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Abstract: This paper proposes a decision-making algorithm based on deep reinforcement learn-
ing to support fallback techniques in autonomous vehicles. The fallback technique attempts to
mitigate or escape risky driving conditions by responding to appropriate avoidance maneuvers
essential for achieving a Level 4+ autonomous driving system. However, developing a fallback
technique is difficult because of the innumerable fallback situations to address and eligible optimal
decision-making among multiple maneuvers. We employed a decision-making algorithm utilizing a
scenario-based learning approach to address these issues. First, we crafted a specific fallback scenario
encompassing the challenges to be addressed and matched the anticipated optimal maneuvers as
determined by heuristic methods. In this scenario, the ego vehicle learns through trial and error to
determine the most effective maneuver. We conducted 100 independent training sessions to evaluate
the proposed algorithm and compared the results with those of heuristic-derived maneuvers. The
results were promising; 38% of the training sessions resulted in the vehicle learning lane-change
maneuvers, whereas 9% mastered slow following. Thus, the proposed algorithm successfully learned
human-equivalent fallback capabilities from scratch within the provided scenario.

Keywords: autonomous vehicle; levels of driving automation; scenario-based testing; decision-
making algorithm; deep reinforcement learning

1. Introduction

Autonomous vehicles (AVs) are designed to navigate unexpected and potentially
dangerous driving conditions by engaging in fallback maneuvers or achieving minimum
risk conditions when necessary [1,2]. For example, an AV may need to be pulled to the
roadside if a critical sensor fails or swiftly changes lanes to avoid suddenly stopping
the vehicle ahead [3]. Current AVs from industry leaders such as Tesla, Mobileye [4],
and Waymo operate at Level 2 or 3 autonomy, as defined by the Society of Automotive
Engineers (SAE) [1]. AVs can handle certain risky situations at these levels, but they are
engineered to transfer control back to a human driver when the system reaches its limits.
Therefore, drivers must be ready to take over from either in the vehicle or from a remote
location. The ultimate aim of AV technology is to achieve Level 4+ (4 and 5) autonomy,
where vehicles can handle all driving tasks independently without human intervention,
even in complex driving scenarios.

To understand the evolution of AVs, it is important to be familiar with SAE-defined
levels of autonomy to understand the evolution of AVs. Starting from Level 0, where there
is no automation, the scale progresses to Level 1, with basic driver assistance, such as cruise
control. At Level 2, we observe partial automation that can control steering and acceleration
under certain conditions. Level 3 allows the vehicle to take over many driving functions
yet still requires a driver to intervene when prompted. Level 4 introduces the capability
of the vehicle to operate independently in most environments, and Level 5 represents
full automation: a vehicle that is fully autonomous in every driving scenario, eliminating
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the need for any human intervention. The leap to autonomy in Levels 4 and 5 entails a
complex blend of technologies enabling vehicles to navigate and respond to all driving
situations autonomously.

Progression towards higher levels of AV technology is ready to yield transformative
societal rewards such as increased safety by reducing driver error, enhanced mobility for
those who cannot drive, and increased free time for drivers on the move. As we advance
towards Level 4+ automation, the implications for society are immense, offering not only
safer and more accessible transportation options but also the promise of streamlined traffic
management, the reshaping of transportation across personal and public domains, and
environmental benefits via lowered emissions. Achieving this high level of autonomous op-
eration necessitates a harmonious blend of cutting-edge technologies, including advanced
machine learning, sensor fusion, and computer vision, coupled with the development of
inter-vehicle and vehicle–infrastructure communication capabilities. The evolution of these
technologies is expected to lead to a future in which intelligent, interconnected vehicles
will form an efficient smart transportation network.

Generic autonomous driving system (ADS) research has two primary focus areas:
development and validation. The ADS research development phase focuses on the design
of algorithms, hardware, and software for autonomous navigation. A holistic ADS is
operationalized through a sequential triad of perception, decision-making, and control
components. Employing this mechanism, an AV interprets its immediate driving environ-
ment by analyzing the data gathered from an ensemble of sensors. In the decision-making
phase, viable actions are determined based on this interpretation. During the control phase,
the AV performs optimally, ensuring adherence to its intended trajectory.

The decision-making component is the most challenging to optimize within ADS
architecture. This challenge arises primarily because of two factors. First, they must
manage various unpredictable and potentially dangerous situations. Although these two
situations pose the same risk, they can differ depending on when and where they occur.
Second, the decision-making process is complex. The best course of action for a vehicle can
vary significantly depending on the specific fallback scenario, and several viable actions
are often available in response to a single situation.

To address these issues, researchers typically employ two main methodologies: (1) heuristic-
based techniques [5,6] and (2) data-driven learning strategies [7–9].

A heuristic-based approach in ADS development primarily relies on expert-defined
rules to guide vehicular decision-making. These rules simplify the complex decisions
encountered by vehicles, drawing on expert knowledge and the fundamental principles
of physics. One primary advantage of heuristic methods is their predictability and trans-
parency, which render vehicle behavior foreseeable and interpretable. Moreover, these
methods offer faster deployment than certain data-driven methods. Historically, heuristics
were found in early ADS Levels 1–2, such as advanced driver assistance systems (ADAS),
exemplified in lane-keeping and emergency braking systems. However, they encounter
challenges in addressing many complex and dynamic driving scenarios that often require
frequent updates. The primary limitation is the dependence on human intervention, which
comprises the objective of achieving ADS levels of 4+. Orzechowski et al. (2020) developed
a scalable decision-making framework for automated driving utilizing a heuristic approach,
emphasizing a hierarchical behavior-based architecture [10]. This system employs mod-
ular behavioral units combined in a bottom-up manner to devise more intricate driving
behaviors. Although state-of-the-art automated-vehicle platforms often utilize finite-state
machines, they lack transparency, scalability, and ease of maintenance. This model merges
knowledge-based systems with behavior-based systems to harness the strengths of both.
However, its reliance on human intervention affects its adaptability.

Data-driven learning approaches, particularly those rooted in deep learning, have led
to advancements in ADS. These methods train an ADS to recognize patterns and make
informed decisions by harnessing extensive datasets from diverse driving conditions.
Reinforcement learning, an offshoot of this approach, enables the system to learn optimal
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strategies iteratively by interacting with the environment. Such data-driven techniques
demonstrate heightened adaptability, can handle intricate driving scenarios that may
not be hard-coded, and often outperform heuristic methods in unpredictable situations;
data-driven and reinforcement learning methods represent significant progress in vehicle
autonomy. They introduced a dynamic learning process grounded in real-world experiences
compared to more fixed heuristic approaches. Their effectiveness, particularly for tasks
such as object detection, highlights their potential applications.

