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Abstract: Speech signals involve speakers’ emotional states and language information, which is very
important for human–computer interaction that recognizes speakers’ emotions. Feature selection is a
common method for improving recognition accuracy. In this paper, we propose a multi-objective
optimization method based on differential evolution (MODE-NSF) that maximizes recognition
accuracy and minimizes the number of selected features (NSF). First, the Mel-frequency cepstral
coefficient (MFCC) features and pitch features are extracted from speech signals. Then, the proposed
algorithm implements feature selection where the NSF guides the initialization, crossover, and
mutation of the algorithm. We used four English speech emotion datasets, and K-nearest neighbor
(KNN) and random forest (RF) classifiers to validate the performance of the proposed algorithm.
The results illustrate that MODE-NSF is superior to other multi-objective algorithms in terms of the
hypervolume (HV), inverted generational distance (IGD), Pareto optimal solutions, and running
time. MODE-NSF achieved an accuracy of 49% using eNTERFACE05, 53% using the Ryerson audio-
visual database of emotional speech and song (RAVDESS), 76% using Surrey audio-visual expressed
emotion (SAVEE) database, and 98% using the Toronto emotional speech set (TESS). MODE-NSF
obtained good recognition results, which provides a basis for the establishment of emotional models.

Keywords: speech signals; feature selection; multi-objective; differential evolution

1. Introduction

Speech signals are information rich and extend the content of written messages via the
speakers’ identity, their emotional state, and their intonation patterns [1]. They are easier to
capture compared to other physiological signals [2].

Speech recognition technology grants machines the ability to express emotions and
enables them to recognize human emotions. A lot of research has been conducted on
speech emotion recognition (SER), and its applications are increasingly popular in the field
of human–computer interaction, distance education, and emotional therapy. However,
significant work is still required to make the applications more natural. In fact, the factors
that affect a person’s emotions are complex and diverse. Individuals experience various
psychological changes in different emotional states. These changes lead them to associate
emotional fluctuations with speech, and provide key emotional information for SER. Speech
features are extracted to describe this information.

Emotion recognition relies on extracting meaningful features from speech signals. Cur-
rently, these features mainly include intonation features, spectrum features, voice quality
features, and other acoustic features. Many features are used in speech recognition, and
excellent results can be achieved through training with various machine learning methods.
However, speech features introduce redundancy, and negatively impact recognition results.
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Feature selection achieves dimensionality reduction by removing irrelevant and redundant
features [3,4]. This is widely used in SER to reduce processing time and enhance recognition
efficiency. Differential evolution (DE) mimics the natural concept of survival of the fittest, and
gradually converges towards an optimal or near-optimal solution [5–7]. DE is known for its
computational efficiency in optimizing feature subsets. It explores search space effectively, and
it shows significant advantages in single- and multi-objective feature selection [8–11].

While multi-objective DE is fast, it has a few drawbacks. For example, it has trouble
with unstable convergence and may lose population diversity. In this study, we investigated
multi-objective DE to recognize speech emotion through feature selection, and the main
contributions of this paper are summarized as follows:

1. We propose a model for speech emotion recognition;
2. We propose a feature extraction approach from speech signals;
3. We propose a multi-objective feature selection algorithm based on DE in which the number

of selected features (NSF) guides the initialization, crossover, and mutation of DE;
4. We validated the performance of the proposed algorithm on K-nearest neighbor

(KNN) and random forest (RF) classifiers with four English speech emotion datasets.

The structure of this paper is organized as follows. Section 2 introduces the related
works of SER. Section 3 describes the proposed algorithm. Section 4 represents the experi-
mental results with discussions, and Section 5 provides the conclusions.

2. Related Works

Existing research in speech emotion recognition is classified into single- and multi-
objective optimization according to different goals.

