form analysis of gold, soil halogen survey, and heat-released mercury survey to determine the key
deep-penetrating geochemical methods for the mining area. The results indicated that Si and Al
components of samples exhibit minimal variation, suggesting that drift loads did not influence the
overburden soil. Based on the systematic clustering, As, Sb, Mo, Bi, W, and Hg emerge as ore-body or
ore-belt front elements of hydrothermal gold deposits. In the study area, the predominant chemical
form of gold in soil is the strong organic bond. Compared to the total amount, strong organic bound
gold and heat-released mercury show higher anomaly contrasts, making them crucial indicators
of faults, intrusions, and hidden ore bodies. Consequently, chemical form analysis of gold and
heat-released mercury surveys can enhance the anomaly contrast, proving beneficial for geochemical
prospecting for weak anomalies in this area.

Keywords: overburden prospecting; deep-penetrating geochemical indicator; chemical form analysis
of gold; heat-released mercury survey; Huangling Anticline

1. Introduction

Mineral resource exploration is a vital aspect of contemporary society, driving eco-
nomic growth and technological progress [1,2]. Gold has been highly regarded among
various valuable minerals due to its rarity, enduring value, and versatile applications for
centuries. However, the depletion of easily accessible reserves has made exploiting new
gold deposits increasingly challenging. To address this challenge, scientists and geologists
are pioneering innovative techniques, such as geochemical prospecting [3], and focusing
on mineralization trials to understand subsurface permeability.

Geochemical exploration research focuses on analyzing the chemical composition
of rocks, soils [4], stream sediments [5,6], and water systems [7] to target potential min-
eral deposits [8]. Key research methods include primary halos, secondary halos, stream
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sediments, enzyme leaching [9,10], MMI (Mobile Metal Ions) [11–13], MOMEO (Leach-
ing of Mobile Forms of Metals in Overburden) [14,15], NAMEG (Collection of Nanoscale
Metals in Earthgas) [14,16], electrogeochemistry [17,18], biogeochemistry [19], Feldspar
IRSL (Infrared Stimulated Luminescence), and Quartz OSL (Optically Stimulated Lumi-
nescence) [20]. In addition, the Fine-Grained Soil Prospecting Method has displayed its
effectiveness in identifying hidden deposits in recent years [21–24]. These techniques en-
able scientists to understand the forms and enrichment patterns of ore-bearing information
on the Earth’s surface, identify geochemical anomaly zones, and locate concealed mineral
bodies. Geochemical surveys are highly effective in delineating zones with potential gold
mineralization in gold exploration. By examining the distribution of various elements and
their concentration patterns, scientists can infer the geological processes responsible for
gold anomalies and predict potential sources.

One of the primary challenges in exploring gold deposits is identifying and charac-
terizing permeable conduits that govern the migration and accumulation of auriferous
fluids or constituents within the surrounding lithospheric matrix [25]. These conduits,
often associated with specific geotectonic features, such as faults, fractures, shear zones,
and microporous domains, are intricately interconnected through various mechanistic
associations [26,27]. Gold mineralization experiments provide researchers with a nuanced
understanding of rock permeability and the multifaceted factors that drive the mobilization
of auriferous fluids.

Gold mineralization trials involve a meticulous process, starting with carefully sam-
pling and curating rock specimens from promising locations and proceeding with rigorous
laboratory analyses. Electron microscopy [28], geochemical cartography, and stable isotopic
assessment provide a comprehensive framework for elucidating the intricate interplay
of mineralogical composition, chemical attributes, and alteration dynamics within gold
mineralization [29]. By critically evaluating the attributes of gold-bearing minerals and
their interaction with the host rock matrixes, scientific inquiry gains the capacity to unravel
the underlying mechanisms driving gold enrichment phenomena, thereby facilitating the
identification and delineation of potential exploration targets.

The insights derived from these experimental endeavors contribute to the discovery of
novel gold reservoirs and provide invaluable data for the responsible extraction of existing
reserves. A comprehensive understanding of the subsurface permeability is paramount in
resource stewardship, guiding exploration initiatives while mitigating potential environ-
mental impacts.

This paper involved the collection of samples and proceeded prospecting experiments
in the Mahuagou gold deposit, Yiling District, Yichang City, and Hubei Province (Figure 1).
This work analyzes major elements, trace elements, chemical forms of gold, and heat-
released mercury. These deep-penetrating geochemical indicators will be identified to
effectively prospect the Mahuagou gold deposit in Hubei Province, China. The research
aims to unlock the potential of the Mahuagou gold deposit and contribute to the sustainable
development of the mining industry.
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Figure 1. Geographical location of the study area (data sources: the new (2022) version of the
national provinces, cities, districts, and counties administrative boundaries of the nine-dash line
vector map data).

2. Geological Setting
2.1. Regional Geological Setting

The Huangling Anticline is located at the intersection of the northern margin of the
Yangtze Plate and the multi-directional tectonic lines within the plate [30]. The latitude and
longitude of the Huangling Anticline are 30◦45′ N to 31◦30′ N and 110◦45′ E to 111◦30′ E,
respectively. Since the discovery of primary quartz vein-type gold deposits in 1966, nearly
three hundred gold-bearing quartz veins have been identified in this area, accompanied
by over seventy occurrences of gold mineralization. Notable deposits include Mahuagou,
Baizhuping, Shuiyuesi, and Bancanghe [31]. The region predominantly showcases the
Middle to Lower Ordovician metamorphic rock series. In the northern part, these rocks are
classified as the “Shuiyuesi Group”.