Consequently, these methods are increasingly considered the way forward and are
likely to dominate the subsequent stages of autonomous driving. Owais et al. (2020)
proposed a novel algorithm for generating Pareto-optimal paths in stochastic transportation
networks by considering the variability in travel times correlated with traffic flow [11].
The algorithm utilizes a multi-objective analysis to provide a set of optimal paths for each
origin–destination (O-D) pair based on successive simulations that reflect changing traffic
conditions within different time slots. However, this study did not explicitly discuss the
computational complexity or scalability of the algorithm, which may be important when
applying this method to vast and complex networks. It also does not address the potential
limitations in the accuracy of traffic-flow predictions, which may affect the reliability of
the generated routes. Alshehri et al. (2023) presented a novel application of deep residual
neural networks to estimate O-D trip matrices utilizing traffic-flow data from strategically
placed sensors, inversely addressing the conventional traffic assignment problem [12]. This
research seeks to determine the correct O-D matrix from traffic counts and the optimal
number and placement of sensors for efficient data gathering. Despite this innovative
approach, the study may face challenges, such as the need for high-quality historical
traffic data for model training, computational complexity of the deep learning model,
and practical constraints of sensor placement in real-world scenarios. Pini et al. (2023)
developed SafePathNet, a novel machine-learning system designed for trajectory prediction
and planning in AVs [13]. SafePathNet utilizes a unified neural network to anticipate future
pathways for AVs and the surrounding road agents to avoid conventional rule-based
methodologies. It integrates the attention mechanism of a transformer module with an
expert mixing strategy to predict different trajectories and prioritize safety and reliability.
SafePathNet chooses a trajectory in real-time decision-making based on safety metrics and
the predicted likelihood. Simulators and real-world tests have underscored their safety and
effectiveness, distinguishing them from contemporary data-driven methods. However, this
study did not focus on achieving an ADS level of 4+.

By leveraging deep reinforcement learning, the proposed system significantly ad-
vances the adaptive capabilities of AVs, aiming at ADS Level 4+ autonomy. Deep reinforce-
ment learning overcomes the limitations of heuristic and static rule-based systems, such
as fuzzy logic and expert systems, enabling AVs to interpret extensive sensor data and
iteratively refine their driving strategies from real-world interactions. Although fuzzy logic
copes with ambiguity, and expert systems execute preprogrammed rules, they cannot self-
optimize in response to novel stimuli. However, our deep reinforcement learning approach
excels in assimilating experiences from unpredictable and intricate driving conditions, fos-
tering a learning mechanism that continually enhances decision-making and adaptability.
This empowers AVs with the decision-making agility for high-risk environments, ensuring
robust performance across a diverse spectrum of real-world driving situations to achieve
ADS Level 4+.

Second, a validation phase for AVs and their ADS is imperative to ensure their safety,
reliability, and functionality. Although a wide array of tests is utilized in the development
and validation process, the two critical testing methods for AVs and ADS are (1) miles
driven [14–18] and (2) scenario-based testing [19–24]. The other validation approaches are
presented in Appendix A.

Miles-driven validation quantifies the performance of an ADS by measuring the distance
traveled by an AV without significant safety incidents. This method offers a direct and
easily comprehensible metric and provides an ADS with a genuine and varied real-world
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driving experience. However, these methods exhibit several limitations. Relying solely
on mileage does not necessarily represent the diversity and complexity of the driving
scenarios a vehicle encounters. Moreover, accruing substantial mileage for testing can be
both resource intensive and time consuming, particularly when the objective is to validate
a system’s response to rare events. Shalev–Shwartz et al. (2017) asserted that evaluating the
safety of AVs utilizing a mile-driven approach is problematic [4]. This method measures
the number of miles that an AV drives without an accident and compares its safety with
that of human drivers. To statistically prove that an AV is as safe as a human, it would
need to drive 30 million miles, given a specific fatality probability. If the goal is for AVs to
become significantly safer, this will increase to 30 billion miles. In addition, any software
update can render previous tests obsolete, and there is concern regarding whether these
miles genuinely represent real-world conditions.

Scenario-based validation emphasizes the evaluation of an ADS within specific pre-
defined scenarios. These scenarios depict challenging or critical driving situations that
can be drawn from real-world datasets or constructed based on conceivable yet complex
events. This method enabled a more structured evaluation, ensuring the ADS was tested
across various scenarios. The focused nature of this approach facilitates efficient testing,
particularly in situations where assessing safety and performance is paramount. It also
offers a mechanism for repeatedly reproducing challenging driving situations, which may
be infrequent in standard driving but are vital for comprehensive validation. However,
this methodology has several challenges. Constructing a comprehensive scenario library is
paramount, and this process can be demanding.

Furthermore, despite extensive scenario libraries, the inherent unpredictability of real-
world driving is not always captured. Galko et al. (2014) introduced a vehicle-hardware-in-
the-loop system designed to prototype and validate an ADAS for vehicles [25]. The SERBER
system provides a scenario-based testing platform for ADAS in vehicles. Instead of outdoor
testing or conventional test benches, SERBER utilizes a controlled environment to simulate
real-world scenarios. This approach addresses the challenges of the consistency and safety
of conventional methods. By replicating real-world indoor scenarios without large spaces
or high-speed mobile bases, SERBER offers a safe and effective ADAS validation process.

In our quest to advance ADS, we considered a data-driven learning method over
a heuristic-based method. This approach enables our systems to adapt and improve
their performance utilizing real-world data, enhancing their power and efficiency. When
assessing the ADS performance, we did not rely solely on mileage. Instead, we prioritized
simulation and evaluation under specific driving scenarios. This approach is instrumental
for developing a safer and more reliable ADS by providing a clear understanding of the
performance of the proposed system under challenging situations.

Here, we propose a decision-making algorithm based on deep reinforcement learning
for a fallback scenario. Decision-making in fallback scenarios is an optimization technique
in which autonomous vehicles select an appropriate optimal maneuver under certain
risky driving conditions. The designed fallback scenario occurred when the vehicle in
front of the ego vehicle decelerated rapidly, and the vehicle on the right drove at high
speed with three vehicles driving on a highway. We derived three expected optimal
maneuvers in advance: slow following, lane change, and lane change after yielding. We
then formulated a given fallback scenario based on deep reinforcement learning. In addition,
we adopted a proportional-integral-differential (PID) control algorithm for low-level control
and provided closed-form equations. Therefore, the ego vehicle was trained in a fallback
scenario employing the proposed decision-making algorithm.