Sun et al. proposed a SER method based on decision tree (DT), support vector machine
(SVM), and Fisher feature selection [12]. The Fisher criterion is employed to filter out
feature parameters with a high discrimination ability. The DT and SVM framework is first
established by calculating the confusion of emotions, and then features with high discrimi-
nation are selected for each SVM in the DT according to the Fisher’s criterion. Finally, SER
is realized based on the model. Partila et al. discussed the impact of classification methods
and feature selection on the accuracy of SER, and found the best combination of methods
and feature sets for stress detection in human speech [13]. Selecting appropriate parameters
for a classifier is an important part of reducing computational complexity, especially for
systems intended for real-time applications. The classification accuracy of an artificial
neural network, KNN, and Gaussian mixture model is measured considering the selection
of foreground, spectral, and speech quality features. Traditional feature selection methods
often rely on supervised learning, where emotion labels are used to guide the selection of
relevant features. However, these methods may not be efficient when labeled data are scarce
or expensive to obtain. To address this challenge, Bandela et al. proposed a novel approach
that leverages unsupervised feature selection algorithms to identify the most informative
and discriminative features from speech data without using emotion labels [14]. They
explore various unsupervised feature selection algorithms, such as principal component
analysis (PCA), independent component analysis (ICA), and clustering-based methods.
Akinpelu and Viriri integrated robust feature selection and deep transfer learning to im-
prove the performance and robustness of speech emotion classification [15]. The robust
feature selection chooses features that are less affected by noise and irrelevant variations in
data. The deep transfer learning employs knowledge learned from a pre-trained neural
network model on a large dataset. Transfer learning allows the model to benefit from
knowledge gained from one domain (e.g., a large general speech dataset) and apply it to a
related but different domain (e.g., speech emotion classification). Li et al. addressed the
problem of recognizing emotions from speech signals [16]. Speech features are extracted
from signals that may carry emotional cues, and these features include acoustic features
(pitch, intensity, and spectrum), prosodic features (speaking rate and pitch contour), and
linguistic features (lexical content and sentiment-related words). The research involves
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a comprehensive analysis of the extracted speech features to identify their relevance and
importance for emotion recognition.

In addition to recognition accuracy, there are several studies on emotion recognition
from computational efficiency, classifier optimization, and unity. Brester et al. proposed a
novel approach that combines heuristic feature selection methods with a multi-objective
optimization framework [17], aiming to maximize classification accuracy and minimize
computational complexity. They optimize computational efficiency by working in parallel
and incorporating a technique for exchanging subsets of data. Furthermore, the approach
uses a beneficial pre-processing step when combined with an ensemble of classifiers. It not
only streamlines the feature selection process but also enhances the overall classification
performance. Daneshfar and Kabudian combined discriminative dimension reduction and
a modified quantum-behaved particle swarm optimization (QPSO) algorithm to imple-
ment SER and optimize the Gaussian mixture model (GMM) classifier’s parameters [18].
The dimension reduction method preserves emotion-specific features and improves the
discriminative power of the extracted features. The modified QPSO algorithm enhances the
optimization process for feature selection in SER. Li et al. presented a novel approach for
enhancing emotion recognition through multiple data sources [19]. The proposed model
utilizes a sophisticated multi-objective optimization algorithm to create the multi-modal
system, which effectively combines voice and facial information with the goal of simul-
taneously improving recognition accuracy and consistency. Yildirim et al. introduced a
modified feature selection method that employs metaheuristic algorithms to identify the
most important features for SER [20]. Various metaheuristic algorithms, such as NSGA-II
and cuckoo search, are applied to optimize the feature selection process. These algorithms
efficiently explore feature space and converge to optimal feature subsets.

Drawing from previous research, multi-objective speech emotion recognition mainly
includes classification accuracy and the number of selected features. Although the research
achieved good results, it usually considers recognition accuracy when searching for the
optimal solutions. It neglects the fact that the number of features is also the main factor
affecting multi-objective algorithms, resulting in a loss of population diversity. Compared
to other evolutionary algorithms, the popularity of DE as a competitive optimization
algorithm is due to its efficiency, simplicity, robustness, and global search ability. We utilize
it as a feature selection technique for multi-objective speech emotion recognition.

3. Materials and Method

The whole process consists of several main steps: firstly, preparing the data (pre-
process); secondly, extracting important information (feature extraction); thirdly, selecting
the most relevant features (feature selection); and finally, using classifiers for making
predictions, as shown in Figure 1.

Output 
emotion class

Pre-process Feature extraction

Feature selection

Classifiers

Emotion data

Predict

Acoustic 
features

Figure 1. The flowchart of the proposed system.
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3.1. Emotion Data

Four different English speech emotion datasets were used in this study. eNTER-
FACE05 is known for capturing spontaneous emotional expressions in unscripted scenarios,
while the Ryerson audio-visual database of emotional speech and song (RAVDESS) focuses
on emotional speech and song data. The Surrey audio-visual expressed emotion (SAVEE)
dataset collects posed emotional expressions, and the Toronto emotional speech set (TESS)
specializes in scripted emotional speech. Each database has unique characteristics that suit
different research needs in the domain of emotion analysis and recognition. Through these
datasets, the pros and cons of the algorithms can be more comprehensively evaluated.