Meanwhile, in the southwestern part, they belong to the “Kongling Group”, as per
the West Hubei Geological Brigade reports from 1987 and 1991. Both rock units form the
foundational rocks of the Huangling Anticline, and the Huangling Anticline has been
intruded by subsequent granitic formations [32]. They have later been collectively termed
the Kongling Group, also known as the Kongling Complex or Huangling Complex, by the
Hubei Provincial Bureau of Geology and Mineral Resources. The ancient exposed basement
metamorphic rocks in this region have yielded an amphibolite Sm–Nd isochron dating age
of 3290 ± 170 Ma from the Kongling Complex [33]. Hence, this region is crucial for gold
mineralization in Hubei Province and offers valuable insights into the ancient basement of
the Yangtze Plate [34,35].

As depicted in Figure 2a, the Huangling Anticline is a nearly north–south trending
dome-shaped short-axis fold, spanning roughly 73 km in the north–south direction and
about 36 km in the east–west orientation. The core of the Anticline is mainly composed of
the Huangling Complex and Huangling Granite. In contrast, its limbs are predominantly
made up of marine carbonate and clastic rocks from the South China Series to the Triassic,
all dipping away from the core [36].
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Figure 2. Geological map of the Huangling Anticline and sample point locations: (a) geological map
of the Huangling Anticline and some gold deposit locations in the Huangling Anticline (the map
was modified according to Cui et al., 2022 [35], Wang et al., 2023 [37], Institute of Geology, Chinese
Academy of Geological Sciences, and Seventh Geological Brigade, Hubei Geological Bureau); (b)
geological map of Mahuagou gold deposit and sample point locations.

The Huangling Granite primarily characterizes the magmatic rocks exposed in the
Huangling Anticline area. This granite is one of the few intracontinental Neoproterozoic
granitic bodies within the Yangtze Plate [38]. The Huangling Granite mainly consists
of granite porphyry, trondhjemite, biotite monzogranite, tonalite, and quartz diorite. In
the study “Sequence, Evolution, and Gold-bearing Properties of Precambrian Metamor-
phic Complexes in the Huangling Anticline”, the West Hubei Geological Brigade (1996)
categorized the acidic rocks in the core of the Huangling Anticline into four super units: Du-
anfangxi, Sandouping, Huanglingmiao, and Dalaoling, as well as the Xiaofeng composite
pluton, with ages ranging from early Neoproterozoic to the middle Neoproterozoic.

2.2. Geological Setting of Mining Area

The Mahuagou gold deposit stands out as one of the most prominent gold deposits
in the core area of the Huangling Anticline in Yichang, Hubei. This deposit is a medium-
to low-temperature quartz vein-alteration/structural type gold deposit. It is governed by
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northwest-trending brittle–ductile shear zones and stands out for small scale, high grade,
and ease of beneficiation [39]. Since exploration commenced in the 1990s, two major north–
northwest-trending gold-bearing structural zones have been identified and labeled as FAuI
and FAuII (as illustrated in Figure 2b) [40]. At a drilling elevation of around 800 m, the
No. I and No. II ore-bodies within the FAuI zone are notable for their stability, high-grade
content, significant thickness, and rapid thinning out [41]. As a result, the deeper gold
mineral resources within this mining region show considerable exploration potential; this
makes uncovering concealed ore bodies at greater depths a pivotal challenge for future
exploration breakthroughs in the Mahuagou mining district.

The geological characteristics of the Mahuagou mining area are primarily defined by
the contact zone between the biotite plagioclase gneiss in the Gucunping Formation (Pt2g)
and the biotite monzonitic granite in Zongxifang Unit (γPt3Zx). The Gucunping Formation
(Pt2g) is divided into two segments: Gucunping Formation Segment 1 (Pt2g1) and Gucun-
ping Formation Segment 2 (Pt2g2). Both segments have similar lithology, characterized
by alternating layers of biotite plagioclase gneiss and plagioclase amphibolite. Within the
biotite monzonitic granite (γPt3Zx), there are numerous lens-shaped metamorphic enclaves
and bits of early plagioclase granite enclaves. Plagioclase granite enclaves often exhibit
mylonitization, and the biotite monzonitic granite locally displays foliation, indicating
that the rock body was emplaced under the influence of strong shearing stresses. Within
the mining area, various types of veins with diverse morphologies and orientations are
exposed, including granite pegmatite veins, diorite porphyrite veins (δµ), diabase veins
(βµ), and other mafic veins. These veins have been interpreted as the filler of early faults
and fracture structures, with prevalent orientations in the nearly east–west and northwest–
west orientations. The Mahuagou brittle–ductile shear zone is a significant mineralized
structural zone formed during the early Neoproterozoic, situated at the contact zone be-
tween biotite monzonitic granite (γPt3Zx) and biotite plagioclase gneiss (Pt2g). During the
intrusion of the granite (γPt3Zx), lateral compression and north–northwest orientation right
lateral shearing persisted, giving rise to early compressional mineralized structures, with
later tectonic activities displaying evident extensional and torsional features. Gold mineral-
ization primarily occurs within the felsic cataclastic rock in the mineralized structural zone,
with the occurrence of quartz micro veins and sulfide micro vein infillings.

3. Samples and Methods
3.1. Collection and Pretreatment of Soil and Rock Samples

Soil samples for this research were collected from the Fengxiangshugou–Mahuanggou
section of the Mahuagou mining area (as shown in Figure 2b) located in Yiling District,
Yichang City, Hubei Province (as shown in Figure 1). In the Fengxiangshu section, following
the trend of the IP (Intensification Polarization) section, 11 bags (approximately 700 g/bag)
of soil, fault gouge, and fault cataclastic rock samples were collected from the northeast to
southwest. In the Mahuagou section, along exploration line No. 7 of the mining area, 6 bags
(approximately 700 g/bag) of soil samples were collected from the northeast to southwest,
crossing the ore body along the X206 village road. Additionally, 1 bag (approximately
700 g) of loose soil sample was taken from beside the Kaziya trench.

