
Citation: Pander, T. An Improved

Approach for Atrial Fibrillation

Detection in Long-Term ECG Using

Decomposition Transforms and

Least-Squares Support Vector

Machine. Appl. Sci. 2023, 13, 12187.

https://doi.org/10.3390/

app132212187

Academic Editors: Agnese Sbrollini

and Aurora Saibene

Received: 22 October 2023

Revised: 5 November 2023

Accepted: 7 November 2023

Published: 9 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Improved Approach for Atrial Fibrillation Detection
in Long-Term ECG Using Decomposition Transforms
and Least-Squares Support Vector Machine
Tomasz Pander

Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and
Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; tpander@polsl.pl;
Tel.: +48-32-237-15-63

Abstract: Atrial fibrillation is a common heart rhythm disorder that is now becoming a significant
healthcare challenge as it affects more and more people in developed countries. This paper proposes
a novel approach for detecting this disease. For this purpose, we examined the ECG signal by
detecting QRS complexes and then selecting 30 successive R-peaks and analyzing the atrial activity
segment with a variety of indices, including the entropy change, the variance of the wavelet transform
indices, and the distribution of energy in bands determined by the dual-Q tunable Q-factor wavelet
transform and coefficients of the Hilbert transform of ensemble empirical mode decomposition.
These transformations provided a vector of 21 features that characterized the relevant part of the
electrocardiography signal. The MIT-BIH Atrial Fibrillation Database was used to evaluate the
proposed method. Then, using the K-fold cross-validation method, the sets of features were fed into
the LS-SVM and SVM classifiers and a trilayered neural network classifier. Training and test subsets
were set up to avoid sampling from a single participant and to maintain the balance between classes.
In addition, individual classification quality scores were analyzed for each signal to determine the
dependencies of the classification quality on the subject. The results obtained during the testing
procedure showed a sensitivity of 98.86%, a positive predictive value of 99.04%, and a classification
accuracy of 98.95%.

Keywords: atrial fibrillation; ECG processing; dual-Q tunable-Q wavelet transform; EEMD; MODWT;
LS-SVM classifier

1. Introduction

Cardiovascular disease is the leading cause of death worldwide and is a significant
cause of declining health and excessive costs to the health system. According to the global
ranking of deaths from cardiovascular causes, atrial fibrillation and atrial flutter are among
the top ten reasons [1]. This trend is expected to increase significantly as the population
ages [2]. Atrial fibrillation is the most common and invasive heart rhythm disorder world-
wide, significantly impacting morbidity and mortality. AF detection is crucial as this cardiac
arrhythmia is a well-known risk factor for ischaemic stroke, demonstrating rates up to
six times higher than among patients without arrhythmia [3,4]. The early diagnosis and
treatment of this heart disease can improve the standard of living and have a long-term
impact on people’s lives.

Atrial fibrillation describes abnormal heart behavior, which can be symptomatic or
asymptomatic and is caused by inappropriate activity within the atria, which in turn
causes an irregular ventricular pace. Four different classes of atrial fibrillation can be
distinguished in general. The American Heart Association suggests the categorization
of AF into first detection, paroxysmal, persistent, and permanent based on the temporal
rhythm due to its simplicity and clinical relevance [5]. Identifying AF in a timely manner
is critical to prevent life-threatening situations, but it can be challenging, especially for
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early-stage AF, also known as paroxysmal AF (PAF) [5,6]. The electrical signal waveform
of a single episode of each type of AF is essentially the same. Irregular and inconsistent RR
intervals, the presence of a continuous and time-varying atrial fibrillatory signal instead
of P-waves, and widening/shrinking in some cases of QRS complexes or fluctuating
waveforms in the baseline ECG are the main factors visible in the ECG signal that indicate
atrial fibrillation and differentiate it from normal sinus rhythm [5–9]. In the case of AF
occurrence, the original P-waves vanish and are replaced by a series of irregular high-
frequency oscillations called F-waves. The frequency range in which changes in the signal
resulting from the occurrence of AF are recorded is 2–9 Hz [9,10].

1.1. Review of Existing Literature

Remarkable advances in computing power have been achieved, and the latest develop-
ments in deep learning technologies have revolutionized the healthcare sector and medical
practice. The growing accessibility of wearable gadgets that can monitor pulse and blood
oxygen saturation or even capture a single-lead ECG makes it possible to collect data on
the functioning and well-being of the heart. Wearable devices, especially in terms of their
ECG signal monitoring capabilities combined with AI methods, are already gaining popu-
larity [11]. Personal ECG devices such as the AliveCor Kardia, Apple Watch, or Samsung
Galaxy Watch allow one to detect various arrhythmias on a larger scale than ever before
and in a non-ambulatory environment [12]. The work of Mäkynen et al. [13] discussed
the possibility of applying wearable devices for AF detection, focusing on the benefits and
limitations of pairing wearable devices with machine learning/deep learning algorithms.

The electrocardiogram is a fundamental tool for the clinical diagnosis of atrial activity
and the assessment of the heart’s electrical behavior. By recording and analyzing the
electrical signals within the human body, the ECG provides a reliable and non-invasive
method for assessing cardiac function and detecting abnormalities [4,8,14]. Non-ECG-based
measurements, such as blood pressure, are also feasible, as Verberk et al. [15] demonstrated
the ability to obtain a recall of 98% and a specificity of 92% in detecting AF using a blood
pressure monitor. Another possibility is the use of a photoplethysmographic signal [16,17],
which has achieved a sensitivity and specificity of, respectively, 97% (±3%) and 99%
(±3%) [16], or even cardiac dynamics signals, such as the ballistocardiogram signal or the
seismocardiogram signal [18].

However, most reports in the literature on AF detection are based on the ECG signal.
Hirsch et al. [8] presented an interesting and valid concept for dividing AF detection
methods into four groups. These groups of methods were: (i) AF detection based only on
the RR interval features [4,19–23], (ii) AF detection based only on the atrial activity (AA)
features [2,24,25], (iii) AF detection based on the combination of the RR intervals and the
AA features [8,26], and (iv) AF detection based on no manually crafted features from the
ECG [7,27–31]. The most significant publications are also presented in the last table of this
paper, which displays the results obtained using the MIT-BIH atrial fibrillation reference
benchmark database.

Different methods have been used to determine the characteristics of the RR intervals
and atrial activity in the ECG signal. One of them is based on estimating the changes in
the interval between two consecutive R-waves (RR) with various irregularity measures.
The others are based on observing a lack of or abnormal P-waves (replaced by rapid, ir-
regular, and disordered fibrillatory waves, called F-waves) [2,32]. It can be concluded that
the absence of P-waves is a crucial indicator of the presence of AF [6]. The occurrence of
P-waves makes many methods such as the wavelet transform (WT) [2,24,25] or empirical
mode decomposition (EMD) [33,34] useful for the creation of feature sets. Asgari et al. [25]
calculated the peak-to-average power ratio and log-energy entropy for each wavelet co-
efficient. An interesting approach was proposed by Giraldo-Guzmán et al. [7]. It was
based on the operation of spatio-temporal filtering to magnify and detect the prominent
spatio-temporal patterns within the P-waves in multichannel ECG recordings. In the work
of Rahul et al. [35], the ECG signal and its time–frequency representation were regarded
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as an image, and for the detection of AF, the bidirectional long- and short-term memory
network was applied.