The contributions of this study include significant advancements in the algorithm
development and testing methodologies for ADS.
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1. Learning Optimal Policy without Human Intervention: We introduced an algorithm
to mimic human-driver decision-making. Uniquely developed from scratch, it ex-
hibits exceptional adaptability across different fallback scenarios. It was rooted in a
“learning from scratch” approach and possessed inherent flexibility and versatility.
This algorithm captures the characteristics of human decision-making. Thus, they can
efficiently return to a myriad of diverse driving situations.

2. Scenario-Based Simulation Testing for Efficient Validation: The test system setup
process was streamlined, minimizing the required time to a few hours. A notable
aspect of our methodology is its open-source framework, which ensures broad ac-
cessibility at no cost. While conventional deterministic and heuristic methods often
struggle in varied environments, reinforcement learning enhances the adaptability of
our model, enabling it to address fallbacks even in uncharted situations.

3. Pioneering Level 4+ ADS Deployment: Previous efforts utilizing scenario-based
reinforcement learning primarily targeted Level 1–3 autonomy, wherein human in-
tervention still played a role. Our research attempts to enhance ADS for Level 4+
operations, wherein the system operates autonomously. Unlike earlier studies with
potentially vague objectives, our approach was methodically tailored with a clear
objective to achieve Level 4+ autonomy. This emphasizes our contributions to evolu-
tionary and groundbreaking ADS.

Thus, this study provides innovative algorithmic developments, advanced testing
techniques, and a pioneering vision for next-generation ADS autonomy.

The remainder of this paper is organized as follows: Section 2 examines the back-
ground knowledge on deep reinforcement learning, which forms the basis for the proposed
decision-making algorithm. In Section 3, a fallback scenario is designed, and the optimal
fallback is derived with a heuristic method. Section 4 formulates the designed fallback
scenario with respect to deep reinforcement learning. Section 5 details the low-level con-
trol algorithm, system, network, and hyperparameters of the decision-making algorithm.
Section 6 evaluates and discusses whether the results of the optimal avoidance maneuver
and reinforcement learning derived with the heuristic method are the same as those in
the proposed fallback scenario. Finally, Section 7 summarizes the proposed research and
describes future research directions.

2. Background

The proposed decision-making algorithm is primarily based on reinforcement learning.
Recently, naïve reinforcement learning has utilized artificial neural networks of supervised
learning as a plugin to overcome the typical drawbacks (discrete) and achieve synergy
through collaboration. Various advanced deep reinforcement learning algorithms have been
developed, for example, deep deterministic policy gradient (DDPG), trust region policy
optimization (TRPO), proximal policy optimization (PPO), etc. These advanced algorithms
demonstrated outstanding results in various applications. However, we implemented
the proposed algorithm as a deep Q-network (DQN), which is outdated but considered
adequate for our research for the following reasons. The DQN is a neural network that
renders the state space continuous and the action space discrete. Furthermore, it has a
lower computational strength than the above algorithms.

Reinforcement learning is a machine-learning algorithm that learns optimal decision-
making patterns based on sequential interaction data between agents and the environment.
The aim is to determine the optimal policy π∗. In the current state s with the optimal policy,
the agent selects the optimal action a that is expected to yield the largest total reward Q(s, a)
in the future.

π∗(s) = argmax
a

Q(s, a),

where Q(s, a) denotes the state–action value function. A state–action value function that
adopts an artificial neural network is called deep reinforcement learning. Because the
artificial neural network contains the weights, we denote it again as Q(s, a;θ) and refer
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to it as the Q-network. As the interaction continued, more accurate and diverse driving
data containing collision and/or collision-free data were utilized to train the Q-network.
Therefore, the Q-network network exhibits higher values.

Sequential interaction data for learning the Q-network were collected through the
interaction between the agent and the environment. The agent receives State s from the
environment and outputs action a. The environment receives the behavior of the agent
and outputs the next state s′ and reward r. Through one interaction, data d are collected
as (s, a, s′, r ).

The training data for the Q-network were such that the input data were the state s, and
the output data were the temporal difference (TD) target r + γmaxQ(s′, a′;θ), calculated
from the interaction data where a′ is an arbitrary next action.

The Q-network is an approximation function that minimizes the optimization problem
by estimating training-output data. The loss function of the Q-network is expressed as

L(θ) =
1
2
[{

r + γmaxQ
(
s′, a′;ω

)}
−Q(s, a;θ)

]2.

The gradient is as follows:

∇θ L(θ) =
[{

r + γmaxQ
(
s′, a′;θ

)}
−Q(s, a; θ)

]
∇θQ(s, a;θ).

It is updated with a batch and determines the minimum such that stochastic gradient
descent is utilized to minimize the objective function and gradient value.

θ′ = θ+ α∇θL(θ),

Reinforcement learning algorithms repeat learning until an optimal policy is found.
The remainder of the detailed implementation-associated background, such as hyper-

parameters, is explained in Section 5.

3. Fallback Scenario Design

We designed a fallback scenario that included the risks to be addressed, as illustrated
in Figure 1. The fallback scenario describes the risky driving conditions with assumptions
and optimal maneuvers based on heuristics.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20 
 

containing collision and/or collision-free data were utilized to train the Q-network. There-
fore, the Q-network network exhibits higher values. 

Sequential interaction data for learning the Q-network were collected through the 
interaction between the agent and the environment. The agent receives State 𝑠 from the 
environment and outputs action 𝑎. The environment receives the behavior of the agent 
and outputs the next state 𝑠   and reward 𝑟 . Through one interaction, data 𝑑  are col-
lected as 𝑠, 𝑎, 𝑠 , 𝑟 . 

The training data for the Q-network were such that the input data were the state 𝑠, 
and the output data were the temporal difference (TD) target 𝑟 + 𝛾 max 𝑄 𝑠 , 𝑎 ; 𝛉 , calcu-
lated from the interaction data where 𝑎  is an arbitrary next action. 

The Q-network is an approximation function that minimizes the optimization prob-
lem by estimating training-output data. The loss function of the Q-network is expressed 
as 𝐿 𝜃 = 12 𝑟 + 𝛾 max 𝑄 𝑠 , 𝑎 ; 𝛚 − 𝑄 𝑠, 𝑎; 𝛉 .  

