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Abstract: Predicting the remaining time before the next earthquake based on seismic signals generated
in a laboratory setting is a challenging research task that is of significant importance for earthquake
hazard assessment. In this study, we employed a mel spectrogram and the mel frequency cepstral
coefficient (MFCC) to extract relevant features from seismic signals. Furthermore, we proposed a
deep learning model with a hierarchical structure. This model combines the characteristics of long
short-term memory (LSTM), one-dimensional convolutional neural networks (1D-CNN), and two-
dimensional convolutional neural networks (2D-CNN). Additionally, we applied a stacking model
fusion strategy, combining gradient boosting trees with deep learning models to achieve optimal
performance. We compared the performance of the aforementioned feature extraction methods and
related models for earthquake prediction. The results revealed a significant improvement in predictive
performance when the mel spectrogram and stacking were introduced. Additionally, we found that
the combination of 1D-CNN and 2D-CNN has unique advantages in handling time-series problems.

Keywords: seismic signal; mel spectrograms; mel frequency cepstral coefficient; deep learning; stacking

1. Introduction

Earthquakes are destructive natural disasters caused by the lateral sliding or inter-
section of tectonic plates. The occurrence of earthquakes is not a periodic process, as it
depends on the nature of the area prone to rupture due to the partial release of stress
and the differences in the types of various other faults [1]. This indicates that the periods
between these earthquake events should be essentially irregular. The increasing integration
between seismology, rock mechanics, and geology, as well as the significant impact of the
plate tectonics concept on Earth sciences, were discussed by Hammond and Healy, J.H. [2,3].
These studies express optimism about earthquake prediction. Scholz, C. [4] analyzed crustal
movements, tilting, fluid pressure, electric and magnetic fields, and radon emissions from
the perspective of earthquake precursor effects, suggesting that these anomalies may be
related to the occurrence of earthquakes. Previous earthquake prediction research was
predominantly based on seismological theory and geological practical experience, but these
methods often face challenges, such as low prediction accuracy and difficulties in precise
location determination.

In recent years, machine learning, as a rapidly evolving field, has achieved significant
success in various areas. Regression problems are common in everyday life, such as
house price prediction, stock market forecasting, and predicting the remaining lifespan of
machine parts. Chen, Y. et al. [5] used five popular machine learning and in-depth learning
approaches to predict house prices and evaluated the models. Researchers such as Mehtab,
S. et al. [6] have indicated that a univariate model based on LSTM, utilizing data from
one week prior as input, provided the most accurate predictions for the opening prices of
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NIFTY 50 time series in the following week. Additionally, Ma, N. et al. and Li, W. et al. [7,8]
effectively employed a CNN and LSTM to predict the remaining lifespan of mechanical
components under different environmental conditions. Machine learning is also widely
applied in the field of earthquake prediction. For example, Laurenti, L. et al. [9] introduced
an autoregressive (AR) model to predict the shear stress in fault zones; Asim, K. et al. and
Cao, C. et al. [10,11] predicted earthquake magnitude using ML-based methods; Wang,
K. et al. [12] utilized transfer learning to train a convolutional encoder-decoder to predict
instantaneous and future fault sliding; Wang, X. et al. [13] used XGBoost, random forest
(RF), and a deep neural network (DNN) to predict site amplification factors for different
periods; Sang, K.H. et al. [14] proposed a novel ML-based reservoir prediction method
based on virtual sample generation; Feng, T. et al. [15] showed that ML-based phase-
picking exhibited good performance in constraining high-precision earthquake catalogs
and constructing high-resolution velocity models; and Wrona, T. et al. [16] utilized ML
for earthquake phase analysis to address the subjective issue of earthquake interpretation.
Accurately predicting earthquakes is crucial to mitigating their societal impact.

In this study, the goal of predicting the remaining time before the next earthquake
occurs based on seismic signals generated in a laboratory setting [17,18] was considered.
Various machine learning (ML) algorithms were employed, including gradient boosting
decision trees (GBDT), convolutional neural networks (CNN), long short-term memory
(LSTM) networks, and model fusion (stacking). GBDT is an ensemble learning method [19],
which builds a series of decision trees by boosting the mispredictions in the training
samples, and makes final predictions by taking the weighted average of the predictions
from all the decision trees. CNNs are deep learning algorithms that are particularly suited
for processing image and signal data [20–22]. These networks use convolutional layers to
extract features from the input data and pooling layers to reduce the dimensionality of the
feature maps. LSTM is superior to recurrent neural networks (RNN) and is designed to
address the long-term dependency problem in traditional RNN, and has demonstrated great
potential for modeling time-series data [23–25]. Stacking is a powerful model ensembling
strategy that can improve the prediction accuracy of machine learning models. Stacking
is a very effective technique in various machine learning tasks, especially in cases where
the best performance is desired [26–28]. In our work, we used the LightGBM model in
GBDT and a deep learning model with a multi-level structure, finally feeding the prediction
results from multiple models as new features into a meta-model, usually a linear model,
such as linear regression, logistic regression, or support vector machine.