After returning the collected samples to the laboratory, the sealed bags were opened,
and the moisture inside the bags was allowed to air dry for a day using ambient airflow
naturally. After the preliminary drying, each sample was individually and evenly spread
out on A4 paper. These samples were placed on a shaded, well-ventilated tabletop away
from direct sunlight and areas with artificial airflow sources, such as air conditioning and
frequent human activity. Subsequently, for a week, daily inspections, turning of samples,
removal of small stones and plant roots, and gentle tapping of consolidated soil were
conducted using small sticks; this ensured that the surface and interior of the samples
dried thoroughly, preventing consolidation at the bottom. Once the drying process was
completed, the samples were promptly returned to sealed bags and stored properly.
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In order to accommodate the requirements of specific analytical tests, we subjected
a portion of the total sample to grinding and sieving. Prior to grinding, we manually
removed plant residues, stones, bricks, and non-soil components. The grinding process
utilized an agate mortar and pestle while sieving employed a 200 mesh (75 µm) nylon
sieve. Soil powder obtained after sieving was collected on A4 paper and labeled with
corresponding numbers before being placed in paper bags, which were then sealed in
plastic bags for preservation. Following the completion of grinding and sieving for each
sample, all tools were rinsed with deionized water and then dried in an oven. Tabletops
were cleaned, and A4 paper was replaced as needed. Throughout these procedures,
stringent measures were taken to ensure the independence of each sample, preventing
cross-contamination and mixing of sample components, thus ensuring the accuracy and
effectiveness of subsequent experiments.

3.2. Analytical Methods
3.2.1. Mineral Composition Analysis by X-ray Diffraction (XRD)

According to the standard method, “Analysis Method for Clay Minerals and Ordinary
Non-clay Minerals in Sedimentary Rocks by the X-ray Diffraction” (SY/T 5163-2018) [42],
a 0.4 g sample was utilized. The sample powder was carefully placed into the groove
of the sample slide, ensuring that the measured surface of the sample remained rough
and maintained a flat and even alignment with the surface of the sample slide to avoid
preferential crystal powder orientation. The TD-3500 diffractometer manufactured by
Dandong Tongda Technology Co., LTD, Dandong, Liaoning, China, was used for detection
under the following conditions: 30 kV acceleration voltage, 30 mA beam current, Cu Kα

radiation, and Ni filter. The parameters for detection included a scanning range from 3.00◦

to 45.00◦ 2θ, a wide angle of 0.02◦, a sampling time of 0.6 s, a scan speed of 0.033 s, and a
total time (h:m:s) of 0:21:00.

The sample was detected to obtain X-ray diffraction spectra. Subsequently, the X-ray
diffraction spectra were processed using the TD-3500′s data processing software (MDI JADE
6.5, ICDD, Livermore, CA, USA). The software utilized the Inorganic Crystal Structure
Database (ICSD) based on the sample’s characteristics.

3.2.2. Soil Major Elements

According to the standard method, “Determination of Twenty-two Elements in Geolog-
ical Samples by Inductively Coupled Plasma Optical Emission Spectrometry” (WSBB/004-
2019) [43], an inductively coupled plasma optical emission spectrometer was used to
quantify Al, Fe, Mg, Na, and S in the samples. A sample mass of 0.2500 g was weighed into
a PTFE crucible and moistened with a small amount of water, followed by the addition of
6 mL of nitric acid, 10 mL of hydrofluoric acid, and 2 mL of perchloric acid. The mixture
was decomposed on a 200 ◦C hotplate and was then evaporated. In case of incomplete
decomposition, nitric acid and hydrofluoric acid were replenished before evaporation.
The slightly cooled mixture was treated with 8 mL of aqua regia, heated on the hotplate
until the solution volume was reduced to 3–5 mL, and the crucible walls were rinsed with
approximately 10 mL of deionized water. Mild heating (5–10 min) was applied until the
solution was clarified. The cooled solution was then transferred to a polyethylene tube,
diluted with water, brought to a final volume of 25 mL, and thoroughly mixed. After 24 h
of settling, the elemental content in the samples was determined using an ICP 7400-type
plasma emission spectrometer produced by Thermo Fisher Scientific, Waltham, MA, USA.
The calibration solution series medium is a 10% hydrochloric acid solution. A multi-point
calibration curve is constructed using multiple calibration solutions, and the calibration
curve is automatically generated by computer software. To ensure the quality of sample
data, measurements of standard substances GSR-1, GSS 40, GSS 41, and GSD17a were taken
during the experimental process and compared to their standard values, with errors of less
than 5%. All samples were measured twice for repeatability. The Limit of Detection (LOD)
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values were as follows: 0.05% for Al and Mg, 0.1% for Fe and Na, and 20 µg/g for S. It is
worth noting that the standard substance/repeat sample qualification rate was 100%.

According to the standard method, “Exploration Geochemical Sample Analysis Method
X-Ray Fluorescence Spectrometry for Determining Thirty-four Major and Trace Elements”
(WSBB/005-2004) [44], X-ray fluorescence spectrometry was employed to quantify Si, Ca,
K, Mn, P, and Ti in the samples. A dried sample mass of 4.00 g was transferred to a sample
container, evenly spread within it, and pressed using a pellet press to create a homoge-
nous sample pellet. The prepared samples were directly analyzed for each element using
a ZETIUM X-ray fluorescence spectrometer produced by Malvern Panalytical, Malvern,
WR14 1XZ, UK. The matrix effects between elements were corrected using the empirical
coefficient method and the internal standard method for scatter correction. The LOD were
as follows: 0.1% for Si, 0.05% for Ca and K, and 10 µg/g for Mn, P, and Ti. The qualification
rate for standard substances/repeat samples was 100%.