The ability to accurately assess RR intervals provides many benefits, including the
capacity for long-term monitoring [32], as well as the ability to use different parameters,
such as those used to evaluate fetal heart rate [4]. An interesting approach is the use
of non-linear entropy coefficients in the description of RR intervals [8] or discrete-state
Markov models [22]. The non-linear fractal dimension (FD) helps discriminate between
physiological and pathological ECG [36]. An audio-inspired technique was proposed in [37].
It involved extracting RR-value sequences from filtered ECG signals and applying various
audio spectral characteristics to these sequences. The resulting input vectors were then
used with different types of manifold estimators. The authors also employed least absolute
shrinkage and selection operator (LASSO) regression, a feature selection technique. Such an
approach showed that spectral representations of AF segments can induce better-defined
low-dimensional embedding manifolds and a sufficient intrinsic separability of AF from
sinus rhythm.

It is only sometimes feasible to directly compare previously proposed techniques
due to the use of different databases of ECG signals. Artificial intelligence, such as deep
learning or machine learning approaches, has significantly impacted the advancement in
AF detection methods. A frequently used classifier in AF detection methods is the support
vector machine (SVM) classifier [4,19,20,25,26], as well as the K-nearest neighbor (KNN)
classifier [38]. A simple linear classifier was used on heart rhythm data in [32]. In ref. [3],
the detection of AF was based on the receiver operating characteristic (ROC), which al-
lowed the authors to estimate the optimal threshold for discriminating between episodes
of AF and non-AF. A model combining convolutional and recurrent neural networks was
proposed to extract high-level features from segments of RR intervals (RRIs) in order to
classify them as AF or normal sinus rhythm in ref. [27]. The features of an ECG were
extracted by a convolutional neural network (CNN) and loaded into a long short-term
memory (LSTM) model in ref. [39]. The work of Staffini et al. [40] paired a variational
auto-encoder (VAE) with a bidirectional long short-term memory network (BiLSTM) back
end to perform unsupervised anomaly detection on heart rate sequences acquired from
wearable devices, obtaining better results than typically used anomaly detection methods.
Nurmaini coupled a discrete wavelet transform (DWT) with one-dimensional convolutional
neural networks (1D-CNNs) to classify three categories: normal sinus rhythm (NSR), AF,
and non-AF [41]. A lightweight CNN-based AF event detector was presented in ref. [42].
The accurate adjustment of the CNN parameters achieved promising AF detection results.
The optimization of the parameter values made it possible to run the classification on
a Raspberry Pi computer. A combination of atrial activity characteristics and RR inter-
val characteristics was used as input for three popular classifiers (boosted trees (BoT),
random forest (RF), and linear discriminant analysis (LDA)) with the random subspace
method (RSM) in ref. [8]. Plesinger et al. [43] used statistical descriptions of RR intervals
to train a custom 2-layer neural network (NN) and a bagged tree ensemble (BT), while
Kamaleswaran et al. [44] applied a 13-layer one-dimensional CNN. Ref. [45] described
five well-known pre-trained convolutional neural networks, namely AlexNet, VGG16,
GoogLeNet, RenNet50, SqueezeNet, and ShuffleNet, applied to atrial fibrillation detection.
The authors verified the detection quality in proprietary and PhysioNet/CinC Challenge
2017 databases. Zhang et al. [46] proposed a dual-domain attention cascade, D2AFNet,
for accurate and interpretable AF detection by cascading attention-based bidirectional
gated recurrent units and densely connected networks embedded with channel–spatial
information fusion modules.

1.2. Proposed Work and Contribution

Numerous studies have been published on the use of machine learning methods for
AF detection [4–6,8,14,23,47]. Most of them reported almost perfect quality indicators for
AF detection. Researchers have applied different techniques to find the characteristics of
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AF. What impact do various characteristics have on the effectiveness of AF detection? Does
using characteristics derived from heart rate provide a more effective result than features
obtained from electrocardiogram signal examination? To answer these questions, three
different signal transformations were applied to obtain an accurate description of the AF
phenomenon and learn the selected classifiers.

This paper presents an improved technique for automatically detecting atrial fibrilla-
tion and an assessment of its performance. The proposed algorithm considers the part of
the ECG signal originating from atrial activity and the heart rate in the range of specified
consecutive heartbeats. For this reason, the feature window gathers different kinds of
information from 30 heartbeats without overlapping. The first step of the proposed method
is pre-processing, which includes, among other things, signal filtering followed by a feature
vector extraction step. Several parameters are applied to describe atrial activity in the ECG
signal and heart rhythm.

The novel approach is intended for the analysis of AA. The processing of AA is carried
out with the dual-Q tunable Q-factor wavelet transform (DQ-TQWT), ensemble empiri-
cal mode decomposition (EEMD), and the maximal overlap discrete wavelet transform
(MODWT) multiscale variances. DQ-TQWT-based features have never been used in the
past for AF detection. These treatments provide the parameter values that are included in
the feature vector. Several other parameters are also explored, among which it is worth
mentioning the Higuchi fractal dimension and various types of entropy, which are known
to be effective in AF detection. In the last step, feature selection is carried out to obtain the
best performance and reduce the number of features. The genetic algorithm is used with the
wrapper method to optimize feature selection for the highest accuracy. Finally, the LS-SVM
method is applied for classification purposes. The proposed method outperforms many
contemporary techniques developed in this field. The significant contributions of this paper
are as follows:

• The decomposition of part of the ECG signal with the dual-Q tunable Q-factor wavelet
transform (DQ-TQWT), ensemble empirical mode decomposition (EEMD), and the cor-
responding analysis of variances from the maximal overlap discrete wavelet transform
(MDDWT);

• The proposal of a differentiated set of features describing atrial activity in the ECG
signal and heart rhythm;

• The application of a least-squares support vector machine for classification purposes;
• Experimental results showing that the proposed method’s performance in detecting

AF episodes was superior to that of state-of-the-art methods.

The paper is organized as follows. The proposed method is presented in Section 2.
Section 3 describes the dataset used and presents the experimental results of the proposed
method. Section 4 discusses the results obtained. Finally, the conclusions and suggested
future research are presented in Section 5.

2. Materials and Methods

A block diagram of the proposed method is shown in Figure 1. It consists of five
major stages: (i) the pre-processing stage, which includes denoising and R-peak detection;
(ii) atrial activity analysis, which comprises three transformations of the atrial activity
extracted from the ECG signal; (iii) heart rhythm analysis; (iv) the gathering of data for
the feature vectors; and (v) the classification stage, which includes training (to create a
classification model) and testing. The implemented feature estimation methods are all
inherently finite or possess stopping criteria to avoid latency or runtime errors. With a data
window width of 30 beats [8], the window is marked with a pre-trained classifier. On this
basis, the beginning of an episode of atrial fibrillation can be detected with a latency of
30 heartbeats.