This study aims to contribute to the development of improved earthquake prediction
models, which can help save lives and mitigate the societal and economic impacts of
earthquakes. In this work, we combine mel frequency cepstral coefficients (MFCC) and the
mel spectrograms of audio signals to extract features from denoised signals (see Section 2 for
details). We introduce a two-dimensional convolutional neural network (CNN) to process
the time-series data, enabling the simultaneous capture of local features in both the time
and frequency domains. Furthermore, we apply a stacking model fusion strategy to achieve
the best performance of the models. The remaining sections of the article are organized
as follows: Section 2 introduces the data analysis and feature preprocessing; Section 3
elaborates on the design and implementation of the model structure. The experiments are
described in Section 4. Section 5 summarizes the research achievements of this article and
proposes further research directions.

2. Data Preprocessing
2.1. Datasets

The seismic signals were recorded by piezoelectric ceramic transducers located on
the biaxial equipment side blocks. Each amplitude burst corresponds to a laboratory
earthquake. We sought to predict the timing of the next laboratory earthquake based on a
small subset of snapshots from the seismic data [23]. The dataset was divided into a training
dataset and a testing dataset, with the training data accounting for 13% of the total data and
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the test data accounting for 87%. The Train dataset consists of 16 CSV files, representing
16 instances of earthquakes occurring within a certain period of time. Each record in the
dataset contains two fields: time-to-failure (TTF) and acoustic-data. All the training data
and some test data are shown in Figure 1.

Figure 1. (Top): All training data illustration. The orange line is the acoustic data and the blue one
is the TTF. The training data contain 629.145 million rows; it should be noted that due to the large
amount of data, the step size of the graph is 1000. There are 16 earthquakes in the training data. The
shortest time to failure is 1.5 s for the first earthquake, while the longest is around 16 s. (a–d) Partial
test data illustration. Similarly, the orange line is the acoustic data. Each test seismic signal file has
150,000 rows.
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2.2. Removing Noise

In data preprocessing, it is important to remove noise. For earthquake signals, the
main problem is that the measured earthquake signals do not accurately represent the
actual earthquake signals we are trying to discover. These pulse signals interact with
the real earthquake signals (i.e., the signals we need) and generate the final mixed signal
that is received by our seismometer (this process also occurs in earthquake simulation
laboratories). Therefore, the main goal of seismology is to accurately identify and separate
the real earthquake signals from the mixed signals. Wavelet denoising is a relatively
general signal denoising method that can be applied to various types of signals, such
as audio signals, image signals, biological signals, etc. [29–32]. Its advantage is that it
can effectively remove noise in the signal while retaining the important features of the
signal. It should be noted that the original signal we are dealing with is the convolution
of artificial pulse signals and real earthquake signals, which is why we need to perform
wavelet decomposition. The process is similar to deconvolution, which can reverse the
convolution process and extract the real earthquake pulse signals from the mixed seismic
records and artificial pulse signals [33–36]. To understand the randomness in the signal, we
use the median absolute deviation (MAD) value to determine the minimum threshold of the
wavelet coefficients in the time series [37,38]. Then, we filter out the low coefficients from
the wavelet coefficients and reconstruct the real earthquake signals from the remaining
coefficients. This successfully removes the pulse signals from the seismic records and
obtains the real earthquake signals, as shown in Figure 2.

Figure 2. Comparison of denoised seismic signal data. The data used in this figure come from the test
dataset, with the left column (a,c,e) showing the original signal in lighter colors and the right column
(b,d,f) showing the signal data after wavelet denoising. The denoised seismic signal is smoother
compared to the original signal, with significantly reduced noise amplitude and more prominent
signal peaks. This makes the signal features more obvious and it is easier to observe the trend and
characteristics of the signal.

2.3. Selecting Features

We applied audio feature extraction methods to this work, treating the seismic signal
as audio. We combined the mel frequency cepstral coefficients (MFCCs) and the mel
spectrogram of the audio signals to extract features from the denoised signal, and selected
some of the most important features, as shown in Figure 3, for the model [39,40]. MFCC,
which stands for mel frequency cepstral coefficient, is a feature representation method for
audio signals mainly used in audio processing fields, such as audio signal classification,
speech recognition, and music information retrieval [41–43]. The MFCC was originally
designed to simulate the human perception of sound. Our ears are not equally sensitive to
loudness—they are more sensitive to signals with higher frequencies than those with lower
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frequencies. To simulate this non-linear frequency response, the MFCC uses a set of mel
filters to simulate the frequency response characteristics of the human ear. Mel filters can
filter audio signals in the frequency domain, allowing for more detailed characterization
of frequency details in the low frequency range and coarser characterization of frequency
details in the high frequency range. The calculation method of a mel spectrogram is as
follows: preprocess the original audio signal, including removing DC bias, framing, and
windowing; perform fast Fourier transform (FFT) on each time window to obtain the
frequency spectrum of the signal; map the frequency spectrum to the mel scale, which is a
non-linear frequency scale related to human auditory characteristics [44,45]—this process
can be achieved by applying a linear transformation and a set of triangular filters; calculate
the energy output of each triangular filter on the mel scale, which can weight the energy in
different frequency ranges and merge them into one value—these energy values form one
row of the mel spectrogram, with each row representing a time window; convert the values
on the mel spectrogram from a linear scale to a logarithmic scale by taking the logarithm.
Since the frequency range of seismic signals is wide, the mel frequency scale can more finely
characterize the high-frequency part of the spectrum and compress the low-frequency part,
thereby better exhibiting the characteristics of the seismic signals. Therefore, by observing
the mel spectrogram, we can better understand the frequency spectrum characteristics of
the seismic signals and be helped to classify and recognize the seismic signals, as shown in
Figure 4.