The gradient is as follows: 𝛻 𝐿 𝜃 = 𝑟 + 𝛾 max 𝑄 𝑠 , 𝑎 ; 𝛉 − 𝑄 𝑠, 𝑎; 𝜃 𝛻 𝑄 𝑠, 𝑎; 𝛉 .  

It is updated with a batch and determines the minimum such that stochastic gradient 
descent is utilized to minimize the objective function and gradient value. 𝛉 = 𝛉 + 𝛼𝛻𝛉𝐿 𝛉 ,  

Reinforcement learning algorithms repeat learning until an optimal policy is found. 
The remainder of the detailed implementation-associated background, such as hy-

perparameters, is explained in Section 5. 

3. Fallback Scenario Design 
We designed a fallback scenario that included the risks to be addressed, as illustrated 

in Figure 1. The fallback scenario describes the risky driving conditions with assumptions 
and optimal maneuvers based on heuristics. 

  
(a) (b) 

Figure 1. Fallback scenario design: (a) risk driving conditions, and (b) optimal fallback maneuvers 
through heuristic method. 

3.1. Driving Conditions with Risks and Assumptions 
As illustrated in Figure 1a, three vehicles were driven on a two-lane straight highway. 

Vehicle A was a defective vehicle (resulting in risky driving conditions for the ego vehicle) 
that experienced rapid deceleration due to a mechanical error and drove at a constant low 
speed. Vehicle B was a normal vehicle that continued to drive at high speed in the right 
lane. The ego vehicle began the fallback execution immediately after recognizing a 

Figure 1. Fallback scenario design: (a) risk driving conditions, and (b) optimal fallback maneuvers
through heuristic method.

3.1. Driving Conditions with Risks and Assumptions

As illustrated in Figure 1a, three vehicles were driven on a two-lane straight highway.
Vehicle A was a defective vehicle (resulting in risky driving conditions for the ego vehicle)
that experienced rapid deceleration due to a mechanical error and drove at a constant
low speed. Vehicle B was a normal vehicle that continued to drive at high speed in the
right lane. The ego vehicle began the fallback execution immediately after recognizing a
potential front-end collision owing to the front-defective Vehicle A and a potential side
collision owing to the high-speed drive of Vehicle B in the right lane.



Appl. Sci. 2023, 13, 12258 7 of 19

In this scenario, it was assumed that the recognition and control of the autonomous
vehicles were perfect. The proposed fallback approach assumes that the driver of the
surrounding vehicle performs predetermined driving tasks. We designed a fallback scenario
with three vehicles because the maneuver chosen by the ego vehicle while avoiding a
defective vehicle may affect the normal vehicle. The utilization of two lanes provides
numerous opportunities to perform diverse maneuvers. A highway was selected because
of its ease of handling. The scope of learning was not to train in general driving but to learn
appropriate decision-making under one fallback situation. Therefore, driving before and
after the occurrence of fallback was not considered.

3.2. Optimal Maneuvers Based on Heuristics

The decision-making process in the fallback scenario was for the ego vehicle to learn
to reach a target point without colliding with the surrounding environment or Vehicles A
and B. The optimal maneuvers were expected to be appropriate under the given fallback
state. The easiest method for deriving optimal maneuvers is based on a heuristic method
that aligns with the driver’s common sense. At this time, the ego vehicle selects one of the
three fallback maneuvers. The three heuristic maneuvers are illustrated in Figure 1b.

• Slow following involves rapid deceleration according to the deceleration speed of the
front defective vehicle. This fallback maneuver only needs to consider the front
defective vehicle and not its interaction with the vehicle on the right side. However,
this does not make sense as a normal or efficient driving policy. Thus, this maneuver
is easy but inefficient.

• Lane change involves changing to the right lane. At this time, the ego vehicle must
consider the distance to the front defective vehicle, distance to the right vehicle, and
its speed.

• Lane change after yield occurs after the side vehicle passes through the ego and front
vehicles. This maneuver is also reasonable but requires two abstract maneuvers; thus,
it is expected to be difficult to learn.

These heuristic-based maneuvers are adopted as metrics to evaluate the decision-
making algorithms.

4. Fallback Scenario Formulation

To formulate a given fallback scenario, we mapped it to reinforcement learning con-
cepts, such as agent, environment, and learning goals.

Agent denotes the ego vehicle, and the environment denotes the driving conditions,
including the ego vehicle and two other vehicles, Vehicles A and B. The ego vehicle set the
objective of learning to reach the target destination without colliding with Vehicles A and B
and did not cross either side.

4.1. State and Perception

State s denotes an ego vehicle that collects physical information to perceive sur-
rounding vehicles and road environments. It comprises nine parameters, as expressed in
Equation (1).

s = (xEG, yOE, φOE, xEA, yEA, φEA, xEB, yEB, φEB). (1)

The details of the coordination and spatial variables are presented in Figure 2. These nine
parameters represent three pieces of information: goal-related, localization, and relationship
states. A goal-related state is the information utilized to achieve a learning goal. The ego
vehicle attempts to reach the goal line such that the goal-related state is the longitudinal
relative distance xEG between the current x position of the ego vehicle xOE and the goal
line xOG. The localization state represents the information through which an ego vehicle
perceives its location in the environment. The chosen localization state parameters were
the lateral absolute position yOE and rotational absolute yaw angle φOE, as illustrated in
Figure 2a. The longitudinal absolute position xOE was ignored because it was already
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included in the goal-related state xEG which is the distance between the ego vehicle and
the goal position. The relationship state is the information between the ego vehicle and
the other vehicles. This state is scalable depending on the number of surrounding vehicles,
and each relationship state has three degrees of freedom for each vehicle: one longitudinal
and lateral distance each and one rotation angle (x, y, φ), as illustrated in Figure 2b. The
ego vehicle had six relationship state parameters: xEA, yEA, and φEA for Vehicle A and xEB,
yEB, and φEB for Vehicle B.
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State s, which includes spatial variables, serves as a training input for the deep rein-
forcement learning algorithm, allowing the autonomous system to make informed deci-
sions based on comprehensive environmental awareness. By processing this input, deep
reinforcement learning can train AVs to execute complex tasks, such as navigation and
obstacle avoidance, and learn optimal strategies through repeated interactions with various
simulated scenarios.

More parameters must be considered as states, such as velocity and acceleration, that
is

.
xOE and

..
xOE, respectively. This information was correlated with distance information.

In other words, a part of each piece of information is already contained in its parameters.
Hence, they need not be included in the state; they are duplicate or trivial.