1. eNTERFACE05: eNTERFACE05 is a well-known European research project and dataset
that focuses on the development of technologies for human–computer interaction, particu-
larly in the fields of facial and emotional expression recognition [21]. The eNTERFACE05
dataset contains emotional expressions such as happiness, sadness, anger, fear, disgust,
and surprise;

2. Ryerson audio-visual database of emotional speech and song: RAVDESS is a valuable
resource for studying emotions in speech and music because it includes both acted
and natural emotional expressions performed by professional actors [22]. RAVDESS
encompasses a wide range of emotions such as calm, happiness, sadness, anger, fear,
surprise, and disgust;

3. Surrey audio-visual expressed emotion: SAVEE is a dataset containing audio and
video recordings that display emotional expressions by English native speakers [23].
This dataset covers various emotions including happiness, anger, disgust, sadness,
fear, and neutral;

4. Toronto emotional speech set: TESS consists of professionally acted and recorded
speech segments spoken by North American English speakers [24]. TESS includes
expressions of anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral.

3.2. Pre-Process

Pre-emphasis, framing, and windowing are important pre-process steps often applied
to raw speech audio data. These steps ensure that speech data are cleaned, transformed,
and organized in a way that allows machine learning algorithms to effectively learn and
recognize emotional patterns.

Pre-emphasis is a filtering technique that is applied to raw speech signals before
further analysis. It accentuates high frequencies in signals and improves the signal-to-noise
ratio. Speech signals tend to have more energy in low frequencies, and pre-emphasis can
balance this by boosting high-frequency components.

Framing involves dividing continuous speech signals into shorter overlapping seg-
ments (frames). The reason for this is that speech characteristics, such as pitch and spectral
content, can change rapidly in short time intervals. By analyzing these frames individually,
we capture variations more accurately. Each frame typically contains about 20–30 ms of
speech data.

After framing, a windowing function is applied to each frame. Windowing reduces
sudden changes at the edges of frames and prevents artifacts during the subsequent analy-
sis, such as the Fourier transform. Common windowing functions include the Hamming,
Hanning, and Blackman windows. These functions smoothly taper signals within frames,
and decrease the effects of spectral leakage.

3.3. Feature Extraction

In this study, we extracted Mel-frequency cepstral coefficient (MFCC) features and pitch
features from raw audios. A total of 141 values were extracted, and Table 1 describes their
details.

1. Pitch features: Pitch features are important elements extracted from speech signals that
provide information about the fundamental frequency (F0) and tonal characteristics
of the human voice. They are extracted using autocorrelation, cepstral analysis, and
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wavelet transform. By analyzing these features, SER systems can better understand
and interpret the emotional nuances and linguistic characteristics of spoken language;

2. MFCC features: MFCC features capture the essential characteristics of speech sig-
nals, and ignore redundant or less important information. They mimic how human
auditory systems process sounds by converting their frequency spectrum into a repre-
sentation that’s easier for computers to understand.

Table 1. The details of the features.

Features Details

Pitch

spurt length
the max, min, median, mean and variance of each pitch

the max derivative, min derivative, median derivative, mean derivative and variance derivative
of each pitch

MFCC

the max, min, median, mean and variance of each coefficient
the max derivative, min derivative, median derivative, mean derivative and variance derivative

of each coefficient

3.4. Improved Multi-Objective Differential Evolution for Feature Selection

The proposed MODE-NSF, shown in Figure 2, includes four new schemes. Firstly, the
initialization is defined by the NSF. Then, this NSF is adopted to adjust crossover. Third,
the NSF-based mutation strategy is introduced to balance exploration and exploitation.
Finally, MODE-NSF combines new and old solutions, and deletes duplicate individuals.
In our speech emotion recognition model, MODE-NSF implements the feature selection
operation shown in Figure 1.

Is or not iteration

Start

Initialize positions

Crossover

Calculate the multi-objective 
function of each individual

Output the Pareto 
solutions

Mutation

End

No

Yes

Find the Pareto solutions

Calculate the multi-objective 
function of each individual

Combine new and old individuals
Delete duplicate individuals

Find the Pareto solutions

Figure 2. The flowchart of the proposed MODE-NSF.
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3.4.1. Multi-Objective Feature Selection

Multi-objective algorithms are designed to find solutions for multiple objectives in
decision space. Because these objectives are in conflict, a significant challenge is comparing
two potential solutions. If solution S1 outperforms solution S2 in all objectives, we say that
S1 dominates S2. Non-dominated solutions, like S1, are not outperformed by any other
solution, and they are called Pareto solutions. The set of all non-dominated solutions forms
a Pareto set, and their corresponding objective values make up the Pareto front.