Figure 3. Comparison of the average value of the mel spectral coefficient on Lightgbm model
importance. Adding several features with high importance to the model training greatly improved
the score. It should be noted here that the selection of other features also applies this method to the
extraction of features with high model importance, such as the number of peaks of at least support 2
on the denoised signal and above the 20% percentile on the std of the rolling window of size 50.
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Figure 4. Mel spectrogram illustration. Please note that this graph only shows a part of the seismic
data mel spectrogram, and it can be observed that the frequency of the seismic signal is concentrated
between 2 MHz to 4 MHz. The highlighted portion in the graph represents the primary frequency or
seismic signal, which is mixed with some noise components.

3. Earthquake Prediction Models

Our LightGBM model and the output layer of the neural network are consistent with
the work of Levinson et al. We optimized the neural network structure on this basis, as
shown in Figure 5. Finally, we combined the outputs of both models as the input for the
next meta-model, performing model fusion.

Figure 5. Schematic model of a deep learning model with a multi-level structure. We combined
long short term memory (LSTM), one-dimensional convolutional neural networks (1D-CNN), and
two-dimensional convolutional neural networks (2D-CNN). In the upper part of the diagram, the
blue color represents the LSTM layer, followed by two 1D-CNN layers indicated by the green color,
and the yellow color represents the flatten layer. In the lower part of the diagram, the input data
dimension is modified to fit the 2D-CNN. Similarly, the green color represents the 2D-CNN, where
the outputs of convolutional layers with different kernels are concatenated and inputted into the next
2D-CNN layer, and finally, the result is flattened. After processing the branches of the 1D-CNN and
2D-CNN, we concatenate their outputs using the concatenate operation to achieve feature fusion.
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3.1. The Deep Neural Network Model

In this study, we designed and implemented a deep learning model with a multi-level
structure, aiming to fully capture the temporal information and local features in the earth-
quake signal data. The model integrates the characteristics of long short-term memory
(LSTM), 1D convolutional neural networks (1D-CNN), and 2D convolutional neural net-
works (2D-CNN). These structures collaborate with each other, jointly processing the input
earthquake signal data to extract the temporal and local spatial features. The LSTM layer is
responsible for processing the input time-series data. It effectively captures the long-term
dependencies in the sequence data through memory cells and gate units. Following this, the
one-dimensional convolutional neural network (1D-CNN) slides the convolutional kernels
along the time dimension, enabling the detection of local features at different time scales.
As the kernels slide across the entire sequence, this parameter sharing characteristic en-
hances the model’s efficiency, reducing the number of trainable parameters. Subsequently,
the data are input into a two-dimensional convolutional layer. While typically used for
processing image data, in this model, we introduced the two-dimensional convolutional
layer by appropriately transforming the data shape. By utilizing kernels of various sizes,
the 2D-CNN can capture features across different ranges. Smaller kernels capture local
features, whereas larger kernels can detect features over broader ranges. Finally, the model
outputs three prediction results: time to failure (TTF), time since failure (TSF), and a binary
classification result. This multi-level, multi-structure deep learning model design enables
us to fully explore the potential information in the earthquake signal data, providing a more
accurate and reliable basis for earthquake prediction. Here are some details for each layer:

• Input Layer. The input of the model is a tensor with the shape of (1, N), where N
represents the feature dimension of the earthquake signal data. We introduced the
mel spectrogram in Section 2.2 of the article, and here N = 30.

• Batch Normalization Layer. In the second layer of the model, we employed a batch
normalization layer to normalize the input data. Batch normalization is a technique
that improves the training performance of neural networks. It can accelerate mode
convergence, enhance training stability, and reduce the sensitivity of the model to the
initialization of weights. The basic idea of batch normalization is to standardize each
feature on each mini-batch of data so that the mean of the data is 0 and the variance is
1. Specifically, by calculating the mean µB and variance σ2

B of the mini-batch, we can
perform centering and standardization on the input data Xi, obtaining the normalized
data. Subsequently, the normalized data are scaled and shifted using the learnable
scale factor γ and shift factor β to obtain the final output result Yi. This process helps
to improve the training performance and stability of neural networks and reduce
the reliance on parameter initialization. Batch normalization applies the following
transformation to each feature i of the input data.

Compute the mean of the mini-batch:

µB =
1
m

m

∑
i=1

Xi (1)

where m is the number of samples in the mini-batch, and Xi is the i-th sample.
Calculate the variance of the mini-batch:

σ2
B =

1
m

m

∑
i=1

(Xi − µB)
2 (2)

Normalize each feature:
X̂i =

Xi − µB√
σ2 B + ε

(3)

where ε is a small positive number to prevent division by zero.
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Perform scaling and shifting operations:

Yi = γ? X̂i + β (4)

where γ and β are learnable parameters that represent the scaling factor and shifting factor,
respectively. These two parameters enable the model to have greater expressiveness and
learn richer features from the input data.