3.2.3. Soil Trace Elements

According to the standard method “Exploration Geochemical Sample Analysis Method
for Determining Thirty-two Trace Elements by Inductively Coupled Plasma Mass Spec-
trometry” (WSBB/001-2021) [45], an inductively coupled plasma mass spectrometer was
utilized to quantify Ag, Bi, Cd, Co, Cu, Mo, Ni, Pb, Sb, and W in the samples. The experi-
mental procedure was consistent with that for major soil elements. Specifically, the iCAP Qc
type inductively coupled plasma mass spectrometer produced by Thermo Fisher Scientific,
Waltham, MA, USA, was used to determine the elemental content in the samples. The LOD
were as follows: 20 ng/g for Ag, 0.05 µg/g for Bi and Sb, 1 µg/g for Co and Cu, 30 ng/g
for Cd, 0.3 µg/g for Mo, 0.4 µg/g for W, and 2 µg/g for Ni and Pb. The qualification rate
for standard substances/repeat samples was 100%.

3.2.4. Soil Halogen Elements

In addition to the above analysis, the elements Br and Cl were quantified in the samples
using Axios PW4400/40 X-ray fluorescence spectrometry produced by PANalytical B.V.,
Almelo, The Netherlands, according to the standard WSBB/005-2004, with a 1 µg/g and
20 µg/g LOD, respectively. The ion-selective electrode method determined Fluoride (F),
according to the standard GB/T 14506.12-2010 [46], with 100 µg/g LOD. Iodine (I) was
measured using the standard WSBB/013-2020 [47] spectrophotometric method, with a
0.5 µg/g LOD. The qualification rate for standard substances/repeat samples of halogen
elements was also 100%.

3.2.5. Soil Heat-Released Mercury

According to the standard “Mercury Vapor Measurement Specification” (DZ 0003-
91) [48], the XG-7Z mercury measuring instrument produced by the Institute of Geophysical
and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, Hebei
Province, China, was used in this experiment. The weight method was employed to
determine heat-released mercury in soils at a heat-released temperature of 200 ◦C (test
conditions as shown in Table 1).

Table 1. Testing conditions of soil heat-released mercury instrument.

Test Conditions Instrument Parameter

Heat-released temperature/◦C 200
Heat-released time/min 2
Furnace temperature/◦C 800
Carrier gas flow/(L/min) 0.6–0.8

Approximately 0.1 g of the sample was placed into a quartz boat and introduced
into the central part of a thermal decomposition furnace. Upon activating the air pump,
the heat-release of mercury commenced automatically. The sample was exposed to the



Appl. Sci. 2023, 13, 12279 8 of 22

mercury vapor produced at this temperature, and its absorption was measured within the
instrument’s absorption chamber, resulting in an absorbance value (AT). The sequence of
temperature for determining heat-released mercury ranged from high temperature (800 ◦C)
to low temperature (150 ◦C). After the determination of heat-released mercury at one
temperature, an appropriate amount of the sample was reweighed for the subsequent
temperature determination, and this process continued to cover all designated temperature
levels for heat-released mercury measurements.

3.2.6. Chemical Form Analysis of Gold in Soil

The determination of chemical forms of gold in soil samples refers to the analytical
specifications of “Ecological Geochemistry Assessment Sample Analysis Technical Re-
quirements (Trial)” (DD2005-03) [49]. The Tessier (1979) modified sequential extraction
method [50] (seven-step procedure) is employed for the chemical forms of gold in the
soil. This technique divides elements into seven forms: extraction with water for the
water-soluble form; 1.0 mol/L magnesium chloride extraction for the ion-exchangeable
form; 1.0 mol/L sodium acetate solution for the carbonate-bound form; 0.1 mol/L sodium
pyrophosphate extraction for the weakly organic (humic acid) bound form; 0.25 mol/L
hydroxylamine hydrochloride—0.25 mol/L hydrochloric acid mixed solution extraction for
the iron-manganese bound form; 30% hydrogen peroxide extraction for the strongly organic
bound form; and hydrofluoric acid extraction for the residual form. After quantitatively
collecting samples and performing extractions with the solvents above, the gold content in
each form is analyzed using the ICP-MS produced by Thermo Fisher Scientific, Waltham,
MA, USA, for a full spectrum direct reading analysis.

4. Geochemical Characteristics of Overburden Soils
4.1. Overburden Soil Mineral Composition

Utilizing X-ray Diffraction (XRD) analysis, a semi-quantitative assessment of the
mineral composition of representative soil samples from the Mahuagou mining area was
conducted, as illustrated in Figure 3. The X-ray diffraction peak intensities are measured
using integrated intensities after background subtraction. Relevant data is obtained from
the X-ray diffraction spectrum of the sample and then compared to standard X-ray diffrac-
tion data for minerals to determine the mineral species. Common mineral X-ray diffraction
data can be found in SY/T 5163-2018-Appendix E. Formula (1) is used to calculate the total
content of clay minerals and various non-clay minerals:

Xi= [
Ii
Ki

/(∑
Ii
Ki

)]× 100%, (1)

Xi represents the percentage content of mineral i, expressed as a percentage; Ii rep-
resents the integrated peak intensity of the selected diffraction peak of mineral i; and Ki
represents the reference intensity of mineral i.

Broadly, soil samples from the FXS and MHG profiles exhibit two distinct mineral
assemblages. In the FXS profile, the mineral composition of the soil is primarily comprised
of clay minerals, such as illite, chlorite, and kaolinite, as well as primary minerals like quartz
and sodium feldspar (e.g., FXS-5 and FXS-6). Illite is an intermediate transitional mineral
between montmorillonite and mica, often formed through the alteration of potassium
feldspar and mica or the replacement of montmorillonite [51–53]. Kaolinite predominantly
forms during the weathering of silicate minerals like feldspar and common pyroxenes [54].
Chlorite is a secondary mineral that develops during the initial stages of soil formation,
arising from the alteration of ferromagnesian minerals (e.g., biotite, hornblende, pyroxenes)
in granite or other igneous rocks. Field observations indicate that the rock types exposed in
the FXS profile consist mainly of moyite, monzonitic granite, granitic, and dioritic rocks,
indicative of intermediate acidic intrusive rocks. Consequently, the formation of illite and
kaolinite in the soil is connected to the weathering of minerals like mica and alkali feldspar
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in intermediate acidic parent rocks. At the same time, the development of chlorite often
results from the weathering of dark-colored minerals in the parent rock.