The initial pre-processing step aims to reduce the wandering baseline in the ECG signal.
Additionally, since raw ECG signals are frequently contaminated by various types of noise,
such as muscle noise and 50/60 Hz power line interference, Savitzky–Golay filtering is
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used. Subsequently, R-peak detection is performed, for which different algorithms can be
used [48]. The detected R-peaks are the basis for calculating the RR interval. RRi variations
between heartbeats reflect both the vagal and sympathetic modulation of the heart sinus
node and are commonly used to perform heart rate variability (HRV) analysis. Knowing
RRi, the instantaneous heart rate values HRi (bpm) are computed. The results of the first
stage of the presented method are illustrated in Figure 2. As mentioned in ref. [8], 30 beats
are considered to guarantee stable feature extraction, especially for dynamic complexity
description factors [49]. The part of the ECG signal that contains these successive QRS
complexes is analyzed by the variance of the MODWT, the energy of the corresponding
components of the DQ-TQWT, and ensemble EMD transformations.

Atrial Activity Analysis

Heart Rhythm Analysis

Machine Learning

raw ECG

preprocessing stage
denoising, R-peak detection

Dual-Q TQWT

Maximal Overlap
Wavelet Transform

Ensemble EMD

Heart Rate
Determination

energy of low- and high-
resonance components

multiscale
variance

Hilbert transform
of IMFs

RR interval
parameters

Feature Vectors
data for classification

Classifier
(training, testing)

prediction
is AF or not AF?

Figure 1. An overview of the proposed algorithm, focusing on the part corresponding to the prepara-
tion of the feature vector for the classifier.
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Figure 2. (a) ECG signal and fibrillation episode in 4048 signal (channel: 1) from MIT-BIH Atrial
Fibrillation Database (green circles denote R-peaks with normal sinus rhythm, red stars denote R-
peaks annotated as atrial fibrillation); (b) heart rate signal (bpm) with clinically recognized AF (blue
circles denote normal sinus rhythm heart rate, whereas red circles denote heart rate corresponding
to AF).

2.1. Atrial Activity Assessment Factor Extraction

The primary purpose of this stage of the proposed method is to extract the significant
features that make the investigated phenomenon distinguishable from the normal activity
of the heart. Thanks to the DQ-TQWT, MODWT, and EEMD transformations applied for
the indicated part of the ECG signal, in the location where the P-wave appears, it is possible
to decompose the signal into components that allow these features to be distinguished.
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As well as the FD, complexity characteristics and different types of entropy are calculated
to describe atrial activity directly from the ECG signal [8].

According to the work of Hirsh et al. [8], a constant-length window of 0.26 s (starting
0.38 s before the detected R-peak) is used to extract the respective P-wave. An example of
atrial activity annotated in the ECG signal is presented in Figure 3. However, it is quite
likely that in the case of a high heart rate, the analyzed segment of the ECG signal will
also include part of the T-wave. Such a selection allows for the analysis of the part of the
ECG that corresponds to the P-wave and omits the QRS complex. In the case of a sampling
frequency of 250 Hz, the selected data window consists of 64 samples. As mentioned above,
a signal window consisting of thirty R-peaks is analyzed. For each of the RR intervals,
each segment of atrial activity is analyzed. Finally, the resulting feature values form the
corresponding 30-element vectors, which are then averaged.
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Figure 3. Examples of atrial activity (thick red line) without (a) and with (b) atrial fibrillation (signal
4048 from MITBIH AFDB).

2.2. Dual-Q Tunable Q-Factor Wavelet Transform

Since atrial fibrillation can exhibit some oscillatory characteristics, we decided to use a
tunable wavelet transform, which would allow the observation of oscillatory and transient
components of the ECG signal in different frequency sub-bands. The tunable Q-factor
wavelet transform (TQWT) is a type of WT that can decompose a signal into multiple
sub-bands. Using the inverse TQWT, the signal can then be reconstructed from the sub-
bands with the highest energy [50]. The traditional WT is characterized by the invariant
Q-factor, i.e., the constant ratio of its center frequency to its bandwidth [51]. The operation
of the TQWT relies on the combination of three essential parameters: the Q-factor (Q),
redundancy (r), and level of decomposition (J). It is imperative to have prior knowledge
of these parameters before performing TQWT decomposition. The Q-factor significantly
impacts the wavelet’s oscillatory behavior, whereas the redundancy r is calculated as the
total number of wavelet coefficients divided by the signal length to be used for the TQWT.
The value of J is the level of two-channel filter banks that attach to the low-pass filter output,
resulting in sub-bands J + 1 [50,52]. The application of the dual-Q TQWT includes the
simultaneous use of the two Q-factors of the WT and was first introduced in [51,53]. This
transformation decomposes the signal x into two components, x1 and x2, where x1 mainly
consists of sustained oscillations and x2 mainly consists of non-oscillatory transients [52].
Let TQWT1 and TQWT2 denote the TQWT with two different Q-factors (high and low
Q-factors); then, the decomposition of x can be derived by solving an optimization problem
with constraints in the sub-band-dependent regularization form [51]:

arg min
w1,w2

J1+1

∑
j=1

λ1,j||w1,j||1 +
J2+1

∑
j=1

λ2,j||w2,j||1, (1)

such that
x = TQWT−1

1 (w1) + TQWT−1
2 (w2), (2)

where wi,j denotes wavelet coefficients of TQWTi for i = 1, 2, and TQWT−1 is the inverse
transform. To start the decomposition, knowledge of six parameters is required: Q1, r1, and
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J1 for the high-Q-factor TQWT and Q2, r2, and J2 for the low-Q-factor TQWT. According
to ref. [52], to protect against the problem of wavelet ringing, the parameter r should be
greater than or equal to 3. The high-resonance and low-resonance components of the
w1 and w2 sub-bands are used for further analysis. The percentage of energy from each
sub-band is determined on the basis of w1 and w2 according to

Ei,j =
Ji+1

∑
j=1
|wi,j|2, (3)

where Ji is the decomposition level of the TQWT. Then, the peak and average energy,
respectively, are estimated as

Ei,peak = max
1≤j≤J+1

(
Ei,j
)

(4)

and
Ei,ave = mean(Ei,j)|Ji+1

j=1 . (5)

Finally, two factors are calculated as the ratio of the peak energy to the average energy
for high- and low-resonance components, respectively, according to

ζi =
Ei,peak

Ei,ave
, (6)

where i = 1, 2.
Having obtained the wavelet coefficients w1,2 with the DQ-TQWT, the wavelet en-

tropy is also calculated as the maximum entropy value in individual sub-bands for the
high- and low-resonance components of the transformation. WT-based entropy measures
the degree of both order and disorder in a signal, as well as the underlying dynamic
process associated with it. The Matlab procedure wentropy (Shannon entropy) is applied,
and the corresponding factors are indicated as Ew1 and Ew2, respectively, for high- and
low-resonance decomposition coefficients after the DQ-TQWT. The energy distribution
within the sub-bands for high- and low-resonance components is presented in Figure 4.
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Figure 4. Cont.
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(c) The AF case (high-resonance components).
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Figure 4. Different energy distributions within sub-bands in wavelet coefficient domain for normal
sinus rhythm (NSR) (a,b) and for atrial fibrillation (c,d).