• LSTM Layer. We employed a long short-term memory (LSTM) network to capture the
long-term and short-term temporal dependencies in the earthquake signal data. LSTM
is a special type of recurrent neural network (RNN) that addresses the vanishing and
exploding gradient problems that traditional RNN may encounter when processing
long sequences by using gating units. This makes LSTM more suitable for handling
data with complex temporal dependencies, such as earthquake signals. In this model,
we used an LSTM layer with 128 neurons to fully extract the temporal information
in the input data. To further process the temporal features in subsequent layers,
we set the return-sequences = True parameter, allowing the LSTM layer to output a
sequence with the same length as the input. In this way, the LSTM layer can capture
not only short-term fluctuations in the earthquake signal but also long-term trends in
the earthquake sequence. By combining the LSTM layer and subsequent convolutional
layers, our model can better capture and understand the dynamic characteristics of
earthquake signal data, providing a more accurate and reliable basis for earthquake
prediction.

• 1D-CNN Branch. After the LSTM layer, we constructed a subnetwork containing two
1D convolutional layers to extract local features from the earthquake signal. The first
1D convolutional layer has 128 convolution kernels, a kernel size of 2, and uses the
ReLU activation function. The second 1D convolutional layer has 256 convolution
kernels, a kernel size of 2, and also uses the ReLU activation function. Next, we
employed a Gaussian dropout layer to prevent overfitting, and flattened the result
for subsequent processing. Flattening is a data preprocessing operation in neural
networks used to convert a multi-dimensional tensor into a one-dimensional tensor.
This operation is very common in convolutional neural networks (CNN) because
the feature maps usually have a multi-dimensional structure after multiple layers
of convolution and pooling operations. In order to connect these feature maps to
subsequent fully connected layers for further processing, we need to flatten them
into a one-dimensional vector. Specifically, the operation of the flatten layer can be
expressed with the following formula:

Yi = x[a1, a2, . . . , an] (5)

In the formula, x is the input multi-dimensional tensor with a shape of (d1, . . . , dn); Y
is the output one-dimensional tensor with a shape of m, where m = d1

∗d2
∗ . . . ·∗ dn; i is the

element index in the output vector Y, with a range of [0, m− 1]; a1, a2, . . . , an are the element
indices in the input tensor x, with respective ranges of [0, d1 − 1], [0, d2 − 1], . . . , [0, dn − 1] ;
for each i. We can find a unique set of indices a1, a2, . . . , an such that Yi corresponds to
x[a1, a2, . . . , an]. This process essentially involves traversing all elements of the input tensor
x in a specific order (usually row-major or column-major) and copying them one-by-one
into the output vector Y.

• 2D-CNN Branch. It is worth noting that after the input layer, we constructed a subnet-
work consisting of a fully connected layer and multiple 2D convolutional layers. First,
the data were reshaped into a tensor with a shape of (16, 16, 1). Next, we built two 2D
convolutional layers with different kernel sizes, and then concatenated the outputs
of the two 2D convolutional layers. Finally, the result was flattened for subsequent
processing. 2D-CNN have certain advantages when processing time-series data, as
they can capture local features in both the time and frequency domains simultaneously.
Specifically, 2D-CNN can identify specific patterns at different times and frequen-
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cies, revealing spatial (time-domain) and frequency features in the signal. This is
significant for analyzing complex time-series data, such as earthquake signals. Using
convolution kernels of different sizes can help the model capture features at different
scales. Smaller kernels (e.g., 5 × 5) can capture local, detailed features in the signal,
while larger kernels (e.g., 7 × 7) can capture a broader spatial range, thus identifying
larger-scale patterns in the signal. This multi-scale feature extraction method helps
improve the model’s performance and generalization capabilities. Additionally, we
used a technique called “dilated convolution” to increase the receptive field range. By
increasing the dilation rate, the model can expand the receptive field range without
increasing the kernel size. This helps capture more extensive contextual information
while maintaining relatively low computational complexity. Finally, the feature maps
after the convolution operation are concatenated through the concatenate layer, com-
bining the different scale features captured by the two groups of convolutional layers.
In summary, by using multi-scale convolution kernels and feature fusion strategies, the
2D-CNN branch can simultaneously capture rich features in the time and frequency
domains, providing strong support for earthquake prediction tasks.

• Feature Concatenation Layer. After processing the outputs of the 1D-CNN and 2D-
CNN branches, we concatenate them, achieving feature fusion. This design aims to
combine the advantages of 1D-CNN and 2D-CNN to fully extract the features of the
earthquake signal data.

• Dense Layer. After the feature fusion, we added a fully connected layer with 128 neurons
and a ReLU activation function for further processing of the feature information.

• Outputs Layer. The model has three outputs, which are used to predict the time to
failure (TTF), time since failure (TSF), and a binary classification result (to determine
whether TTF is less than 0.5 s). The TTF output uses a fully connected layer with one
neuron and a ReLU activation function. The TSF output also employs a fully connected
layer with one neuron. For the binary classification output, a fully connected layer
with one neuron and a sigmoid activation function is used.