FXS-3 and FXS-4 exhibit a characteristic mineral composition of fault gouge. The
presence of montmorillonite and a small amount of calcite in the soil leads to a notably
higher Ca element content compared to other soils. The formation of this mineral assem-
blage is attributed to the grinding of near-surface rocks by faults under low-temperature
conditions, coupled with late-stage low-temperature hydrothermal alteration and meta-
morphism [55,56], resulting in the mixture of unconsolidated, powdery clay minerals
(illite, chlorite, and montmorillonite) with fine particles from adjacent rocks (quartz and
calcite) [57].

In the MHG profile, the clay mineral composition in the soil is relatively simple,
primarily consisting of montmorillonite, with minimal presence of minerals like illite and
chlorite. The content of biotite and minor plagioclase is significantly higher in the soil
compared to the FXS profile. Diabase dikes (βµ) and other mafic dikes are widely exposed
in MHG, which is the main factor affecting the local soil composition. Consequently, the
formation of montmorillonite in the soil of MHG profile is closely related to the weathering
of minerals from basic rocks in an alkaline environment [58].
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Figure 3. Mineral composition of representative soil samples from the Mahuagou mining area (Ab:
albite; Cal: calcite; Chl: chlorite; Ilt: illite; Kln: kaolinite; Mc: microcline; Mnt: montmorillonite; Qz:
quartz; Tr: tremolite [59]).

The soil mineral composition adjacent to the KZY trench resembles that of the FXS
profile, with illite being the primary clay mineral and a relatively lower content of quartz
and sodium feldspar.

Considering the mineral composition of soils in the Mahuagou mining area, it can
be inferred that the soils at FXS, MHG, and KZY locations are all products of the in situ
weathering of parent rock. This process facilitates the capture and preservation of in situ
ore-forming information. However, due to variations in weathering and erosion conditions
among different areas, the content of various soil components and their ability to preserve
materials may still differ.
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4.2. Overburden Soil Major Elements

The results of soil major elements testing in the Mahuagou mining area, along with
descriptive statistics, are presented in Tables 2 and 3. Among the 18 samples, silicon (Si)
exhibited a maximum value of 69.8%, a minimum value of 57.7%, and a mean value of
64.8%. Aluminum (Al) showed a maximum value of 19.2%, a minimum value of 12.9%,
and a mean value of 15.7%. Both elements demonstrated a coefficient of variation (CV)
below 15%, indicating relatively stable content within the samples. On the other hand,
calcium (Ca) and magnesium (Mg) elements displayed variation coefficients exceeding
50%, implying significant content disparities within individual samples. Notably, samples
FXS-3 and FXS-4 exhibited notably distinct calcium content from other samples, possibly
attributed to mineralogical associations with abundant calcium and magnesium elements
in the soil.

Table 2. Test results of soil main elements in the Mahuagou mining area.

Sample
Number

Element (%)

SiO2 Al2O3 MgO CaO Na2O K2O MnO TiO2

FXS-1 57.90 18.40 2.23 1.51 1.95 2.13 0.13 0.60
FXS-2 66.60 16.30 0.45 1.60 3.42 1.94 0.05 0.24
FXS-3 59.20 16.30 1.70 4.60 0.27 2.94 0.04 0.51
FXS-4 64.20 17.10 0.67 3.74 3.13 2.90 0.03 0.28
FXS-5 65.60 15.90 0.88 0.38 3.21 2.08 0.06 0.41
FXS-6 67.20 14.70 0.29 0.11 2.49 2.59 0.03 0.26
FXS-7 65.30 15.90 0.55 1.17 4.46 1.42 0.06 0.30
FXS-8 57.70 19.20 1.03 0.93 1.81 1.81 0.07 0.49
FXS-9 64.90 15.70 0.54 0.70 2.10 1.93 0.04 0.32
FXS-10 67.50 14.30 0.52 1.14 2.50 1.94 0.04 0.33
FXS-11 60.10 16.70 1.65 1.65 2.29 1.93 0.10 0.79
KZY-1 69.80 14.60 0.77 0.14 1.42 3.05 0.06 0.27

MHG-1 66.20 15.00 2.14 1.64 2.85 2.54 0.09 0.40
MHG-2 67.80 14.70 1.79 2.14 4.71 1.06 0.04 0.41
MHG-3 65.10 14.70 1.31 0.93 2.67 2.78 0.07 0.53
MHG-4 65.90 15.10 1.66 2.14 3.50 2.42 0.07 0.50
MHG-5 65.90 15.10 1.35 0.59 1.93 2.29 0.04 0.57
MHG-6 69.70 12.90 0.65 0.91 3.72 2.90 0.05 0.35

Table 3. Descriptive statistical table of main elements in the Mahuagou mining area.

Element
Minimum Maximum Average Standard

Deviation
Coefficient
of Variation

% % µ/% σ CV/%

SiO2 57.70 69.8 64.81 3.69 5.69
Al2O3 12.90 19.2 15.70 1.51 9.59
MgO 0.29 2.23 1.12 0.62 55.11
CaO 0.11 4.60 1.45 1.17 80.79

Na2O 0.27 4.71 2.69 1.08 40.22
K2O 1.06 3.05 2.26 0.55 24.51
MnO 0.03 0.13 0.06 0.03 44.12
TiO2 0.24 0.79 0.42 0.15 34.72

CV = (σ/µ) × 100%.