2.3. The Variance of the Maximal Overlap Discrete Wavelet Transform

The absence of a typical P-wave characterizes an ECG signal that contains episodes
of AF. This fact affects the energy distribution in that signal. For this reason, maximal
overlap discrete wavelet transformation is applied to the atrial activity signal to identify
the absence of a common P-wave component in the ECG signal. MODWT preserves energy;
it is well suited to analyzing the dependence of variation on scale in ANOVA studies.
The examination of wavelet variance permits the identification of the scales that are most
significant in the general variability of the data. In addition, MODWT can be used as a
variance estimator [54]. This transformation resolves the issue of the time variance property,
promoting no downsampling. That is, all MODWT decomposition layers maintain the
exact time resolution without phase distortion [55]. MODWT enhances the alignment of the
decomposed wavelet and scaling coefficients at an individual level with the original time
series. This transform aligns the wavelet coefficients at each time range with the original
signal. The calculated variances v̂2

j allow the analysis of the localized signal variation with
respect to scale and time [56]. To apply MODWT to a finite time-series signal x(n) and
decompose it into J levels, J pairs of wavelet (high-pass) h̃j,l and scaling (low-pass) filters
g̃j,l must be used. At the j-th level, a filtering operation is performed to obtain a set of
wavelet and scaling coefficients, as described in ref. [54]:

W̄j,n =

Lj−1

∑
l=1

h̃j,l x(n− l), (7)

V̄j,n =

Lj−1

∑
l=1

g̃j,l x(n− l), (8)

where n = 0, 1, . . . , N − 1, and h̃j,l and g̃j,l are the j-th level MODWT wavelet and scaling
filters, respectively. The variance estimate is defined as

v̂2
j =

1
Lj

Lj−1

∑
l=1

W̄2
j,n. (9)

In this work, the Matlab procedures modwt and modwtvar are used, and v̂2
j denotes

the variances obtained. Variances v̂2
j (j = 1, . . . , 9) are calculated for the first nine levels

of decomposition.
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2.4. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) was introduced by Huang et al. in ref. [57].
A variation of EMD is the ensemble EMD (EEMD), which decomposes the original signal
over an ensemble of noisy copies and obtains the final results by averaging. White noise can
provide a uniformly distributed scale in the time–frequency domain. The EEMD algorithm
can be described as follows [58]:

1. Generate x(n)(m) = x(n) + β · w(m), where w(m), m = 1, . . . , K are different realiza-
tions of white noise and x(n) is the atrial activity signal (P wave);

2. Decompose each x(n)(m), m = 1, . . . , K completely by EMD, obtaining its modes c(m)
i ,

where i = 1, . . . , M indicates modes and K is the so-called ensemble number;
3. Assign c̄i as the ith mode (IMF) of x(n), obtained by averaging the correspond-

ing modes.

It should be mentioned that in EEMD, each x(n)(m) is decomposed independently of
the different noise realizations, and for each of them, a residual r(n) is obtained at each
stage. Having obtained the intrinsic mode function components from the EEMD, the Hilbert
transform is applied to each IMF component [59]. This transform allows one to obtain
one of the instantaneous amplitudes (InAs—the absolute values of the analytic signals) [8].
Taking into account the ith IMF and applying the Hilbert transform, the respective analytic
signal, xa

i (n), is calculated as

xa
i (n) = IMFi + j ·H(IMFi), (10)

where j2 = −1 and H(·) is the Hilbert transform operator. The ith InA (InAi) is defined
as the absolute value of the analytic function xa

i (n). The trend of the InA can be used
to evaluate atrial activity. The linear regression operator results in the calculation of
the trend/slope. The slope is positive for normal sinus rhythm because a P-wave exists.
However, for AF, the slope is less steep or even negative due to the lack of a P-wave [8].
In this work, two slope values (denoted β2 and β3) are estimated on the basis of InA2 and
InA3, respectively [8]. The waveforms of InA2 and InA3 in the case of non-AF and AF
episodes, as well as the corresponding regression lines, are presented in Figure 5.
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Figure 5. Waveforms of InA2 and InA3 without AF (a) and with AF (b); dashed lines denote the
regression line.

2.5. Other Parameters Used for Atrial Activity and Heart Rate Evaluation
2.5.1. Turning Point Number

A turning point is a point at which the derivative changes sign, so it may be either a
relative maximum or a relative minimum. Determining the number of turning points is a
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fast and direct method of assessing the irregularity of the time series, and it is calculated
according to the approach presented in ref. [8].

2.5.2. Sample Entropy

The sample entropy (SaEn) belongs to a family of statistics that measure the complexity
and regularity of time-series data. The sample entropy is calculated as

SaEn = − log
(

A
B

)
= log(B)− log(A), (11)

where A, B is the number of vector pairs matching within a specified tolerance r of their
Chebyshev distances [8].

2.5.3. Spectral Entropy and Rényi Entropy

The Spectral Entropy (SpEn) is a measure of the distribution of power in a signal.
For the atrial activity signal (P-wave) x(n), the power spectrum is S(m) = |X(m)|2, where
X(m) denotes the discrete Fourier transform of x(n). The probability distribution P(m) is
given as

P(m) =
S(m)

∑i S(i)
. (12)

The spectral entropy is then given as

SpEn = − 1
log2 N

N

∑
m=1

P(m) log2 P(m), (13)

where N represents all the frequency components. The Matlab function is used to calcu-
late SpEn.

The Rényi entropy is expressed as

REN(α) = − α

1− α

N

∑
m=1

log2(P(m))α, (14)

where α > 0 and α 6= 1; in this work, α = 2.

2.5.4. Higuchi’s Fractal Dimension (HFD) of Heart Rate

The heart rhythm derived from 30 beats is evaluated with Higuchi’s fractal dimen-
sion [60]. The discrete signal is expressed as time series x(1), x(2), . . . , x(N), where
x(i) = RRi. From the starting time sequence, the curve Lm(k) is calculated for each
of the time series k as

Lm(k) =
1
k

b N−m
k c

∑
i=1
|x(m + ik)− x(m + (i− 1)k)|

 N − 1
bN−m

k ck

, (15)

where N is the length of the original time series and N−1
b N−m

k ck
represents a normalization

factor. Lm(k) is then averaged over all m to produce an average curve length value L(k) for
each k = 1, . . . , kmax as [60]

L(k) =
1
k

k

∑
m=1

Lm(k). (16)

The slope of the best linear fit from the plot of ln(L(k)) versus ln(1/k) estimates
the HFD.

HFD =
ln(L(k))
ln(1/k)

. (17)
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2.6. Summary of Features

The features used in this work to detect atrial fibrillation are summarized in Table 1.
A set of features is determined for each signal segment containing 30 detected QRS com-
plexes. The segments of the ECG do not overlap. The number of vectors for individual
signals from the MIT-BIH AF database varies, but they form a dataset that the classifier
uses for its training and testing.

Table 1. Summary of features used in this work.