3.2. Stacking

Stacking is a commonly used machine learning technique that aims to improve the
prediction accuracy and model robustness by integrating the predictions of multiple models.
In practical applications, different models may have varying abilities to recognize certain
features or patterns in the data. By fusing the predictions of these models, we can leverage
the strengths of each model and reduce the prediction errors caused by biases or noise in a
single model. Model fusion can help us achieve better performance than a single model in
many situations. In our work, we apply the stacking strategy to the time-series prediction
task to enhance the prediction performance.

The specific steps are as follows:
Step 1: We first create a simple linear regression model (LR), with its expression as

follows:
Y = X∗β + ε (6)

where Y is the target variable (response variable) vector, X is the feature matrix (explanatory
variable matrix), β is the model parameter (coefficient) vector, and ε is the error vector.
Linear regression aims to find a set of parameters β that minimizes the sum of squared
errors ε, minimizing the mean squared error (MSE). This method is called ordinary least
squares (OLS).

Step 2: Stack the prediction results of the LightGBM model and the deep learning
model together to serve as the input features for the second-layer model.

Step 3: Stack the test set prediction results of the LightGBM model and the deep
learning model together to serve as the input features for testing the second-layer model.

Step 4: Train the linear regression model using the input features from Step 2 and the
target values.
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Step 5: Use the trained linear regression model to make predictions on the test set
from Step 3, obtaining the combined test set prediction results.

4. Experiments
4.1. Model Training

In this section, to demonstrate the advantages of feature engineering and modeling,
we conducted two sets of experiments. We used 3-fold cross-validation to train the model
based on the available data. We applied different models to two sets of feature data
(Dataset 1 and Dataset 2), using the mean absolute error (MAE) as the final evaluation
metric. Each model was trained for 1000 epochs, and the batch-size was 256. The formula
is as follows:

MAE =
1
m

m

∑
i=1
|Xi −Yi| (7)

where m is the number of samples, Xi is the true value, and Yi is the predicted value.
In Experiment 1, Dataset 1 represents the feature dataset used for training by

(https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/discussion/94390
(accessed on 11 October 2023)), and in Experiment 2, Dataset 2 is based on this and adds
some new features (Table 1).

Table 1. New features added in this study.

Index Feather Name Feather Description

1 NN_Mels_mean4 original signal in the
5th Mel frequency band

2 NN_Mels_mean5 original signal in the
6th Mel frequency band

3 NN_Mels_mean18 original signal in the
19th Mel frequency band

4 NN_LGBM_Mels_mean9 original signal in the
10th Mel frequency band

5 NN_LGBM_Mels_mean11 original signal in the
12th Mel frequency band

6 NN_LGBM_Mels_mean16 riginal signal in the
17th Mel frequency band

7 NN_Mels_mean_denoise_6 denoised signal in the
7th Mel frequency band

8 NN_Mels_mean_denoise_7 denoised signal in the
8th Mel frequency band

9 NN_Mels_mean_denoise_13 denoised signal in the
14th Mel frequency band

4.2. Experimental Results of Model Performance

We selected four model structures, which were: a single LightGBM (LGB) model;
a model stacking LSTM and 1D-CNN (NN-1D); a model stacking LSTM, 1D-CNN, and
2D-CNN (NN-2D); and finally, using the prediction results of LGB and NN-2D as input,
employing a linear regression model as the meta-model for model fusion (stacking). Train-
MAE and Test-MAE correspond to the scores of the training data and the testing data,
respectively. The final results are based on the testing data.

Evaluating and comparing the performance of models on the training and validation
datasets is crucial. By observing the MAE curves of different models, we can quickly
identify which models perform better for specific tasks. Moreover, if the training MAE
continues to decrease, but the validation MAE begins to rise after reaching the minimum
value, it is usually an indication of overfitting in the model. Here, the MAE comparisons of
different neural network structures in the two sets of experiments separately are shown in
Figures 6 and 7.

https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/discussion/94390
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Figure 6. For the first experiment, the training and validation MAE for the two neural network
structures (NN-1D and NN-2D) are shown. Solid lines marked with blue circles and star-shaped
markers represent the training MAE and the validation MAE of the NN-1D model, respectively,
while solid lines marked with red circles and star-shaped markers represent the training MAE and
validation MAE of the NN-2D model, respectively. It can be clearly seen that the performance of the
two models is very similar in this dataset, and there are no overfitting issues for either model.

Figure 7. In the second experiment, the training and validation MAE for the two neural network
structures (NN-1D and NN-2D) are shown. The information represented by the four curves in the
figure is the same as in Figure 8. It is found that NN-2D converges faster to fitting on the validation
set compared to NN-1D.

The experimental results show that the performance of the NN-2D neural network
was better than that of the NN-1D under the same dataset. As shown in Tables 2 and 3, we
can see that the MAE of NN-2D was higher than that of NN-1D during the training process,
but NN-2D achieved better results in the testing process. This is because in our work, we
used 13% of the data as training and validation data and 87% as test data, so there is some
overfitting in the final results. This proves that the NN-2D model has better generalizability.
Comparing the same model in both tables shows that the model scores under Dataset 2
are better than Dataset 1. This result demonstrates that the mel spectrogram is beneficial
for extracting effective features from earthquake signals. As shown in Table 3, our best
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result was 2.23831; the stacking strategy can more accurately predict the remaining time
before the next laboratory earthquake. For the results of other participants, please refer to
Johnson, P.A. et al. [23]. The prediction results are shown in Figure 8.