4.2. Action and Abstract Control

Action a comprises nine abstract actions and fallback maneuvers, as expressed in
Equation (2). Each action of the ego vehicle contained commands for the longitudinal and
lateral controls. The details of each action are presented in Table 1.

a = {a1, a2, a3, a4, a5, a6, a7, a8, a9}. (2)

Table 1. Ego vehicle behavior list.

Action a Description Velocity
.
x

(m/s)
Driving Lane y

(m)

a1 Turn left with fastest velocity 0.20 0.15
a2 Turn left with fast velocity 0.15 0.15
a3 Turn left with slow velocity 0.10 0.15
a4 Turn left with slowest velocity 0.05 0.15
a5 Turn right with fastest velocity 0.20 −0.15
a6 Turn right with fast velocity 0.15 −0.15
a7 Turn right with slow velocity 0.10 −0.15
a8 Turn right with slowest velocity 0.05 −0.15
a9 Emergency stop 0.00 null
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Each action had specific control commands for longitudinal and rotational control.
Longitudinal control was performed with velocity command

.
xOE. This command is explic-

itly expressed. However, the lateral control was performed utilizing the driving lane yOE.
This command was expressed implicitly. PID control with sensor fusion is necessary to
render the lateral control explicit. Further details are provided in Appendix B.

4.3. Reward for Achieving the Goal

An ego vehicle must be designed to reach the goal line without collision. A reward
function was defined to solve the fallback scenario. The reward function adequately
provided success, failure, and transfer rewards to drive safety. The reward for success was
reaching the destination without colliding with nearby vehicles.

A reward is a key component that affects learning; a bad reward design results in a bad
policy or even divergence of learning. Rewards can be classified as episodic, transitional,
or conditional. An episodic reward was provided when learning episodes were complete.
When an episode was completed while achieving the goal, the agent was awarded a positive
reward of +100; otherwise, the agent did not receive that reward. A transitional reward was
awarded at each conditional time step during an episode. This depends on the design and
can be constant or variable. Furthermore, both rewards can be awarded simultaneously.

Reward r was formulated to encapsulate a tripartite sub-reward (r1, r2, r3), as expressed
in Equation (3).

r =
3

∑
j=1

rj, (3)

The first sub-reward r1 is a sparse reward awarded only when a goal is achieved, as
expressed in Equation (4). This reward is a strong motivation for the ego vehicle to achieve
a goal because it provides many rewards simultaneously compared to subsequent rewards.
Specifically, when the ego vehicle successfully navigated to the target location without
colliding, a large reward of +100 was awarded. Conversely, nothing (zero reward) was
awarded if the ego vehicle failed and the current episode ended.

r1 =

{
+100, if xOE ≥ xOG

0, otherwise
. (4)

Here, xOE and xOG denote the current and target locations of the ego vehicle, respectively.
The second sub-reward r2 is a positive and dense reward awarded at every time step

after the interaction, as described in Equation (5). This sub-reward serves as a directional
indicator, revealing whether the current behavior positively or negatively influences goal
attainment. It offers vital navigational insights by progressively rewarding the agents as
they approach their desired outcomes. For example, if the ego vehicle starts at 1.0 m and
the position of nk-step is 3.5 m, the reward is 100 × (3.5 − 1.0) = 250. In the next step nk+1,
if the position of the ego vehicle is 2.5 m, the reward is 100 × (3.5 − 1.0) = 150. When
comparing the rewards of steps nk and nk+1, it can be concluded that this is a bad case
because the position of Step nk+1 is lower than that of Step nk.

r2 = 100× (xOE − xOE,i), (5)

where xOE,i is an initial position of the ego vehicle and is a constant value.
The third sub-reward, r3 was a negative, dense reward awarded at every time step

after the interaction, as described in Equation (6). This sub-reward imposes a time penalty
to increase the efficiency of the learning process, leading to faster optimal learning. An ego
vehicle can reach a target point at low speed, as a practical example. However, this policy
was inefficient in terms of time consumption. Therefore, the ego vehicle must achieve its
goal at the highest speed to reduce the penalty and increase the total reward.
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r3 = −1× nstep, (6)

where nstep is the number of steps in an episode.
The expected maximum total reward, according to Equations (3)–(6), was computed

as 480. When the ego vehicle reaches the goal point, the maximum value of the first sub-
reward is +100. The maximum value of the second sub-reward was 400, where the driving
distance xEG was 400 from the initial position of ego vehicle xOE,i, and 1.00 m to the goal
position of xOG 5.00 m. To obtain the maximum total reward, the third sub-reward must
be minimized. Then, the minimum value of the third sub-reward was −20 when the ego
vehicle drove a distance of 4.00 m with a maximum velocity of 0.2 m/s. The minimum time
required was 20 s when the min steps nstep was 20. However, the ego vehicle must change
lanes. Therefore, the actual maximum total reward was slightly less than 480.

5. Decision-Making Algorithm Design

In this section, we describe the structure of the decision-making algorithm and the
learning hyperparameters. The structure of a Q-network based on deep reinforcement
learning is explained. Moreover, diverse learning hyperparameters were specified.

5.1. Structure of Q-Network

The network utilized for training was a forward neural network model with four
layers: an input layer, two hidden layers, and one output layer. The number of nodes in the
input layer was equal to the number of parameters in the state. Each of the two hidden
layer nodes were empirically set to 64, and a rectified linear unit (ReLU) was utilized as the
activation function. The number of nodes in the output layer was equal to the number of
actions, and a purely linear function was utilized as the activation function. The network is
illustrated in Figure 3. It is formatted with Equations (7)–(9) as follows.

h1 = fh1

(
Wh1 ·s + bh1

)
, (7)

h2 = fh2

(
Wh2 ·h1 + bh2

)
, (8)

Q(s, a) = fQ
(
WQ·h2 + bQ

)
, (9)

where s is the state and input layers; W is the weight matrix; b is the bias matrix; f is the
activation function; h is the hidden layer; and Q is the state–action value function and
output layer.
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5.2. Hyper-Parameters for Learning

In the deep reinforcement learning environment, various hyperparameters were con-
figured to establish the learning conditions. A total of 500 training and learning episodes
were conducted. Learning generally converges in 150–200 episodes but provides sufficient
episodes. The maximum step size for each episode was 500. The learning rate was 0.1,
dropout rate was 0.2, and batch size was 64. The initial exploration and exploitation ratio
ε was 1.0, and as the episode progressed, the ratio ε decreased by a factor of 0.99. With a
high epsilon value, ego vehicle exploration was random. Therefore, the ego vehicle collects
diverse data patterns through trial-and-error interactions. The hyperparameters are listed
in Table 2.