No. Parameter Description Assessment of

1 HFD Higuchi fractal dimension RR intervals

2 HFDaa Higuchi fractal dimension

Atrial activity part of ECG;
value averaged over 30 beats

3 TPN Turning point number
4 SaEN Sample entropy
5 SpEn Spectral entropy
6 REN Rényi entropy

7, 8 β2, β3
EEMD, slope of the absolute value
of the analytic signals InA2, InA3

Atrial activity part of ECG,
value averaged over 30 beats

9, . . . , 17 v̂2
j Variance of MODWT, j = 1, . . . , 9 ECG signal containing

30 QRSs

18, 19 ζ1,2
DQ-TQWT, the ratio of the peak
energy to the average energy

DQ-TQWT, ECG
signal containing 30 QRSs

20, 21 Ew1,w2 Maximum wavelet entropy of w1,2

The effectiveness of machine learning depends on the empirical data available and the
intricacy of the model assumed [4]. For this reason, the wrapper approach is applied in
this work for feature selection [61]. Therefore, a genetic algorithm is employed to find the
best feature subset. The support vector machine (SVM) classification algorithm is utilized
to train and assess the generated feature subsets. The classification performance of the
generated subsets is compared in terms of the minimum value of the error classification,
and the subset that displays the best performance is selected as the optimum feature
subset [61].

2.7. LS-SVM Classifier

The support vector machine (SVM) is one of the best-known methods for data classifi-
cation. It maintains this popularity due to its effective generalization ability, which results
from its risk-minimizing structure [62]. Classification is achieved by a linear or non-linear
separating surface in the input space of the dataset [63]. The SVM constructs an optimal sep-
aration hyperplane between the positive and negative classes with the maximum margin for
binary-class classifications. It can be formulated as a quadratic programming problem that
involves inequality constraints. The corresponding class labels are as follows: ‘−1’ denotes
the non-atrial-fibrillation class, and ‘+1’ denotes the atrial fibrillation class. The major issue
with the SVM is that it requires a large amount of computing power when dealing with
datasets containing many dimensions. In this work, a variant of the SVM method is used.
The original SVM is altered to reach the optimal solution by resolving a system of linear
equations instead of a quadratic programming (QP) problem [64,65]. The least-squares
SVM (LS-SVM) was proposed by Suykens et al. [66]. The LS-SVM algorithm optimizes the
training process by removing the necessity of solving the quadratic programming problem,
providing a more efficient approach. The details of the LS-SVM are discussed in ref. [66].

2.8. Dataset Description

The proposed method was evaluated using the publicly available MIT-BIH Atrial
Fibrillation Database (AFDB) of ECGs [67]. The AFDB consists of two-channel ECG signals
sampled with a 12-bit resolution in the ±10 mV range. In total, approximately 41% of the
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heartbeats are denoted as AF, 57% as NSR, and the rest (1.2%) are from other arrhythmia
categories [8]. The AFDB allows for the use of existing annotations of R-peak locations [67].
A sequence of 30 QRS complexes in the ECG signal is labeled as AF if the expert identifies
at least half of the beats as AF; otherwise, the 30 QRS complexes are labeled as non-AF.
The percentage of segments marked as AF varies (Table 2). The percentage of AF episodes
in the data determined by collecting 30 consecutive QRS complexes is very similar to the
percentage of AF episodes determined when considering QRS complexes separately, as was
shown in ref. [4]. When analyzing the individual signals in Table 2, it can be seen that there
is a significant imbalance in the percentage of AF episodes between them; for example,
for signal 5091, the percentage of AF is 0.33%, while for 7162 or 7859 it is 100%, and for only
one signal (6995) is the percentage of AF close to 50%. In the current study, it was decided
to consider all the feature vectors obtained (NAF + NnAF = 37,606) as independent vectors;
thus, the overall percentage of AF cases was about 46%. While verifying the performance
of the classifier using the K-fold cross-validation procedure, it was decided that in each of
the training and test subsets created, this proportion should be maintained.

Table 2. The number of analyzed classes described by the number of AF (NAF) and non-AF (NnAF)
segment labels and the ratio of AF labels (NAF) to the total number of segments (Nseg) for a given signal.

File
Signal

4015 4043 4048 4126 4746 4908 4936 5091 5121 5261 6426 6453

NAF 17 489 27 109 1028 197 1323 4 1129 30 1770 16
NnAF 1449 1574 1304 1319 567 1861 465 1222 533 1487 68 1145

NAF/Nseg (%) 1.16 23.70 2.03 7.63 64.45 9.57 79.99 0.33 67.93 1.98 96.30 1.38

File
Signal

6995 7162 7859 7879 7910 8215 8219 8378 8405 8434 8455 All

NAF 916 1309 2008 1334 225 1104 475 383 1502 77 1475 16947
NnAF 923 0 0 552 994 341 1501 1134 459 1251 510 20659

NAF/Nseg (%) 49.81 100.00 100.00 70.73 18.46 76.40 24.04 25.25 76.6 5.79 74.30 45.06

2.9. Performance Metrics and Experimental Setup

The performance of the AF classification was evaluated by the following quality
factors: accuracy (Acc), sensitivity (Sen), specificity (Spec), positive predictivity value
(PPV), negative predictivity value (NPV), and F1 score. The factors were calculated on the
unseen (testing) dataset using a confusion matrix. These factors are defined, respectively, as

Acc =
TP + TN

TP + FN + FP + TN
, (18)

Sen =
TP

TP + FN
, (19)

Spec =
TN

FP + TN
, (20)

PPV =
TP

TP + FP
, (21)

NPV =
TN

TN + FN
, (22)

F1 =
2 · Sen · PPV
Sen + PPV

, (23)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
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The LS-SVM classifier performance was estimated using the cross-validation (CV)
statistical method. In this work, all data were validated with a five-fold CV. Using the
K-fold CV method can help produce an efficient model for imbalanced data. The average
performance of the model was calculated on all test sets. The set of parameters for the
DQ-TQWT was the following: Q1 = 6, r1 = 4, J1 = 45, Q2 = 1, r2 = 4, J2 = 11. The modwt
and modwtvar procedures started with the wavelet ’db2’ and level L = 12. After extensive
experimentation, this number was determined to produce the optimal results. The param-
eters of the genetic algorithm in the feature selection method (wrapper method) were as
follows: the crossover rate was 0.8, and the mutation rate was 0.01. For SVM-type classifi-
cation, class labels {−1, 1} were assigned to the feature vectors to represent the presence or
absence of the AF episode. The input data were scaled to the range [−1, 1] [4,63]. A Matlab
2022b environment (Mathworks, Natick, MA, USA) was used to implement the proposed
method. All signal processing and model training and testing procedures for this study
were custom programed in Windows 10 on a computer equipped with an AMD(R) AMD
Ryzen 7 2700X and 32 GB RAM.

3. Results
3.1. Feature Selection Results

The proposed features were divided into two groups according to whether or not they
contained AF. They were then tested to determine their origin from the same population.
For this purpose, we used the Mann–Whitney U-test, also known as the Wilcoxon rank sum
test, which is a non-parametric statistical test for comparing two samples or groups. This
verified whether the groups came from populations with different levels of the variable of
interest. From this, it follows that the hypotheses in the Mann–Whitney U-test were:

• H0. The null hypothesis states that the two populations are equal.
• H1. The alternative hypothesis states that the two populations are not equal.

A summary of the proposed features during episodes of AF and non-AF is given in
Table 3, as well as the results of the Mann–Whitney U-tests. Only for HFDaa, REN, and HFD
were there no reasons to reject Hypothesis H0. For the remaining features, hypothesis H0
was rejected, demonstrating the existence of a significant difference in the medians of the
two distributions.