A binary string represents a solution of multi-objective feature selection, where 0/1
represents the unselected/selected feature. Feature selection mainly involves two objectives:
maximizing classification accuracy and minimizing the number of selected features [25], as
shown in Equation (1).

min F(x) = [ f1(x), f2(x)]

subject to f1 = number(x)

f2 = 1 − accuracy(x)

(1)

where f1 is the number of feature sets (x), and f2 denotes the classification accuracy of x.
In multi-objective feature selection, the number of selected features ( f1) defines an

optimization objective, so we utilize it to implement a search.

3.4.2. Initialization

Random initialization is not employed to expand feature search space. MODE-NSF
randomly generates the NSF and determines the initial positions using it. MODE-NSF
defines a counter to store the usage frequency of the NSF, and Algorithm 1 provides the
details of the novel initialization.

Algorithm 1: The initialization based on the NSF

1 % Input: dim represents the number of features
2 % nPop means the population size
3 % f lags is used to count the usage frequency of the NSF
4 % Output: the positions (pop) of individuals
5 for i = 1:nPop do
6 dd = randperm(dim,1) ;
7 id = randperm(dim, dd);
8 pop(i).Position(id) = 1;
9 Execte Equation (1) ;

10 flags(pop(i).Cost(1)) = flags(pop(i).Cost(1)) + 1;
11 end

3.4.3. Crossover

Crossover operators are crucial because they enhance exploration ability. This process,
similar to reproduction in nature, ensures the survival of species. In DE, crossover generates
new offspring, and it explores search space more effectively. During crossover, two or more
individuals from the population act as parents to create children. These children inherit
genetic information from their parents, which improves the algorithm’s chances of finding
the global optimal solution.

MODE-NSF utilizes Equations (2) and (3) to implement crossover. In addition, r2 and
r3 are two random individuals, and r1 comes from Pareto solutions with the minimum NSF
difference of i. Moreover, λ and pCR are called the scale factor and crossover probability,
respectively. The NSF difference between r1 and i is the smallest. It prompts i to quickly
approach r1 and increases the convergence of the algorithm. However, if r1 is a local
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optimum, it may cause the algorithm to fall into a local trap, which can be solved by the
mutation operation.

mi(t + 1) = Positionr1(t) + λ ∗ (Positionr2(t)− Positionr3(t)) (2)

Positionj
i(t + 1) =

{
mj

i(t + 1) i f (rand(j) ≤ pCR) or j = randi(i)
Positionj

i(t) i f (rand(j) > pCR) or j! = randi(i)
(3)

3.4.4. Mutation

Mutation is the process of introducing a small random change into a solution. This
change promotes diversity and exploration within solutions. In essence, mutation prevents
the algorithm from getting stuck in local optima and can lead to the discovery of better
solutions. Algorithm 2 presents the procedure of the proposed mutation, and mt means a
random integer value between the maximum NSF of Pareto solutions and the minimum
NSF of Pareto solutions. Lines 2–6 of the algorithm represent reducing the NSF, and lines
7–12 represent increasing the NSF.

Algorithm 2: The mutation based on NSF

1 % Input: mutation i
2 % Output: i
3 m_p = find(pop(i).Position==1) ;
4 if length(m_p) > mt then
5 m_a = randperm(length(m_p), length(m_p) - mt);
6 m_b = m_p(m_a);
7 pop(i).Position(m_b) = 0;
8 end
9 if length(m_p) < mt then

10 m_p0 = find(pop(i).Position==0);
11 m_a = randperm(length(m_p0), mt - length(m_p));
12 m_b = m_p0(m_a);
13 pop(i).Position(m_b) = 1;
14 end

3.5. Classifiers

1. K-nearest neighbor: KNN is a simple classification algorithm that is easy to comprehend
and implement [26]. It is non-parametric, and it does not make strong assumptions about
the distribution of data. This can be useful when dealing with diverse and complex
emotional speech data;