Table 2. Hyper-Parameter of Learning.

Category Value

Episode size 500
Max. step size 500
Learning rate 0.1

Dropout 0.2
Batch size 64

Exploration and exploitation rate ε 0.99

6. Training and Evaluation

To validate the fallback capability of the proposed decision-making algorithm, we con-
ducted a simulated training experiment on an ego vehicle in a given fallback scenario. This
section describes the experimental setup, coordinates, and initial conditions. Subsequently,
we present and discuss the metrics and training results. Detailed calculations for the initial
process of training are described in Appendix C.

6.1. Experimental Setup

The training simulation was conducted on a computer with the following specifica-
tions: Intel Core i7-10700 CPU, NVIDIA GeForce RTX 2060 GPU, and Samsung DDR4
with 16 GB of RAM (Samsung Electronics, Republic of Korea). We provide the hardware
specifications because we present the average training time in the training results, which
indicates a highly hardware-sensitive performance.

The learning environment was built on the Gazebo simulator in the ROS framework:
Gazebo 9.0.0 and ROS Melodic Morenia on the Ubuntu 18.04 Bionic Beaver OS. It provides
a robust physics engine, high-quality graphics, convenient programming, and graphical
interface. ROS provides many robotics libraries and interoperates with multiple plugins.

We employed the Turtlebot3 (©ROBOTIS) as AVs, which can be easily reprogrammed [26].
Turtlebot3 is an ROS-based mobile robot that provides low-level control algorithms such as
simultaneous localization and mapping, navigation, and collision avoidance.

The specifications of the Turtlebot3 are maximum linear velocity
.
x of 0.22 m/s, max-

imum angular velocity
.
φ of 284 rad/s (162.72 deg/s), length l of 138 mm, width w of

178 mm, and height h of 192 mm.
The source code was written in Python utilizing the Keras deep learning libraries

Python 2.7.17 and Keras 2.1.5. The code utilized for the training was obtained from
GitHub [27]. The code was based on the ROBOTIS e-manual [26].

6.2. Coordinates and Initial Conditions

The training began with the initial conditions presented in Figure 4 and detailed in
Table 3. The origin of the coordinates is located at the left center, and the horizontal and
vertical lines represent the x- and y-axes, respectively. The goal line was 5.00 m from the
origin along the x-axis. The ego vehicle attempts to learn the speed and angular velocity
required to reach the goal line without colliding with Vehicle A or B. The initial position
(x, y) and orientation φ of the ego vehicle were 2.00 m, 0.15 m, and 0.00 rad. Vehicles A
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and B (which did not learn) were driven according to a constant preset control command.
Vehicle A drove at a low speed (0.05 m/s) owing to a defect and did not steer (angular
velocity of 0.00 rad/s). Vehicle A’s initial positions and orientations were 2.00 m, 0.15 m,
and 0.00 rad, respectively. As Vehicle B was not affected by the defective vehicle, it traveled
at a high speed of 0.15 m/s and did not steer (angular velocity is 0.00 rad/s). Thus, Vehicle
B’s initial position and orientation were 0.00 m, −0.15 m, and 0.00 rad.
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Table 3. Initial conditions of ego vehicle, Vehicles A and B.

Parameter Ego Vehicle Vehicle A Vehicle B

x (m) 1.00 2.00 0.00
y (m) 0.15 0.15 −0.15

φ (rad) 0.00 0.00 0.00
.
x (m/s) - 0.05 0.15
.
φ (rad/s) - 0.00 0.00

6.3. Metric and Training Results

The metrics considered for the fallback capacity were the three optimal heuristic
maneuvers derived in Section 3.2: slow following, lane change, and lane change after
yielding. We evaluated the decision-making algorithm by comparing the training results
from heuristic maneuvers. If the training results converge to a particular heuristic maneuver,
the ego vehicle successfully learns the optimal policy to respond appropriately to the
corresponding fallback scenario.

The proposed decision-making algorithm was trained 100 times with the same hyper-
parameters. The training was performed in a single synchronous environment, and the
time required to complete the training was measured and presented. This was conducted
to generalize the training results based on the statistical evaluation. The 100 results were
converged into five groups: (1) lane changes, (2) slow following, (3) rear-end collisions,
(4) front-end collisions, and (5) side collisions. Therefore, lane changes and slow following
were successful results of the training fallback technique, and the three collisions were
considered failures. Figure 5 presents the quantitative training results for each episode’s
total reward and maximum Q-value. The Q-value is related to the loss function and is
presented as an indicator for evaluating the learning process and policy results.

1. Lane change involved the ego vehicle moving from the current lane to the right lane,
which occurred 38 of 100 times (38%). In Figure 5a,b, the average of 38 training results
and each training result are depicted in red and shaded red, respectively. The total
reward converged within the range of 470–480 after 200 episodes. The maximum
Q-value increased monotonically. Moreover, each training time required an average
of 2.5 h for 500 episodes.
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2. Slow following involved the ego vehicle following the front slow vehicle, which oc-
curred 9 out of 100 times (9%). In Figure 5a,b, the averages of the nine training results
and each training result are depicted in green and shaded green, respectively. The
total reward converges to 370–380 after 200 episodes. The maximum Q-value increases
slightly. Moreover, each training time required an average of 8.5 h for 500 episodes.

3. Rear-end collision involved the front of Vehicle B colliding with the rear of the ego
vehicle, which occurred 25 of 100 times (25%). In Figure 5a,b, the average of the
25 training results and each training result are depicted in blue and shaded blue,
respectively. The total reward converged in the range of 120–130 after 100 episodes.
The maximum Q-value increased slightly.

4. Front-end collision involved the front of the ego vehicle colliding with the rear of
Vehicle A, which occurred 17 of 100 times (17%). In Figure 5a,b, the average of the
17 training results and each training result are depicted in cyan and shaded cyan,
respectively. The total reward converged in the range of 100–110 after 100 episodes.
The maximum Q-value increased slightly and was indistinguishable from the rear-end
collision results.