This work used the K-fold cross-validation method with K = 5 to carry out the
wrapper method of feature selection, which was performed independently of the LS-SVM
model performance test procedure. In this case, each of the five prepared sets of feature
vectors served as data for the feature selection method. Then, the feature selection method
used only 80% of all feature vectors each time. A genetic algorithm was used to identify
the most suitable set of features and executed 10 times for each of the five sets. Overall, this
gave 50 different sets of selected features. The objective function of the genetic algorithm
was to maximize the prediction accuracy rate, calculated as

Acc =
ytest=ypredict

ytest
· 100[%], (24)

where ypredict denotes the predicted value of the classifier for the selected set of features, and
ytest is the known test value. For the feature selection process, we were provided with a
dataset that contained 80% of all features. This resulted in a dataset of 30,085 vectors for a
given number of total cases N = 37,606. Of these, 75% (22,564 feature vectors) were used in the
operation of the genetic algorithm. The remaining 25% (7521 vectors) were used to determine
the accuracy rate (Acc) of the prediction. The manipulations performed prevented the chosen
features from being over-matched to the examined database. The feature selection results
are shown in Figure 6. It is evident that features Ew2, SpEn, InA2, Ren, and ζ1 were the most
commonly seen in the set of features that guaranteed the highest value of the classification
accuracy factor. On the other hand, it is possible to identify features that appeared less often
in the feature sets allowing for high Acc accuracy values to be achieved. These features were
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HFDaa and HFD, as well as v̂2
i for i = 1, 6, 7, 8, 9. The selected features were very similar to

those selected when the reference methods were used, i.e., ReliefF [68,69] and MRMR [68,70].
A comparison of the chosen set of features is displayed in Table 4.

Table 3. Summary characteristics of features used in this work for non-AF and AF, and the results of
the Mann–Whitney U-test (α = 0.01, h = 1 indicates the rejection of the null hypothesis H0).

Non-AF AF

Feature Mean Std Mean Std p-Value h

Ew1 26.4109 9.8015 20.5394 8.2889 0 1
Ew2 23.3416 8.6224 18.7514 9.8648 0 1
β2 0.0005 0.0005 −0.0001 0.0003 0 1
β3 0.0004 0.0006 −0.0002 0.0004 0 1

HFDaa 1.1206 0.1257 1.1416 0.1638 0.2572 0
TPN 13.5132 4.1173 13.1830 5.5986 0 1
SpEn 0.9288 0.0044 0.9288 0.0046 0 1
REN 1.6723 1.4262 1.8316 1.8735 0.3374 0
SaEN 0.1471 0.0867 0.1918 0.0984 0 1
HFD 1.9701 0.3028 1.9714 0.1364 0.0007 1

ζ1 5.8912 2.6763 4.6510 1.5945 0 1
ζ2 3.3973 0.8831 3.8139 1.2100 0 1
v̂2

1 0.0002 0.0004 0.0002 0.0002 0 1
v̂2

2 0.0017 0.0016 0.0017 0.0019 0 1
v̂2

3 0.0108 0.0101 0.0095 0.0101 0 1
v̂2

4 0.0234 0.0291 0.0198 0.0237 0 1
v̂2

5 0.0254 0.0446 0.0286 0.0452 0 1
v̂2

6 0.0273 0.0689 0.0347 0.0686 0 1
v̂2

7 0.0145 0.0324 0.0196 0.0396 0 1
v̂2

8 0.0021 0.0059 0.0017 0.0033 0 1
v̂2

9 0.0003 0.0025 0.0005 0.0009 0 1

Table 4. Feature importance scores (in descending order) obtained using method proposed in this
work and the reference methods ReliefF [68,69] and MRMR [68,70] (the features rejected in the
proposed method are highlighted in gray).

No. This Work ReliefF [68,69] MRMR [68,70]

1 Ew2 β2 β2
2 SpEn REN β3
3 β2 Ew2 v̂2

9
4 REN β3 ζ1
5 ζ1 ζ1 SaEn
6 β3 Ew1 Ew1
7 ζ2 ζ2 Ew2
8 v̂2

2 SpEn TPN
9 Ew1 TPN ζ2

10 TPN HFD v̂2
4

11 SaEN SaEN HFDaa
12 v̂2

5 v̂2
5 v̂2

1
13 v̂2

3 v̂2
3 REN

14 v̂2
4 v̂2

2 v̂2
7

15 HFDaa v̂2
4 v̂2

3
16 v̂2

8 v̂2
8 SpEn

17 v̂2
6 v̂2

7 v̂2
2

18 v̂2
7 v̂2

6 v̂2
8

19 v̂2
1 HFDaa v̂2

6
20 v̂2

9 v̂2
1 HFD

21 HFD v̂2
9 v̂2

5
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Figure 6. A histogram showing the percentage occurrence of features for the selection feature method
based on their accuracy rate (the arrow indicates the first feature that can be ignored, along with
those to its right).

Two sets of features are visually compared with t-SNE (t-distributed stochastic neighbor
embedding) in Figure 7 [71]. It can be seen that with a complete set of features, the bound-
aries between the two classes (non-AF and AF cases) often overlapped in many areas, while
reducing the number of features to 14 led to the better separation of the two classes.

(a) A full set of features. (b) A reduced set of features.

Figure 7. t-SNE visualization in 2D map for non-AF and AF classes (blue denotes non-AF, orange
denotes AF): (a) full set of twenty-one features, (b) reduced set of fourteen features.

3.2. Performance Evaluation

The proposed method was tested on the AFDB. Table 5 presents the mean and standard
deviation for each fold’s performance. The proposed method achieved the best results using
the LS-SVM classifier with the reduced set of proposed features. However, the differences
among the applied classifiers were negligible and fell within the statistical error margin.

Table 6 shows the AF detection results for all ECG signals from the AFDB. The F1 score
fluctuated more than in the first part of the tests. In the current version of the proposed
method, online (real-time) operation is not foreseen because of the high computational
cost of, among other things, the signal transformations used, such as EEMD, DQ-TQWT,
and MODWT.
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Table 5. Summary of AF detection classification performance using the LS-SVM classifier for standard
5-fold CV; SVM classifiers (kernel: both with the radial Gaussian function—RBF and quadratic
function); and the trilayered neural network classifier (NN class).

This Work (LS-SVM RBF) SVM RBF SVM Quadratic NN Class

All Features
Selected
Features All Features

Selected
Features All Features

Selected
Features All Features

Selected
Features

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

PPV % 98.74 ± 0.13 98.83 ± 0.11 98.69 ± 0.24 98.64 ± 0.19 97.25 ± 0.07 96.60 ± 0.20 98.16 ± 0.21 98.15 ± 0.19
NPV % 99.07 ± 0.16 99.06 ± 0.20 98.82 ± 0.11 98.94 ± 0.11 97.98 ± 0.15 97.67 ± 0.20 98.46 ± 0.36 98.44 ± 0.17
Sen % 98.87 ± 0.20 98.86 ± 0.24 98.56 ± 0.13 98.71 ± 0.14 97.55 ± 0.19 97.17 ± 0.25 98.25 ± 0.30 98.10 ± 0.21
Spec % 98.96 ± 0.11 99.04 ± 0.09 98.93 ± 0.20 98.88 ± 0.16 97.74 ± 0.06 97.19 ± 0.25 98.40 ±0.22 98.18 ± 0.18
Acc % 98.92 ± 0.12 98.95 ± 0.12 98.76 ± 0.10 98.80 ± 0.12 97.65 ± 0.09 97.18 ± 0.08 98.33 ± 0.17 98.15 ± 0.19
F1 % 98.81 ± 0.13 98.84 ± 0.14 98.63 ± 0.11 98.67 ± 0.14 97.40 ± 0.11 96.88 ± 0.09 98.20 ± 0.13 97.95 ± 0.21

Table 6. Detailed LS-SVM classifier results using the selected set of features (rounded to 2 decimal
places; n/a if unavailable).