Table 2. Comparison of the scores of each model in Dataset 1.

Model Train-MAE Test-MAE

LGB 1.89379 2.27931
NN-1D 1.86133 2.28126
NN-2D 1.86481 2.27835

Stacking 1.85483 2.24514

Table 3. Comparison of the scores of each model in Dataset 2.

Model Train-MAE Test-MAE

LGB 1.89362 2.27851
NN-1D 1.85528 2.27628
NN-2D 1.86463 2.27388

Stacking 1.85374 2.23831

Figure 8. Comparison of predictions and actual values. The blue line represents the remaining time
before the next laboratory earthquake occurs (actual values), and the orange line represents the
model’s predicted values.

5. Conclusions

In this paper, we focused on feature engineering and the performance of prediction
models, achieving good results in the private leaderboard. The experiments demonstrated
that mel spectrogram features, as a feature representation method for audio signals, can
effectively capture the frequency characteristics of the signals, thereby improving the
prediction accuracy. At the same time, we used 2D convolutional neural networks with
different kernel sizes and dilated convolutions to predict time series, which can capture
more effective features at different scales compared to a single 1D convolutional neural
network. In addition, the stacking strategy further improved our prediction performance
because different models have different recognition capabilities for the data. By leveraging
the “wisdom” of multiple models, we can enhance the overall prediction performance and
reduce the risk of overfitting for individual models. In summary, we successfully improved
the performance of the prediction task by optimizing the feature engineering, the model
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structure, and the model fusion. These optimizations offer valuable insights for handling
similar problems in practical applications. However, accurately predicting earthquakes
remains a challenging task. Laboratory earthquake data, while valuable, are a relatively
idealized form of data and cannot fully simulate real earthquakes. The complex and
variable nature of fault zones constitutes the most significant factor affecting the accuracy
of models. In future work, we will continue to explore more feature extraction methods,
more efficient model structures, and fusion strategies to achieve even better prediction
performance.

Author Contributions: Conceptualization, W.C.; methodology, T.X.; software, C.Z.; writing—original
draft preparation, B.Z.; writing—review and editing, B.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Basic Scientific Research Business Expenses for Universities
in the Autonomous Region: Scientific Research Projects Grant Number XJEDU2023P171.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author. Publicly available datasets were analyzed in this study. This data can be found here:
https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/discussion/94390 (accessed
on 11 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aguirre, L.; Bataille, K.; Novoa, C.; Peña, C.; Vera, F. Kinematics of subduction processes during the earthquake cycle in Central

Chile. Seismol. Res. Lett. 2019, 90, 1779–1791. [CrossRef]
2. Hammond, A.L. Earthquake prediction and control. Science 1971, 173, 316. [CrossRef]
3. Healy, J.H. Recent highlights and future trends in research on earthquake prediction and control. Rev. Geophys. 1975, 13, 361–364.

[CrossRef]
4. Scholz, C. A physical interpretation of the Haicheng earthquake prediction. Nature 1977, 267, 121–124. [CrossRef] [PubMed]
5. Chen, Y.; Xue, R.; Zhang, Y. House price prediction based on machine learning and deep learning methods. In Proceedings of the

2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26
September 2021; pp. 699–702. [CrossRef]

6. Mehtab, S.; Sen, J.; Dutta, A. Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models. arXiv
2020, arXiv:abs/2009.10819. [CrossRef]

7. Ma, N.; Yin, H.; Wang, K. Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on
Improved Long Short-Term Memory. Energies 2023, 16, 5240. [CrossRef]

8. Li, W.; Zhang, L.C.; Wu, C.H.; Wang, Y.; Cui, Z.; Niu, C. A data-driven approach to RUL prediction of tools. Adv. Manuf. 2023,
1–13. [CrossRef]

9. Laurenti, L.; Tinti, E.; Galasso, F.; Franco, L.; Marone, C. Deep learning for laboratory earthquake prediction and autoregressive
forecasting of fault zone stress. Earth Planet. Sci. Lett. 2022, 598, 117825. [CrossRef]

10. Asim, K.; Martínez-Álvarez, F.; Basit, A.; Iqbal, T. Earthquake magnitude prediction in Hindukush region using machine learning
techniques. Nat. Hazards 2017, 85, 471–486. [CrossRef]

11. Cao, C.; Wu, X.; Yang, L.; Zhang, Q.; Wang, X.; Yuen, D.A.; Luo, G. Long short-term memory networks for pattern recognition of
synthetical complete earthquake catalog. Sustainability 2021, 13, 4905. [CrossRef]

12. Wang, K.; Johnson, C.W.; Bennett, K.C.; Johnson, P.A. Predicting fault slip via transfer learning. Nat. Commun. 2021, 12, 7319.
[CrossRef] [PubMed]

13. Wang, X.; Wang, Z.; Wang, J.; Miao, P.; Dang, H.; Li, Z. Machine learning based ground motion site amplification prediction.
Front. Earth Sci. 2023, 11, 1053085. [CrossRef]

14. Sang, K.H.; Yin, X.Y.; Zhang, F.C. Machine learning seismic reservoir prediction method based on virtual sample generation. Pet.
Sci. 2021, 18, 1662–1674. [CrossRef]