5. Side collision involved the side of the ego vehicle colliding with the front of Vehicle B,
which occurred 11 of 100 times (11%). In Figure 5a,b, the average of the 11 training
results and each training result are depicted in magenta and shaded magenta, respec-
tively. The total reward converged within the range of 30–40 after 200 episodes. The
maximum Q-value decreased slightly.
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Thus, the lane change maneuver was the optimal fallback maneuver that achieved its
purpose and provided the most efficient (speed) results. This analysis demonstrated that the
lane change maneuver received the highest reward and Q-value in the experimental results.
The slow following maneuver is a suboptimal fallback maneuver. This achieved its purpose;
however, it was relatively slow and inefficient compared to the lane change maneuver. The
rear, front, and side-end collision maneuvers are poor fallback maneuvers. This is because
these maneuvers failed to achieve their goals. In addition, the lane change and slow following
maneuvers were consistent with the heuristic optimal fallback maneuvers. This implies
that the ego vehicle learned the appropriate fallback maneuvers utilizing the proposed
algorithm. The ego vehicle accepts one of the trained models among the 38 lane change
models or the 9 slow following models and considers it in the fallback scenario. In addition,
the lane change maneuver is recommended for the slow following maneuver because of
driving efficiency.
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6.4. Discussion

Next, we discuss why the training experiment yielded five convergence results
even though the proposed algorithm was independently trained 100 times with the
same hyperparameters.

Convergence was primarily determined by the existence and frequency of successful
experiences within the 64 episodes. This was the batch size, and the training started at this
time. The experience data collected during 64 episodes were utilized more frequently and
repeatedly to train the neural network model.

Therefore, if an initial neural network is trained on successful data containing optimal
decision-making patterns, it converges to lane change or slow following. Eventually, active
behavioral maneuvers (lane changes) and passive behavioral maneuvers (slow following)
occur. Otherwise, if it is trained with poor data, it converges to a collision. Eventually, five
convergences appeared. If learning fails, no pattern can be learned from the data. In other
words, it does not capture the sense of driving.

To enhance the success of the experience, the data were related to the exploration and
exploitation rates ε. The current exploration and exploitation rates decreased as the episode
progressed; although, the ego vehicle did not have a successful experience. In other words,
the exploration and exploitation rates decayed early. Methods for delaying the decay of
exploration and exploitation rates are considered acceptable, for example, decaying the
rate whenever an ego vehicle experiences success.

Furthermore, we discuss why lane changes after yielding did not occur owing to
training. According to the training results, the proposed algorithm was expected to learn
only one abstract maneuver. In addition, lane changes after yielding combine two abstract
maneuvers. Therefore, lane changes did not occur after yielding. A neural network must be
designed with more complex or additional networks for more complex abstract maneuvers.

The deployment of deep reinforcement learning is distinguished by its capacity to learn
from scratch, which is instrumental in its adaptiveness. This feature of deep reinforcement
learning is particularly advantageous because it facilitates the ability of an AV to discover
and refine optimal driving policies in a wide range of fallback scenarios. Notably, this
adaptiveness is a theoretical benefit and a practical necessity, given the unpredictable
nature of real-world driving environments. Starting from basic principles and learning
via trial and error, a deep reinforcement learning framework was designed to cope with
the nuances and complexities of such scenarios. This approach significantly boosts the
system’s scalability, allowing it to maintain its robustness and efficacy. As the diversity and
complexity of potential driving situations expand, the ability of our deep reinforcement
learning system to adapt and scale ensures that autonomous vehicles can navigate through
these challenges, while increasing autonomy and safety. Therefore, this ongoing learning
process is crucial for advancing towards fully autonomous driving capabilities, where the
system must handle an ever-growing array of situations with minimal human oversight.

7. Conclusions

This study developed a decision-making algorithm based on deep reinforcement
learning to address a particular fallback scenario in AVs. We designed a fallback scenario
and derived heuristic maneuvers. The proposed algorithm selects an appropriate response
action for dangerous situations while driving AVs. Owing to deep reinforcement learning,
the heuristic method yielded the same results as expected. The fallback scenario was
solved with 38% lane changes and 9% slow following out of 100 training sessions. Thus, it
was confirmed that the decision-making algorithm for AV can be learned based on deep
reinforcement learning.

Future research can be extended in terms of three aspects: (1) diverse and complex
fallback scenarios, (2) advances in deep reinforcement learning, and (3) collective fallback
techniques utilizing multiagent learning. First, we will design more diverse simple-to-
complex fallback scenarios, for example, based on various operational design areas utilizing
the PEGASUS 6-layer model [28,29] and apply deep reinforcement learning to broaden
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the scope of the application of the proposed algorithm to demonstrate its adaptability.
While the current research has been conducted with simulated data, future work will focus
on employing real-world open datasets to refine ADSs for genuine on-road applications,
further enhancing their real-life performance and adaptability. Second, advanced deep
reinforcement learning algorithms such as A3C, DDPG, TRPO, PPO, SAC, and TD3 can
be applied to increase learning performance and accuracy. Finally, instead of solving a
given fallback scenario with only one agent, multiagent reinforcement learning will be
applied such that multiple agents can learn. This ensures that the vehicle cluster can escape
dangerous situations utilizing collective intelligence.
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Appendix A

This section introduces other validation methods based on the mile-driven and
scenario-based approaches mentioned here.

We highlighted the validation phase in the introduction, emphasizing mile-driven
and scenario-based methods. Nonetheless, various methods exist for assessing the safety
of AVs and their ADSs and have been elaborated in this context: (1) public road testing,
(2) closed-course testing, and (3) simulation testing.

Public road testing was conducted to validate the performance of the ADS under real-
world conditions and to expose it to unpredictable events. The AV was operated on public
roads with an onboard safety driver for control, if necessary. This was the ultimate test for
the readiness of AV for real-world deployment. Advantages: Real-world variability and
unpredictability cannot be fully mimicked in simulations or closed courses. Public road
testing provides the most accurate understanding of how an ADS performs under typical
and unexpected conditions.

Closed-course testing is intended to test the AV sensors, software, and decision-making
algorithms in controlled environments. The vehicle was tested on private tracks or facilities
that mimic real-world driving conditions. These scenarios could be carefully staged with
props, other vehicles, and robotic pedestrians. This approach allows real-world physical
testing, while minimizing the unpredictability associated with public roads. This facilitates
reproducibility and careful staging of specific scenarios.

Simulation testing is a safe, cost-effective, and scalable method for testing the decision-
making algorithms of an ADS across millions of virtual miles in a wide array of scenarios.
This involves creating virtual environments in which AV software is subjected to numerous
scenarios, including those too dangerous to be tested in the real world. Simulation testing
can cover rare-edge cases, reproduce complex scenarios, and run continuously, accelerating
the validation process and ensuring broader coverage than real-world testing alone.
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Appendix B

This section describes the sensor-fusion and P-control algorithm validation approaches
and the control algorithm.