CIA (Chemical Index of Alteration) [60] and CIW (Chemical Index of Weathering) are
two commonly used weathering indices. The CIA is based on the research of weathering of
magmatic rocks with relatively uniform chemical composition, and its application premise
is that the chemical composition of weathered parent rocks is relatively uniform [61,62].
Obviously, in this study, the parent rocks of the soil samples are not the same, and K2O may
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be active during metamorphism; biotite alteration can be affected by K2O concentrations,
which can be rich in illite and smectite clay minerals. Therefore, it is appropriate to use the
CIW to evaluate its weathering. The calculation Formula (2) for CIW is provided below:

CIW = 100% × Al2O3/(Al2O3 + CaO + Na2O) (2)

The calculated results are depicted in Figure 4. In general, CIW values between 50%
and 60% indicate that the samples are fresh and have not undergone significant chemical
weathering. If the CIW value of a sample exceeds 70%, it signifies intense chemical
weathering [63]. The samples from the Mahuagou mining area consistently exhibit CIW
values above 70%, indicating a pronounced history of substantial weathering processes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22 
 

premise is that the chemical composition of weathered parent rocks is relatively uniform 

[61,62]. Obviously, in this study, the parent rocks of the soil samples are not the same, and 

K2O may be active during metamorphism; biotite alteration can be affected by K2O 

concentrations, which can be rich in illite and smectite clay minerals. Therefore, it is 

appropriate to use the CIW to evaluate its weathering. The calculation Formula (2) for 

CIW is provided below: 

CIW = 100% × Al2O3/(Al2O3 + CaO + Na2O) [63] (2) 

The calculated results are depicted in Figure 4. In general, CIW values between 50% 

and 60% indicate that the samples are fresh and have not undergone significant chemical 

weathering. If the CIW value of a sample exceeds 70%, it signifies intense chemical 

weathering [63]. The samples from the Mahuagou mining area consistently exhibit CIW 

values above 70%, indicating a pronounced history of substantial weathering processes. 

 

Figure 4. CIW index of soil samples in the Mahuagou mining area. 

To better illustrate the compositional characteristics of major elements, the samples 

were categorized based on their sampling point characteristics into five sections: fault 

material, above the faulted structures, around the MHG ore-body, above the trench and 

borehole, and peripheral areas. Utilizing the (Al/Si) × 100% ratio in conjunction with Ca 

(%) for plotting (refer to Figure 5), it was observed that the majority of samples exhibit a 

relatively stable ratio of Al to Si, forming a linear distribution parallel to the X-axis. 

However, some individual samples display elevated Al/Si ratios. Fault materials (fault 

mud and fault cataclastic rock) exhibit higher Ca content. 

Figure 4. CIW index of soil samples in the Mahuagou mining area.

To better illustrate the compositional characteristics of major elements, the samples
were categorized based on their sampling point characteristics into five sections: fault
material, above the faulted structures, around the MHG ore-body, above the trench and
borehole, and peripheral areas. Utilizing the (Al/Si) × 100% ratio in conjunction with Ca
(%) for plotting (refer to Figure 5), it was observed that the majority of samples exhibit
a relatively stable ratio of Al to Si, forming a linear distribution parallel to the X-axis.
However, some individual samples display elevated Al/Si ratios. Fault materials (fault
mud and fault cataclastic rock) exhibit higher Ca content.
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The variation in major element content among soil samples reflects the heterogene-
ity of their compositional materials. Based on the characteristics of their composition,
inferences can be drawn regarding the provenance nature of the sampled region. The
relatively consistent Si and Al variations in this experiment indicate a uniform degree
of weathering, unaffected by transported materials, suggesting in situ weathering from
the parent rock [64]. However, significant differences in Ca and Mg composition among
samples suggest mineralogical influences. These differences may be caused by minerals
such as chlorite, montmorillonite, and kaolinite.

4.3. Geochemical Characteristics of Trace Elements

Geochemical prospecting has proven to be an effective approach in gold exploration
work so far, and the study of epithermal gold deposits has garnered significant attention
from numerous scholars [65,66]. In the field of geochemical gold exploration, the analysis of
coupled elemental relationships and the determination of their significance are of particular
importance [67]. Studies such as the native halo of gold deposits, trace element patterns [68],
and statistical relationships between various elements [69] play a crucial role in addressing
gold exploration challenges. To elucidate the distribution patterns of geochemical elements
within the overlying strata of the Mahuagou mining area and establish relationships among
element combinations, this study conducted content analysis on soil samples containing
17 metallic and non-metallic elements closely associated with gold mineralization, including
Ag, As, Be, Bi, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Sn, W, Zn, and Au. A statistical analysis
was subsequently performed on the collected data.

A systematic clustering analysis was conducted on the 17 metallic elements in the
soil samples. It is a data analysis technique that divides objects or data points in a dataset
into different groups or categories, and it finds widespread applications in many domains.
Prior to analysis, the Z-score method was applied to standardize the original data, unifying
data of different magnitudes onto a common scale. Calculated Z-Score values replaced
the original values for analysis, ensuring data comparability. Ward’s Method is used for
processing sample data, and it is a systematic clustering method for dividing data points
into different clusters or groups. The advantage of this method is to select, at each step,
two existing clusters to merge in order to minimize the increase in their combined variance.
Consequently, this method is capable of producing compact and relatively evenly-sized
clusters. Employing squared Euclidean distance as the distance metric, the results of the
analysis are presented in Figure 6.
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At a similarity level of 7.5 distance coefficient, all elements can be classified into
four categories: The first category includes As, Sb, Mo, Bi, W, and Hg. Among them, the
cooccurrence of Mo, W, and Bi elements is often associated with alkali granite related to
W–Sn mineralization, consistent with the nature of soil parent rocks [70]. The combination
of Hg, As, and Sb elements is closely linked to shallow, low-temperature hydrothermal
mineralization, often manifesting as elements in the halo zone of hydrothermal gold
deposits, serving as significant indicators for mercury, antimony, and gold deposits. This
combination not only inherits the specific characteristics of the parent rock but also retains
effective indicators of deep-seated mineralization. The second category encompasses Cd,
Pb, Co, and Zn, which commonly occur in polymetallic sulfide hydrothermal mineralization
and are also prominent lower-level elements in gold deposits [71]. The third category
comprises Ag, Sn, Au, Cr, Ni, and Cu, forming a typical assemblage in medium-temperature
ore-forming zones. Be elements constitute a separate category, typically acting as late-stage
anomaly indicators in gold deposits.