2. Random forest: Random forest is an ensemble method that consists of multiple
decision trees [27]. The ensemble approach tends to produce results that are robust
and accurate, which reduces the risk of overfitting and improves generalization. RF
is a suitable option for speech data that contain various types of noise in real-world
scenarios.
These classifiers offer a balance between simplicity and effectiveness, which is important
in the context of speech emotion recognition. Both KNN and RF have demonstrated their
utility in emotion recognition, making them reasonable choices for this study;

3. K-fold cross validation: K-fold cross validation prevents overfitting and provides a
more precise depiction of a model’s true performance [28]. By dividing a dataset into
multiple subsets, it continuously trains and evaluates a model on different combina-
tions of these subsets.
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In this study, we used 5-Nearest Neighbor and RF (with 20 decision trees) classifiers
to create models, and then assessed the performance of these models using 10-fold
cross-validation.

4. Experimental Results and Analysis
4.1. Approaches Used for Comparisons

The proposed MODE-NSF’s superiority was verified by comparing its classification
performance with MOGA [17], MODE [29], and NSGA-II [20]. Table 2 provides more
details concerning the algorithms.

The algorithms had a maximum number of iterations of 100 with 20 runs, and the
population size was 20. Wilcoxon rank sum and Frideman test were employed to determine
whether there were any significant differences in the experimental results. The signifi-
cant level was chosen to be 0.05, which means that if p-value <= 0.05, an algorithm was
significantly superior to the compared algorithms at a 95% confidence.

Table 2. The parameter settings of the algorithms.

Algorithm Main Parameters

MOGA pC = 1; mu = 0.02;
MODE pCR = 0.2;
NSGA-II tournament; mu = 20; mum = 20;
MODE-NSF pCR = 0.2; beta_min = 0.2; beta_max = 0.8;

4.2. Experimental Analysis
4.2.1. Simulation Results on the KNN Classifier

1. Hypervolume (HV)
Table 3 provides the HV of the algorithms where AVG and STD denote the average

and variance of the HV, respectively. MODE-NSF outperformed MOGA, MODE, and
NSGA-II using eNTERFACE05, RAVDESS, and SAVEE, while NSGA-II obtained the best
HV value using TESS. The algorithms achieved low HV values using eNTERFACE05 and
RAVDESS, but high values using TESS. The multi-objective algorithms performed poorly
in the Pareto optimal solutions for the eNTERFACE05 and RAVDESS datasets, while the
optimal solutions for TESS were close to the ideal value. The Wilcoxon rank sum revealed
that MOGA, MODE, NSGA-II, and MODE-NSF performed well on 0, 0, 3, and 4 datasets.
MODE-NSF and NSGA-II produced similar experimental data for RAVDESS, SAVEE,
and TESS. According to the Friedman test, their average ranks were 3, 4, 1.75, and 1.25,
respectively, proving that MODE-NSF performed the best, followed by NSGA-II, MOGA,
and MODE. The NSF improves the multi-objective solution ability of DE.

Table 3. The HV values of the algorithms.

Dataset
MOGA MODE NSGA-II MODE-NSF

AVG STD AVG STD AVG STD AVG STD

eNTERFACE05 0.0242 0.0364 0.0129 0.0278 0.0798 0.0578 0.1476 0.0842
RAVDESS 0.0408 0.0471 0.0195 0.0221 0.1343 0.0320 0.1356 0.0542

SAVEE 0.0915 0.0619 0.0538 0.0462 0.2140 0.0390 0.2334 0.0428
TESS 0.1640 0.1118 0.1078 0.0925 0.4545 0.1244 0.4254 0.1251

>/=/< 0/0/4 0/0/4 1/2/1 3/1/0
Rank 3 4 1.75 1.25

p-Value 1.12 ×
10−2

2. Inverted generational distance (IGD)
Table 4 shows the IGD of the algorithms, along with their Wilcoxon rank-sum and

Friedman test results. MODE-NSF exhibited the best performance using eNTERFACE05,
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RAVDESS, SAVEE, and TESS. MODE-NSF’s values were lower than those of the other
algorithms, but its solutions were almost the same as the Pareto solutions obtained by them.
The Wilicion rank sum indicates that MOGA, MODE, and NSGA-II did not share similar
statistical data with MODE-NSF on the four datasets. The average ranks obtained by the
Frideman test were 3, 4, 2, and 1, and the p-value was 1.12 × 10−2. Experimental data
and non-parameter validation show that MODE-NSF outperformed MOGA, MODE, and
NSGA-II in terms of IGD.