Gazebo has a physics engine; therefore, it does not move according to the command
value owing to inertia and friction and has certain errors. Therefore, an appropriate
controller was required. An abstract action replaced the discontinuous action space, and
PID control was performed at the base.

The objective of PID control with sensor fusion is to maintain vehicles that follow
a straight-line yOG. The lateral values and yaw angle controls are maintained constant.
However, the ego vehicle can control its lateral direction and yaw angle utilizing only one
steering angle and angular velocity. Therefore, sensor fusion is required for multivariate
P control, and the formula is the same as in Equations (A1) and (A2). The results are
presented in Figure A1.

uθ = KP,y·yri + KP,φ·φri, (A1)

yri = tan−1
(

yri
cx

)
, (A2)

where KP,y is the proportional control gain with a constant value of 1.5. The two error values
are different in terms of yri mm and φri rad. The yri is a dimension transition that equalizes
the dimensions of the two error values and is a constant value yri with a hypotenuse value
cx of 0.3. Further, KP,φ is the proportional control gain that has a constant value of 1.0, as
obtained through an experiment.
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Appendix C

In this section, the initial iteration of the interaction is calculated with Equations (1)–(9)
and the equations in the background section. The initial information provided by the AVs
before the calculations is presented in Table A1.

s = (−3.9930, 0.1500, 0.0000,−0.9930, 0.0000, 0.0000, 1.0070, 0.3000, 0.0000).

Table A1. Training input and output data through agent and environment interaction.

Step Input Data Output Data
xEG yOE φOE xEA yEA φEA xEB yEB φEB Q

1 −3.9930 0.1500 0.0000 −0.9930 0.0000 0.0000 1.0070 0.3000 0.0000 0.0000
2 −3.9621 0.1500 −0.0076 −0.9706 0.0000 −0.0076 1.0222 0.3000 −0.0077 0.0000
3 −3.9367 0.1496 −0.0138 −0.9553 −0.0004 −0.0138 1.0226 0.2996 −0.0139 0.9352
4 −3.9163 0.1495 −0.0024 −0.9433 −0.0005 −0.0022 1.0133 0.2995 −0.0024 2.0041
5 −3.9033 0.1495 −0.0214 −0.9388 −0.0005 −0.0212 0.9963 0.2994 −0.0215 2.7025
6 −3.8924 0.1482 −0.1458 −0.9429 −0.0018 −0.1454 0.9720 0.2982 −0.1458 3.1954
7 −3.8703 0.1442 −0.2348 −0.9286 −0.0058 −0.2344 0.9643 0.2942 −0.2348 2.9132
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Table A1. Cont.

Step Input Data Output Data
xEG yOE φOE xEA yEA φEA xEB yEB φEB Q

8 −3.8506 0.1387 −0.2736 −0.9187 −0.0113 −0.2732 0.9541 0.2887 −0.2737 5.7062
9 −3.8246 0.1321 −0.2625 −0.9025 −0.0180 −0.2624 0.9501 0.2820 −0.2626 5.5420
10 −3.8012 0.1245 −0.3744 0.9433 0.2745 −0.3743 −0.8891 −0.0255 −0.3744 5.7779
n - - - - - - - - - -

The initial actions of the ego vehicle were randomly selected. The aE is a7 which turns
right at a slow speed. According to Action a7, the ego vehicle moves toward the right
driving lane −0.15 m at a velocity of 0.15 m/s. Vehicles A and B exhibit constant actions
a4 and a6, respectively. At all times, Vehicle A drove in the left driving lane 0.15 m at a
velocity of 0.10 m/s, and Vehicle B drove in the right driving lane −0.15 m at a velocity of
0.20 m/s.

aE = a7, aA = a4, aB = a6.

For the r1 reward function, r1 = 0 because the ego vehicle has not yet reached its
goal point.

r1 =

{
+100, if xOE ≥ xOG

0, otherwise
= 0.

For the r2 reward function, r2 is 0.70 as per the following calculation.

r2 = 100× (xOE − xOE,i)
= 100× (xEG + xOG − xOE,i)
= 100× (−3.9930 + 5.0000− 1.0000)
= 100× 0.0070

= 0.70,

where the current position of the ego vehicle xOE is xEG + xOG because xEG is xOE − xOG,
the xEG is −3.9930; the initial position of the ego vehicle xOE,i is 1.0000 m; and the xOG is
5.0000 m.

For the r3 reward function, r3 is −1 because only one step progressed, that nstep is 1.

r3 = −1× nstep
= −1× 1
= −1

For the integration of the total reward function, r is−0.30 as per the following calculation.

r =
3
∑

j=1
rj

= r1 + r2 + r3
= 0 + 0.70− 1

= −0.30.

Depending on the progress made thus far, move on to the next state s′.

s′ = (−3.9621, 0.1500,−0.0076,−0.9706, 0.0000,−0.0076, 1.0222, 0.3000,−0.0077).

The one-step interaction data (s, a, r, s′) are recorded in the reply buffer. The current
state s is updated with s′.

s = s′.
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The next action was selected utilizing the following equations. The value of the Q
function was calculated and updated as follows:

h1 = fh1

(
Wh1 ·s + bh1

)
h2 = fh2

(
Wh2 ·h1 + bh2

)
Q(s, a) = fQ

(
WQ·h2 + bQ

)
.

We then apply epsilon greed, where exploration and exploitation are determined
using the epsilon greed rate ε. The initial exploration and exploitation ratio is 0.99. This
implies a 99% exploration probability and a 1% exploitation probability. The exploration
and exploitation rates decrease as the stages progress. During the exploration, an action
was selected randomly. If exploitation is selected, policy π outputs an action a for the
maximum value of Q.

π(s) = argmax
a

Q(s, a).

When as many interaction data as the number of batch sizes are collected in the
replay buffer, the Q function is later learned by updating the weight bias according to the
following formula:

L(θ) = 1
2 [{r + γmaxQ(s′, a′;ω)} −Q(s, a;θ)]2

∇θ L(θ) = [{r + γmaxQ(s′, a′;θ)} −Q(s, a; θ)]∇θQ(s, a;θ)
θ′ = θ+ α∇θL(θ)

The input and output data obtained by repeating Steps 1–10 are summarized in
Table A1. This interaction is repeated until the end of an episode.
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