Even more, the cluster analysis displays the relationship between elements and rock
types. The first category (As, Sb, Mo, Bi, W, and Hg) is closely associated with granite; it
may indicate the crucial metallogenic significance of the biotite monzonitic granite (γPt3Zx)
in the mining area. The second category (Cd, Pb, Co, Zn, Ag, Sn, Au, Cr, Ni, and Cu) is
associated with mafic rocks and ultramafic rocks, and Au has displayed an affinity for such
elements; this may indicate that the mafic-ultra mafic veins have a significant influence on
gold mineralization. Further analysis is conducted on the variations of the complete dataset
of the first three categories of element combinations along profiles. In Figure 7, it can be
observed that the anomalous elements at the front edge of the gold deposit, composed of
elements such as As, Sb, and Hg (Category 1), exhibit consistent anomalies in profiles FXS
and MHG.
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Figure 7. The content change characteristics of the first type of element combination (As, Sb, Mo, Bi,
W, and Hg).

On the FXS profile (first 11 points), points FXS-5 and FXS-8 demonstrate positive
anomalies in element content. These sampling locations exhibit well-developed soil profiles
and are positioned directly above fault structures. At point FXS-8, multiple phases of
intrusive veins are evident, with the pronounced intrusion of potassium feldspar granite
veins controlled by faulting. Magmatic activity during the upward intrusion and subse-
quent crystallization has led to the enrichment of valuable components through filling
and replacement processes facilitated by favorable structural and lithological conditions at
FXS-8. The hydrothermal fluids generated during these processes, influenced by factors
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like pressure gradients and temperature, have enabled the vertical migration of valuable
components. These components have been preserved within the soil during their upward
migration, resulting in the observed positive anomalies.

On the MHG profile (last 6 points), the elements exhibit a distinct bimodal distri-
bution. Points MHG-3 and MHG-5 show positive anomalies, and these correspond to
the mineralized segment of the MHG profile. From the results, this distribution pattern
suggests a certain indicative effect of the first category of element combinations on the
mineral body. However, further validation is required through subsequent unconventional
exploration methods.

The content variations of the second and third categories of elements at each point
along the profile are significant. Moreover, there are substantial differences in the trends
of variation among elements within the same type without evident anomalous features
(Figure 8). Elements like Au and Hg in soil samples beside the KZY exploration trench
display much higher concentrations compared to other samples. This phenomenon may
be attributed to the disturbance caused by trench excavation. This disturbance leads to
the fragmentation of mineralized outcrops, allowing mineral particles to mix with the soil
and subsequently be preserved. Hence, this sample is not considered for discussing the
geochemical characteristics of the overlying cover in the mining area.
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5. Deep-Penetrating Geochemical Result
5.1. Abnormal Characteristics of Soil Heat-Released Mercury

The soil heat-released mercury survey method involves heating the soil to release
mercury that is adsorbed within the soil and is related to mineral bodies. Subsequently,
the released mercury content is measured. This approach, combined with geological and
mineralogical characteristics, allows for the further analysis of concealed mineral bodies or
underlying structures. In this exploration study, soil heat-released mercury surveys were
conducted in two locations near the Fengxiangshugou (FXS) induced IP profile and the
Mahuanggou (MHG) mining area along Line 7 in the core area of the Huangling Anticline
gold deposit. The results were compared with the gold content in the soil (Figure 9).
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Figure 9. Line chart of soil heat-released mercury anomaly: (a) soil heat-released mercury anomaly
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The soil heat-released mercury anomalies along the FXS profile closely correspond
to the gold content anomalies, exhibiting a bimodal distribution at points FXS-5 and FXS-
8 (Figure 9a). FXS-5 is positioned directly above the fractured zone of the fault, while
FXS-8 is located beneath rock masses with distinct characteristics of multiple phases of
intrusive veins, notably controlled by faulting. The soil heat-released mercury results
along the FXS profile demonstrate a good indication of the faulted zone and multi-phase
intrusions. Furthermore, in comparison to gold content anomalies, soil heat-released
mercury surveys exhibit higher anomaly contrast, thus offering a superior indication effect
over gold anomalies.

In contrast, the soil heat-released mercury anomalies along the MHG profile exhibit
differing characteristics from the overall gold anomalies (Figure 9b). The soil heat-released
mercury anomalies align with the first category of element combinations (As, Sb, Hg, Mo, Bi,
and W) identified through cluster analysis (Figure 7). These anomalies consistently appear
along the MHG profile, presenting a bimodal distribution at points 3–5. On the other hand,
the gold anomaly peaks at point 4 along the MHG profile, with diminishing intensities on
both sides. The known mineralized segment on the MHG profile is represented by points
3–5, and both methods show anomalous indications along this profile.

5.2. Chemical Mobile Forms of Gold in Soil

In this exploratory study, the gold fractionation of 18 soil samples from three locations—
Fengxiangshugou (FXS), Mahuanggou (MHG), and Kaziya (KZY)—was conducted using
the seven-step sequential extraction method. The ratios of gold content in different fractions
to the total mobile gold content are illustrated in Figure 10.

Residual and strongly organically bound forms of gold are predominant in the soil,
while water-soluble, exchangeable, and carbonate-bound forms are in smaller proportions.
With the exception of samples from KZY, the primary chemical form of gold in the remaining
soil samples is the strongly organically bound form. This form involves the central heavy
metal ion surrounded by organic functional groups as ligands, or it combines with sulfur
ions to generate water-insoluble compounds [72]. Materials in the strongly organically
bound form can undergo degradation of their contained organic molecules under oxidative
conditions, leading to the leaching of some metal ions and resulting in anomalies in the soil
or environmental impacts [73].
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Figure 11. Line chart of the strong organic bound form (SOBF) of Au and Au content in soil:
(a) anomaly of SOBF of Au in Fengxiangshugou; (b) anomaly of SOBF of Au in Mahuanggou.