Table 4. The IGD values of the algorithms.

Dataset
MOGA MODE NSGA-II MODE-NSF

AVG STD AVG STD AVG STD AVG STD

eNTERFACE05 0.2820 0.1393 0.3245 0.0923 0.1441 0.1308 0.0564 0.0616
RAVDESS 0.2437 0.0677 0.2940 0.0446 0.0995 0.0554 0.0623 0.0336

SAVEE 0.2167 0.0642 0.2546 0.0433 0.1220 0.0543 0.0783 0.0507
TESS 0.2314 0.0754 0.2933 0.0579 0.1541 0.0733 0.1070 0.0635

>/=/< 0/0/4 0/0/4 0/0/4 4/-/-
Rank 3 4 2 1

p-Value 2.56 ×
10−2

The hypervolume, inverted generational distance, and non-parametric statistical
analysis verified that MODE-NSF has a remarkable distribution and convergence, and it
balances exploration and exploitation.

3. Pareto solutions
Figure 3 shows the final Pareto optimal solutions acquired by the algorithms in

which Pareto solutions were the solutions that were non-dominated and obtained from all
algorithms after 20 runs.

Version November 3, 2023 submitted to Journal Not Specified 10 of 15

Table 4: The IGD values of the algorithms.

Dataset MOGA MODE NSGA-II MODE-NSF

AVG STD AVG STD AVG STD AVG STD

eNTERFACE05 0.2820 0.1393 0.3245 0.0923 0.1441 0.1308 0.0564 0.0616
RAVDESS 0.2437 0.0677 0.2940 0.0446 0.0995 0.0554 0.0623 0.0336

SAVEE 0.2167 0.0642 0.2546 0.0433 0.1220 0.0543 0.0783 0.0507
TESS 0.2314 0.0754 0.2933 0.0579 0.1541 0.0733 0.1070 0.0635

>/=/< 0/0/4 0/0/4 0/0/4 4/-/-
Rank 3 4 2 1

P-Value 2.56E-02

Table 5: The average running time of the algorithms (second).

Dataset MOGA MODE NSGA-II MODE-NSF
eNTERFACE05 2148.5126 187.7856 1860.2133 268.8662
RAVDESS 5858.3368 407.2977 2797.5543 295.3447
SAVEE 2226.02 180.2649 1802.0954 178.759
TESS 16305.3481 954.1857 4681.1689 543.2745
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Figure 3. Pareto optimal solutions acquired by the algorithms.Figure 3. Pareto optimal solutions acquired by the algorithms.
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For eNTERFACE05, MODE-NSF obtained more solutions than MOGA, MODE, and
NSGA-II. Furthermore, it achieved the highest recognition accuracy of 49%, which was
superior to the other algorithms. The solutions of NSGA-II were located in a low dimen-
sion, and the solutions of MOGA and MODE were mainly in a medium dimension. For
RAVDESS, the solutions of MODE-NSF were distributed over the entire feature space.
The solutions of NSGA-II remained in a low dimension, and the solutions of MOGA and
MODE were located in a middle dimension. Although MODE did not achieve as many
optimal solutions as MODE-NSF, it outperformed MODE-NSF in obtaining an optimal
recognition accuracy. For SAVEE, MODE-NSF presented with diverse characteristics. The
solutions of NSGA-II were in a low dimension, and the solutions of MOGA and MODE
were in a medium dimension. The recognition accuracy of the Pareto optimal solutions
obtained by NSGA-II, MOGA, and MODE was better than that obtained by MODE-NSF.
For TESS, MODE-NSF excelled in terms of diversity and accuracy. NSGA-II achieved an
accuracy of 90% using a small number of features, and MOGA acquired a better accuracy
in the middle dimension than MODE. From the Pareto optimal solutions, it was found
that MODE-NS utilized the NSF-guided mutation to enhance the solution’s diversity and
balances exploration and exploitation.

Table 5 presents the running time of the algorithms. MODE had the shortest compu-
tation time using eNTERFACE05, and MODE-NSF exhibited the quickest execution time
using RAVDESS, SAVEE, and TESS. The proposed algorithm exhibited a fast execution and
low time complexity. It is worth noting that the algorithms required less time to execute
using eNTERFACE05 and SAVEE compared to TESS. This is because TESS contains a larger
number of samples, which impacted the execution of the algorithms.

Table 5. The average running time of the algorithms (second).