15. Feng, T.; Zhang, M.; Xu, L.; Wu, J.; Fang, L. Machine learning-based earthquake catalog and tomography characterize the
middle-northern section of the Xiaojiang fault zone. Seismol. Soc. Am. 2022, 93, 2484–2497. [CrossRef]

https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/discussion/94390
http://doi.org/10.1785/0220180391
http://dx.doi.org/10.1126/science.173.3994.316
http://dx.doi.org/10.1029/RG013i003p00361
http://dx.doi.org/10.1038/267121a0
http://www.ncbi.nlm.nih.gov/pubmed/16073409
http://dx.doi.org/10.1109/EIECS53707.2021.9587907
http://dx.doi.org/10.1007/978-981-16-0419-5_8
http://dx.doi.org/10.3390/en16145240
http://dx.doi.org/10.1007/s40436-023-00464-y
http://dx.doi.org/10.1016/j.epsl.2022.117825
http://dx.doi.org/10.1007/s11069-016-2579-3
http://dx.doi.org/10.3390/su13094905
http://dx.doi.org/10.1038/s41467-021-27553-5
http://www.ncbi.nlm.nih.gov/pubmed/34916491
http://dx.doi.org/10.3389/feart.2023.1053085
http://dx.doi.org/10.1016/j.petsci.2021.09.034
http://dx.doi.org/10.1785/0220220116


Appl. Sci. 2023, 13, 12268 14 of 15

16. Wrona, T.; Pan, I.; Gawthorpe, R.L.; Fossen, H. Seismic facies analysis using machine learning. Geophysics 2018, 83, O83–O95.
[CrossRef]

17. Rouet-Leduc, B.; Hulbert, C.; Lubbers, N.; Barros, K.; Humphreys, C.J.; Johnson, P.A. Machine learning predicts laboratory
earthquakes. Geophys. Res. Lett. 2017, 44, 9276–9282. [CrossRef]

18. Hulbert, C.; Rouet-Leduc, B.; Johnson, P.A.; Ren, C.X.; Rivière, J.; Bolton, D.C.; Marone, C. Similarity of fast and slow earthquakes
illuminated by machine learning. Nat. Geosci. 2019, 12, 69–74. [CrossRef]

19. Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT.
Energy Rep. 2021, 7, 1588–1597. [CrossRef]

20. Aymerich, E.; Sias, G.; Pisano, F.; Cannas, B.; Fanni, A.; the-JET-Contributors. CNN disruption predictor at JET: Early versus late
data fusion approach. Fusion Eng. Des. 2023, 193, 113668. [CrossRef]

21. Hu, R.; Xiang, S. CNN prediction based reversible data hiding. IEEE Signal Process. Lett. 2021, 28, 464–468. [CrossRef]
22. Allam, J.P.; Samantray, S.; Sahoo, S.P.; Ari, S. A deformable CNN architecture for predicting clinical acceptability of ECG signal.

Biocybern. Biomed. Eng. 2023, 43, 335–351. [CrossRef]
23. Johnson, P.A.; Rouet-Leduc, B.; Pyrak-Nolte, L.J.; Beroza, G.C.; Marone, C.J.; Hulbert, C.; Howard, A.; Singer, P.; Gordeev, D.;

Karaflos, D.; et al. Laboratory earthquake forecasting: A machine learning competition. Proc. Natl. Acad. Sci. USA 2021, 118,
e2011362118. [CrossRef]

24. Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Appl. 2019,
519, 127–139. [CrossRef]

25. Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing
2019, 323, 203–213. [CrossRef]

26. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar,
N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by
stacking machine learning models and rescanning covariate space. Remote Sens. 2020, 12, 1095. [CrossRef]

27. Shaw, R.; Lokshin, A.E.; Miller, M.C.; Messerlian-Lambert, G.; Moore, R.G. Stacking machine learning algorithms for biomarker-
based preoperative diagnosis of a pelvic mass. Cancers 2022, 14, 1291. [CrossRef]

28. Chatzimparmpas, A.; Martins, R.M.; Kucher, K.; Kerren, A. StackGenVis: Alignment of data, algorithms, and models for stacking
ensemble learning using performance metrics. IEEE Trans. Vis. Comput. Graph. 2020, 27, 1547–1557. [CrossRef]

29. Tian, C.; Zheng, M.; Zuo, W.; Zhang, B.; Zhang, Y.; Zhang, D. Multi-stage image denoising with the wavelet transform. Pattern
Recognit. 2023, 134, 109050. [CrossRef]

30. Baldazzi, G.; Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Wavelet denoising as a post-processing enhancement method
for non-invasive foetal electrocardiography. Comput. Methods Programs Biomed. 2020, 195, 105558. [CrossRef]

31. Wang, L.; Zheng, W.; Ma, X.; Lin, S. Denoising speech based on deep learning and wavelet decomposition. Sci. Program. 2021,
2021, 8677043. [CrossRef]

32. Renfei, T.; Tao, L.; Min, O. Method for wavelet denoising of multi-angle prestack seismic data. Acta Geophys. 2023, 71, 1515–1524.
[CrossRef]

33. Sui, Y.; Ma, J. A nonstationary sparse spike deconvolution with anelastic attenuation. Geophysics 2019, 84, R221–R234. [CrossRef]
34. Gao, Z.; Hu, S.; Li, C.; Chen, H.; Jiang, X.; Pan, Z.; Gao, J.; Xu, Z. A deep-learning-based generalized convolutional model for

seismic data and its application in seismic deconvolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [CrossRef]
35. Mirel, M.; Cohen, I. Multichannel Semi-blind Deconvolution (MSBD) of seismic signals. Signal Process. 2017, 135, 253–262.