A comparison between the strongly organically bound form of gold and the anomalous
gold content is presented in Figure 11 for this experiment. Along the FXS profile, distinct
anomalies are observed in samples within the FXS-3 faulted zone and above the potassium
feldspar granite intrusion at FXS-8 (Figure 11a). However, unlike the heat-released mercury
anomalies, the strongly organically bound form of gold does not exhibit anomalies directly
above the fault. Both methods exhibit particularly pronounced indications for the potassium
feldspar granite intrusion, with anomaly contrast surpassing gold content.

The anomalies of the strongly organically bound gold along the MHG profile do not
align with the heat-released mercury anomalies or the total gold anomalies, indicating a
shift in peak positions (Figure 11b). It is hypothesized that the formation of this anomaly
might be influenced by the vein morphology and the topography of the cover layer, both of
which could lead to the displacement of mineralization-induced anomalies.
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The KZY samples consist of loose soil adjacent to the exploration trench, with the
primary chemical form of gold being the residual form. Residual forms of metals generally
exist within primary minerals, secondary minerals, silicates, and other lattice structures.
These forms are stable in nature, not easily released in surface environments, remain stable
in soils, are poorly absorbed by plants, and exhibit limited migration capabilities.

5.3. Abnormal Characteristics of Soil Halogen

Halogen elements consist of four elements: F, Cl, Br, and I. These elements possess
high electronegativity, strong electron-accepting capabilities, exhibit pronounced non-
metallic properties, and readily form halides and halogen complexes with most metals.
This property is advantageous for the migration of metallic elements in ore-forming fluids,
making halogens crucial components in polymetallic mineralization processes.

The anomalous display of the four elements (F, Cl, Br, and I) along the FXS profile
is relatively weak (Figure 12). Among them, F and Cl exhibit distinct enrichment and
peak values in fault-related material, followed by a gradual decrease. Br and I show an
overall increasing trend in content, with a single negative anomaly peak at point FXS-7.
These two anomaly patterns lack correlation with geological facts and exhibit unclear
indication effects.
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anomaly in the soil of FXS.

Similarly, the F, Cl, Br, and I elements along the MHG profile display two different
anomaly patterns (Figure 13). The anomalies of F and Cl resemble the overall gold anoma-
lies, peaking at point MHG-4 with diminishing intensity on both sides. The anomalies of
Br and I align with the heat-released mercury anomalies and the anomaly characteristics of
the first category of element combinations identified through cluster analysis, displaying a
bimodal distribution at points 3–5 along the MHG profile. Both types of anomaly patterns
for the halogen elements on the MHG profile provide specific indicative effects for the
underlying mineral bodies.
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5.4. Discussion of Anomaly

Soil heat-released mercury anomalies exhibit prominent indications of concealed
mineral bodies and underlying structures. Mercury possesses a significant affinity for
sulfur and commonly exists in the forms of native mercury and mercury compounds within
sulfides during hydrothermal stages. In surface environments, mercury-bearing metal
sulfides can undergo a series of redox reactions to generate mercury oxides or chlorides.
Through groundwater flow and migration in structural fractures, these mercury compounds
can be adsorbed onto clay minerals, organic matter, and iron-manganese oxides in the
overlying soil, thus forming soil mercury anomalies.

The lush vegetation and extensive tree-covered terrain in the Mahuagou mining area
result in organic-rich and moist soils. Gold released from concealed mineral bodies and
their primary halos can interact with soil organic matter through complexation, forming
complexes with varying solubilities [74,75]. Therefore, the dominant chemical form of
gold is the strongly organically bound form. This form of gold exhibits a similar anomaly
indication effect as soil heat-released mercury surveys. It is more likely to form metal-active
anomalies in locations conducive to element migration, such as near structures or above
mineral bodies [75].

Soil halogen element anomalies in this area exhibit limited indication effects. On the
FXS profile, the anomaly characteristics display unclear indications, whereas on the MHG
profile, they provide some indication of underlying mineral bodies. This discrepancy can
be attributed to the local parent rock properties. The FXS profile predominantly exposes
medium -acidic intrusive rocks, while widespread basic dike intrusions characterize the
MHG profile. The variation in parent rock types leads to differences in soil properties,
affecting the preservation of halogen anomalies [76].

6. Conclusions

This paper comprehensively tests and analyzes major elements, mineral components,
and various metallic and non-metallic elements in 18 soil samples from the Mahuagou
gold deposit region. Through a comprehensive analysis of geochemical data and statistical
methods, several significant indicators have been identified.

1. The element combination of As, Sb, Hg, Bi, W, and Mo holds significant indicative
implications for hydrothermal gold deposits in the area. Moreover, it demonstrates a
favorable coupling relationship with the unconventional exploration work conducted
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in this study. In future work, attention should be given to this element combination,
as it may play a crucial role in gold prospecting within the Huangling syncline region;

2. The measurement of chemical forms of gold reveals that the predominant chemical-
migration form of gold in the overburden of the Mahuagou mining area is strongly
organically bound. This form can indicate the faulted zone and multi-phase intrusions
and exhibit higher anomaly contrast. This conclusion provides a vital theoretical
foundation for the exploration of concealed ore deposits in the study area;

3. Penetration geochemical methods, such as soil heat-released mercury measurement
and gold form measurement, demonstrate good applicability in the Mahuagou mining
area. The experimental results indicate that in areas with relatively thin cover layers,
like Mahuagou, penetration geochemical methods remain effective tools for gold
prospecting. This finding offers technical support for mineral exploration efforts in
the region. By prioritizing and utilizing the key indicators identified in this paper,
exploration teams can enhance their efficiency and accuracy in targeting potential
gold mineralization zones.
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