Dataset MOGA MODE NSGA-II MODE-NSF

eNTERFACE05 2148.5126 187.7856 1860.2133 268.8662
RAVDESS 5858.3368 407.2977 2797.5543 295.3447
SAVEE 2226.02 180.2649 1802.0954 178.759
TESS 16,305.3481 954.1857 4681.1689 543.2745

4.2.2. Simulation Results on the RF Classifier

1. Hypervolume
Table 6 shows the HV values of the multi-objective algorithms. The data obtained by

the algorithms using eNTERFACE05, RAVDESS, SAVEE, and TESS were better than those
obtained using the KNN classifier. MODE-NSF outperformed the other algorithms on four
datasets, especially TESS, where it achieved a value of 0.8101, a result close to the theoretical
optimal value. The Friedman test showed that their average ranks were 2.75, 3.75, 2.5, and
1. The Wilcoxon rank sum revealed that they performed well on 2, 1, 3, and 4 datasets.
MODE-NSF and MOGA produced consistent statistical data using eNTERFACE05 and
RAVDESS. Additionally, MODE-NSF and MODE exhibited a similar performance using
RAVDESS, while MODE-NSF and NSGA-II achieved similar experimental results using
eNTERFACE05, RAVDESS, and SAVEE.
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Table 6. The HV values of the algorithms.

Dataset
MOGA MODE NSGA-II MODE-NSF

AVG STD AVG STD AVG STD AVG STD

eNTERFACE05 0.1123 0.0232 0.0629 0.0292 0.1364 0.0514 0.1661 0.0446
RAVDESS 0.2794 0.0523 0.2563 0.0450 0.3169 0.0891 0.3429 0.0850

SAVEE 0.2049 0.0764 0.1686 0.0896 0.2935 0.0834 0.348 0.0619
TESS 0.6167 0.0278 0.5895 0.0374 0.5152 0.1988 0.8101 0.0507

>/=/< 0/2/2 0/1/3 0/3/1 4/-/-
Rank 2.75 3.75 2.5 1

p-Value 0.0256

2. Inverted generational distance
Table 7 provides the IGD of the algorithms and their corresponding Wilcoxon rank-

sum and Friedman test results. The IGD value of MODE-NSF was significantly smaller than
that of the other algorithms, which means that the multi-objective solutions obtained by it
were close to the Pareto front composed of all algorithms. The performance of MODE-NSF
was better than the others. The Wilcoxon rank sum indicates that MOGA produced similar
statistics to MODE-NSF using eNTERFACE05; in addition, MOGA, MODE, NSGA-II, and
MODE-NSF performed well on 1, 0, 0, and 4 datasets. Their average ranks were 2.25, 3.5,
3.25, and 1, and the p-value was less than 0.05.

Table 7. The IGD values of the algorithms.

Dataset
MOGA MODE NSGA-II MODE-NSF

AVG STD AVG STD AVG STD AVG STD

eNTERFACE05 0.1489 0.0518 0.2545 0.0605 0.1816 0.0704 0.0881 0.0148
RAVDESS 0.1491 0.0172 0.2496 0.0400 0.2786 0.0246 0.0631 0.0118

SAVEE 0.2323 0.0257 0.2613 0.0326 0.1992 0.0415 0.0485 0.0114
TESS 0.1428 0.0268 0.2216 0.0208 0.3046 0.0195 0.0407 0.0140

>/=/< 0/1/3 0/0/4 0/0/4 4/-/-
Rank 2.25 3.5 3.25 1

p-Value 0.0256

Tables 6 and 7 confirm that the proposed MODE-NSF demonstrates exceptional distri-
bution and convergence, and it is suitable for multi-objective feature selection.

3. Pareto solutions
Figure 4 illustrates the Pareto optimal solutions acquired by the algorithms.
Using eNTERFACE05, MODE-NSF obtained a large number of solutions, while the

solutions of NSGA-II were concentrated in a low dimension. MOGA acquired four feasible
solutions in a middle dimension. MODE only obtained two optimal solutions, but their
classification accuracy was superior to the other algorithms. Using RAVDESS, the solutions
of MODE-NSF were distributed throughout the entire feature space, while the solutions of
NSGA-II were primarily in a low dimension. The solutions of MOGA and MODE were
located in a middle dimension. Using SAVEE, MODE-NSF had a better diversity than the
other algorithms. The solutions of NSGA-II were distributed in the region [0, 20], while the
solutions of MOGA were in the region [50, 70]. Although MODE obtained fewer solutions
compared to the other algorithms, it had the highest classification accuracy. Using TESS,
MODE-NSF exhibited excellent abilities in diversity and classification accuracy, and MODE
and MOGA also used more features to achieve a low amount of recognition errors. NSGA-II
outperformed the other algorithms in low dimensional solutions. From the Pareto optimal
solutions of MODE-NSF on the four datasets, it can be seen that the NSF-guided mutation is
able to search for solutions in more emotional space and improve the population’s diversity.
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Figure 4. Pareto optimal solutions acquired by the algorithms.Figure 4. Pareto optimal solutions acquired by the algorithms.