File
Signal

4015 4043 4048 4126 4746 4908 4936 5091 5121 5261 6426 6453

PPV % 76.19 98.16 100.00 94.69 100.00 100.00 99.55 57.14 98.77 100.00 99.72 100.00
NPV % 99.93 99.43 99.92 99.85 100.00 99.95 99.35 100.00 99.05 100.00 100.00 99.91
Sen % 94.12 98.16 96.30 98.17 100.00 99.49 99.77 100.00 99.56 100.00 100.00 93.75
Spec % 99.65 99.43 100.00 99.55 100.00 100.00 98.71 99.75 97.37 100.00 92.65 100.00
Acc % 99.59 99.13 99.92 99.44 100.00 99.95 99.50 99.76 98.86 100.00 99.73 99.91
F1 % 84.21 98.16 98.11 96.40 100.00 99.75 99.66 72.73 99.16 100.00 99.86 96.77

File
Signal

6995 7162 ∗ 7859 ∗ 7879 7910 8215 8219 8378 8405 8434 8455

PPV % 100.00 100.00 100.00 99.93 100.00 99.91 98.09 99.22 99.93 98.70 100.00
NPV % 99.35 n/a 0.00 100.00 99.80 99.71 99.07 99.91 100.00 99.92 99.80
Sen % 99.34 100.00 99.95 100.00 99.11 99.91 97.05 99.74 100.00 98.70 99.93
Spec % 100.00 n/a n/a 99.82 100.00 99.71 99.40 99.74 99.78 99.92 100.00
Acc % 99.67 100.00 99.95 99.95 99.84 99.86 98.84 99.74 99.95 99.85 99.95
F1 % 99.67 100.00 99.98 99.96 99.55 99.91 97.57 99.48 99.97 98.70 99.97

[*] ECG was 100% AF.

4. Discussion
4.1. Study of Selected Features

The feature vector comprised 21 elements, which were defined and described in the
preceding sections. These elements could be classified into two groups. The first group
consisted of a single non-linear HFD indicator calculated using the heart rate [8]. This
indicator changed marginally, and the average values for non-AF and AF episodes were
comparable, as indicated in Table 3. However, as reported in ref. [8], the Higuchi fractal
dimension calculated over RR intervals had remarkably similar values. It is essential to
note that the HFD indicator based on RR intervals could not accurately distinguish non-AF
and AF episodes. In ref. [8], it was discovered that the non-linear fractal dimension could
be used to assess atrial activity, specifically HFDaa. It is important to note that while both
HFD (based on RR intervals) and HFDaa were not included in the reduced set of features (as
seen in Figure 6), HFDaa was used more frequently than HFD in almost all optimal sets of
features. This was confirmed by the Mann–Whitney U-test (as seen in Table 3). The results
showed that there were no significant differences between the AF and non-AF classes for
the parameters HFDaa and REN, indicating that the null hypothesis could not be rejected.
A similar situation was observed for the HFD feature (p-value greater than 0). When
analyzing the accuracy of the feature sets, the REN and SpEn features (which measured
the entropy in the atrial activity part of the ECG signal) were found to be significant in the
reduced set of features, as shown in Figure 6.

The second group of features was calculated on the basis of the atrial activity segment.
Table 3 shows a significant difference in the values β2 and β3 between non-AF and AF
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episodes. In the case of the occurrence of AF, the values of β2 and β3 could be negative, in
contrast to the other parameters used. This behavior was similar to that observed in ref. [33].
Non-AF (or NSR) occurrence was characterized by higher positive values than AF episodes.
The EEMD methodology was used for the computation of these parameters. However, this
makes these parameters unsuitable for online operation due to the considerable computa-
tional complexity [57,59]. For the remaining parameters of the second group, the values of
the features taken into account were not in ranges that could be clearly defined. Compared
to parameters such as HFDaa, SpEn, and HFD, whose range of value variation was very
narrow, the variability of values for the rest of the parameters was greater. However, most
often, the values that were assigned to the AF class overlapped to some extent with those
assigned to the non-AF class. An interesting point of distinction between the classes of atrial
fibrillation occurrence and absence was provided by the parameters Ew1 and Ew2, which
are defined as the maximum entropy value (Shannon entropy) in individual sub-bands for
the high- and low-resonance components of the DQ-TQWT [10].

The DQ-TQWT produced two ratios, ζ1 and ζ2, which measured the ratio of maximum
energy to average energy for high- and low-resonance components. Table 3 shows that
these two parameters, although presenting overlapping value ranges, could be used to
differentiate between AF occurrence and non-occurrence cases. The usefulness of this
parameter was further demonstrated by its frequent presence in the feature set that yielded
the highest accuracy (see Figure 6). In this case, ζ1 appeared slightly more often than ζ2.

The last group of parameters was calculated from the variance of the MODWT. In this
study, nine values of v̂2

j were selected, but not all allowed for an equal contribution to the

reduced set of features. The parameters of the most significance were v̂2
2, v̂2

5, v̂2
3, and v̂2

4
(these parameters are listed in descending order of frequency of occurrence in Figure 6).

The TPN parameter proved its usefulness in detecting atrial fibrillation. The results of
the Mann–Whitney U-test presented in Table 3 show that there were differences in the value
distribution of this parameter for AF and normal-beat distribution for the atrial activity
segment in the ECG.

4.2. Quality Assessment of Classification Performance

As mentioned above, three SVM-based classifiers as well as a trilayered neural network
were chosen due to their popularity and the possibility of comparing the classification
results [4,6,14,30,47]. The training time of the models varied due to the different ways in
which the algorithms were implemented. The use of parallel computing capabilities in the
Matlab environment could significantly reduce the training time despite the large size of
the learning set. The testing procedure was therefore no longer such a problem.

Table 5 reveals that the SVM classifiers with RBF functions achieved the best perfor-
mance, while the SVM classifiers with a quadratic function produced slightly worse results.
This was true for both the complete set of features and the reduced set of features. However,
for the SVM method with a quadratic function, the differences were more pronounced
when using the reduced set of features, exceeding the standard deviation interval.

The results achieved by the trilayered neural network for both feature sets were
comparable to those of the LS-SVM and SVM classifiers (both with RBF), although they were
slightly poorer. The LS-SVM method yielded slightly better results when using a reduced
feature set, although the standard deviation was also slightly higher. The SVM method
with RBF followed a similar pattern. However, the SVM method with a quadratic function
produced considerably lower results with the reduced set of features. Notably, using the
LS-SVM method with a reduced set of features yielded the most precise classification
outcomes. Nevertheless, removing only seven features may not substantially reduce the
workload during the classifier’s feature selection and learning phases. Moreover, further
decreasing the number of features could potentially hinder the classifier’s performance.