[CrossRef]
36. Ravasi, M.; Selvan, T.; Luiken, N. Stochastic multi-dimensional deconvolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14.

[CrossRef]
37. Li, Y.; Mei, L.; Li, R.; Wu, C. Using noise level to detect frame repetition forgery in video frame rate up-conversion. Future Internet

2018, 10, 84. [CrossRef]
38. Sahu, S.; Singh, H.V.; Kumar, B.; Singh, A.K. De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy

distribution. Multimed. Tools Appl. 2019, 78, 4089–4106. [CrossRef]
39. Xie, T.; Zheng, X.; Zhang, Y. Seismic facies analysis based on speech recognition feature parameters. Geophysics 2017, 82, O23–O35.

[CrossRef]
40. Zhou, Q.; Tong, G.; Xie, D.; Li, B.; Yuan, X. A seismic-based feature extraction algorithm for robust ground target classification.

IEEE Signal Process. Lett. 2012, 19, 639–642. [CrossRef]
41. Alghamdi, N.S.; Zakariah, M.; Hoang, V.T.; Elahi, M.M. Neurogenerative Disease Diagnosis in Cepstral Domain Using MFCC

with Deep Learning. Comput. Math. Methods Med. 2022, 2022, 4364186. [CrossRef]
42. Noda, J.J.; Travieso-González, C.M.; Sanchez-Rodriguez, D.; Alonso-Hernández, J.B. Acoustic classification of singing insects

based on MFCC/LFCC fusion. Appl. Sci. 2019, 9, 4097. [CrossRef]
43. Fahad, M.S.; Deepak, A.; Pradhan, G.; Yadav, J. DNN-HMM-based speaker-adaptive emotion recognition using MFCC and

epoch-based features. Circuits Syst. Signal Process. 2021, 40, 466–489. [CrossRef]

http://dx.doi.org/10.1190/geo2017-0595.1
http://dx.doi.org/10.1002/2017GL074677
http://dx.doi.org/10.1038/s41561-018-0272-8
http://dx.doi.org/10.1016/j.egyr.2021.03.017
http://dx.doi.org/10.1016/j.fusengdes.2023.113668
http://dx.doi.org/10.1109/LSP.2021.3059202
http://dx.doi.org/10.1016/j.bbe.2023.01.006
http://dx.doi.org/10.1073/pnas.2011362118
http://dx.doi.org/10.1016/j.physa.2018.11.061
http://dx.doi.org/10.1016/j.neucom.2018.09.082
http://dx.doi.org/10.3390/rs12071095
http://dx.doi.org/10.3390/cancers14051291
http://dx.doi.org/10.1109/TVCG.2020.3030352
http://dx.doi.org/10.1016/j.patcog.2022.109050
http://dx.doi.org/10.1016/j.cmpb.2020.105558
http://dx.doi.org/10.1155/2021/8677043
http://dx.doi.org/10.1007/s11600-022-00842-3
http://dx.doi.org/10.1190/geo2017-0846.1
http://dx.doi.org/10.1109/TGRS.2021.3076991
http://dx.doi.org/10.1016/j.sigpro.2017.01.026
http://dx.doi.org/10.1109/TGRS.2022.3179626
http://dx.doi.org/10.3390/fi10090084
http://dx.doi.org/10.1007/s11042-017-5221-9
http://dx.doi.org/10.1190/geo2016-0121.1
http://dx.doi.org/10.1109/LSP.2012.2209870
http://dx.doi.org/10.1155/2022/4364186
http://dx.doi.org/10.3390/app9194097
http://dx.doi.org/10.1007/s00034-020-01486-8


Appl. Sci. 2023, 13, 12268 15 of 15

44. Borwankar, S.; Verma, J.P.; Jain, R.; Nayyar, A. Improvise approach for respiratory pathologies classification with multilayer
convolutional neural networks. Multimed. Tools Appl. 2022, 81, 39185–39205. [CrossRef] [PubMed]

45. Coelho, G.; Matos, L.M.; Pereira, P.J.; Ferreira, A.; Pilastri, A.; Cortez, P. Deep autoencoders for acoustic anomaly detection:
Experiments with working machine and in-vehicle audio. Neural Comput. Appl. 2022, 34, 19485–19499. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11042-022-12958-1
http://www.ncbi.nlm.nih.gov/pubmed/35505670
http://dx.doi.org/10.1007/s00521-022-07375-2

	Introduction
	Data Preprocessing
	Datasets
	Removing Noise
	Selecting Features

	Earthquake Prediction Models
	The Deep Neural Network Model
	Stacking

	Experiments
	Model Training
	Experimental Results of Model Performance

	Conclusions
	References