Table 8 presents the running time of the algorithms. The maximum time complexity of
RF was larger than that of KNN, resulting in a longer run time for the algorithms compared
to KNN. MODE-NSF had a superior operational efficiency. The algorithms ran longer for
TESS than they did for eNTERFACE05 and SAVEE.

Table 8. The average running time of the algorithms (second).

Dataset MOGA MODE NSGA-II MODE-NSF

eNTERFACE05 18,608.8552 4885.9528 11,366.0398 4008.0458
RAVDESS 61,563.0978 16,457.0307 33,405.7332 11,584.3484
SAVEE 18,906.203 5643.6755 12,084.5362 3997.2735
TESS 72,422.1074 19,536.5901 41,187.0129 16,545.7497

4.3. Discussion

The running time of MODE-NSF using the KNN classifier in the four datasets was
268.8662, 295.3447, 178.7590, and 543.2745 respectively, while the running time on the RF
classifier was 4008.0458, 11,584.3484, 3997.2735, and 16,545.7497. It is also reported in [30,31]
that RF has a large time complexity, while KNN has a small workload. Ref. [31] achieved a
recognition accuracy of 41% for eNTERFACE05, while MONDE-NSF acquired an accuracy
of 49%. In [32,33], they obtained an accuracy of 75% using MFCCs on RAVDESS, while
MODE-NSF only exhibited an accuracy of 53%. Both the results reported in [34] and those
of MODE-NSF exhibited an accuracy of 76% for SAVEE. Ref. [15] achieved a 97% accurate
classification for TESS, compared to 98% for MODE-NSF. The algorithms acquired a high
recognition accuracy using TESS and a low value for eNTERFACE05. MODE-NSF showed
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excellent performance for eNTERFACE05, SAVEE, and TESS, which illustrates that the
NSF-guided method is suitable for speech emotion recognition.

5. Conclusions

Humans intentionally or unintentionally engage in emotional recognition when they
interact with others. Speech signals can be extracted and used to classify emotions, and
significant progress has been made in the field of emotion recognition. However, there
is still a need for research in multi-objective emotion recognition. For this reason, pre-
processing and feature selection are important for SER. In this paper, we propose a speech
emotion recognition model based on DE as a feature selection method, using KNN and
RF for emotion classification. First, feature extraction is applied to speech data, and then
MFCCs and pitch features undergo DE to acquire the most relevant emotion features
and discard redundant features. An accurate and robust SER is achieved through the
reconstruction of input data with meaningful acoustic features. The NSF-guided multi-
objective DE algorithm is responsible for efficiently exploring the emotional feature space
and identifying the features for emotion classification. In English speech emotion datasets,
the proposed MODE-NSF achieved a higher recognition accuracy with fewer features
compared to the other multi-objective algorithms. MODE-NSF demonstrated a great
execution efficiency because the number of features is the main factor affecting the running
time of feature selection algorithms.

In the future, the proposed MODE-NSF algorithm can be applied in other popular
research applications, especially in customer service, voice assistants, and English education.
Furthermore, this algorithm can employ more acoustic features such as LPC, LSF, and
DWT.

Author Contributions: Conceptualization, L.Y. and P.H.; formal analysis, L.Y. and S.-C.C.; methodology,
L.Y., S.-C.C. and J.-S.P.; software, L.Y. and P.H.; writing—original draft, L.Y.; writing—review & editing,
P.H., S.-C.C. and J.-S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Henan Provincial Philosophy and Social Science Planning
Project (2022BJJ076), and the Henan Province Key Research and Development and Promotion Special
Project (Soft Science Research) (222400410105).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hasija, T.; Kadyan, V.; Guleria, K.; Alharbi, A.; Alyami, H.; Goyal, N. Prosodic feature-based discriminatively trained low resource

speech recognition system. Sustainability 2022, 14, 614. [CrossRef]
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