The results of one of the LS-SVM models that underwent K-fold CV training are presented
in Table 6. The training set was composed of randomly selected feature vectors from the
entire AFDB, and the K-fold CV procedure combined both training and test data in a single
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record. However, for more realistic, critical, and useful results, individual signals were used
as test sets with specific feature vectors determined for each. As seen in Table 6, file 5091
had the smallest F1 measure of 72.73%, while file 4015 had the second smallest F1 score of
84.21%. Most subjects had individual results above 96%. A direct comparison with the results
presented in ref. [8] showed that for signals 4015 and 5091 (the worst individual results for
AF detection in the sense of the smallest F1 scores), the proposed set of features led to better
results. The lowest F1 score here was 72.73%, whereas for reference [8] it was below 30%. Files
with a segment ratio of NAF/Nseg close to or below unity exhibited the poorest performance,
as evidenced by their achievement of the smallest F1 values. This indicated that the AF
sections in the AFDB recordings were shorter than others. The values of the PPV ratio (below
80% in both cases) illustrated the difficulty in detecting episodes of AF. However, if the value
of the ratio was more significant (such as in file 6453), the F1 index increased to over 96%.

4.3. Comparison with State-of-the-Art Methods

Several methods, including the proposed algorithm, were evaluated for their effective-
ness in detecting atrial fibrillation using the MIT-BIH Atrial Fibrillation Database. The evalu-
ation of the methods was conducted with the utmost rigor, taking into account the variations
in features, data window size, and other parameters. The assessment was based on the values
of the Acc, F1, Sen, Spec, and PPV parameters, which were carefully analyzed to determine
the effectiveness of the methods. The results of this comparative analysis can be found in
Table 7. This table provides an overview of the work of researchers on AF detection using
the MIT-BIH AFDB database and includes the results obtained using SVM methods. In the
study by Andersen [26], five time-domain features were proposed for detecting AF based on
inter-beat intervals. These features included three entropy-based measures (sample entropy,
coefficient of sample entropy, and Shannon entropy) and two measures based on the charac-
teristics of the RR interval (root mean square of successive difference and normalized root
mean square of successive difference). It is important to note that the results were obtained
using an SVM classifier. The accuracy of the results varied depending on the duration of the
time window and the number of beats used. For a 30-second window, the accuracy obtained
was 96.98%, while using up to 300 beats resulted in a slightly lower accuracy of 96.45%.

The papers [4,32] proposed using only the heart rhythm signal to gather information.
Five features of the heart rhythm signal were used in ref. [32] along with a simple linear
classifier. This approach achieved Sen, Spec, PPV, and Acc values of 95.42%, 96.12%, 94.97%,
and 95.62%, respectively, for a window width of 130 beats. Czabański’s work [4] demon-
strated a significant expansion of the HR signal parameter set. The LSVM classifier used in
this study produced some of the highest classification results to date, with a sensitivity of
98.94%, specificity of 98.8%, positive predictive value of 98.39%, accuracy of 98.86%, and F1
score of 98.66%. An additional aggregation stage was included in the research to provide
even more reliable information on patient risk. It is worth noting that Czabański’s work [4]
used a Lagrangian SVM classifier instead of the LS-SVM classifier utilized in our approach.

In the work of Andersen et al. [27], a multi-layer deep learning network featuring
convolutional and recurrent layers was used to extract high-level features from segments
of RR intervals. This method had a sensitivity of 98.98% and specificity of 96.95% and was
validated through a five-fold CV procedure. The great benefit of this approach was that it
necessitated a small computational effort, allowing 24-hour ECG recordings to be processed in
less than a second. However, its positive predictive value (PPV) of 95.76% was lower than the
proposed method’s result. In another study, Liaqat et al. [30] proposed the use of long short-
term memory (LSTM) and a CNN, but the results were much worse than those obtained with
the proposed method, with an F1 score of 86%. A similar approach was proposed in ref. [39].
However, the obtained sensitivity and specificity were 97.87% and 99.29%, respectively.
This specificity value is the highest in our comparison. However, the F1 score was lower than
the highest value achieved by the proposed method. The results achieved were among the
lowest presented in this summary (F1 = 86%). The features obtained from two-lead ECG
recordings were processed with the wavelet packet transform, and the random process theory
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was used to provide efficient feature selection. A neural network was used as a classifier.
The sensitivity and specificity obtained were 98.7% and 98.9%, respectively, representing
some of the best values to date [2]. The lightweight 1D CNN model proposed in ref. [42]
achieved outstanding results in AF detection, but the performance varied depending on
the data length. The undoubted advantage of this solution was the short computation time,
but this resulted in lower values for the specificity parameter (95.30%, 93.23%, and 93.99%)
compared to other methods, including the method proposed in this work.

In the last two to three years, the features characterizing the RR intervals and the
atrial activity part of the ECG signal have yielded promising results for detecting AF.
Hu [10] proposed a decision tree classifier that achieved the highest specificity (99.6%) in
our comparison but displayed a lower sensitivity (97.9%). Hirsh [8] proposed a hybrid
approach that combined the non-linear entropy features of RR intervals and atrial activity,
which proved to be superior to approaches that used only one field of analysis. Zhang [46]
used a dual-domain attention cascade deep learning method (D2AFNet) to extract and
fuse features from segmented ECG signals. With a 10-fold cross-validation procedure,
the sensitivity and specificity achieved were 98.39% and 98.57%, respectively, which are
among the best values presented here. Based on the overview provided, it is evident that
the method proposed in this work accurately detected atrial fibrillation with minimal error.
When compared to other non-deep-learning methods outlined in Table 7, the proposed
algorithm achieved similar or even better results.

Table 7. A summary of published results for existing AF detection methods using the MIT-BIH Atrial
Fibrillation Database in comparison to the proposed work (n/a—not available; the best results are in bold).

Method Features Window Classifiers
Results (%)

Sen Spec PPV Acc F1

Andersen et al., 2017 [26]
RR interval

ECG features
300 beats

30 s
SVM 96.81

94.27
96.20
98.84

n/a 96.45
96.98

n/a

Wróbel et al., 2018 [32] HR irregularity features 21 Linear classifier 95.42 96.12 94.97 95.62 n/a
Kalidas et al., 2019 [22] RR intervals, Markov matrix 60 s RF 97.7 98.5 n/a n/a 97.7

Andersen et al., 2019 [27] RR interval 10 s CNN-LSTM 98.98 96.95 95.76 97.8 n/a
Czabański et al., 2019 [4] HR irregularity features 21 beats LSVM 98.94 98.80 98.39 98.86 98.66

Hu et al., 2020 [10] Frequency features 5 s decision tree 97.9 99.6 n/a n/a n/a
Liaqat et al., 2020 [30] 83 RR and ECG features 10 s LSTM 85.0 n/a 86.0 86.5 86.0
Wang et al., 2020 [2] Signal 10 s ANN 98.7 98.9 n/a 98.8 n/a
Hirsh et al., 2021 [8] RR intervals AA features 30 beats RF 98.00 97.4 n/a 97.6 97.1

Petmezas et al., 2021 [39] Signal 187 samples
around R-peak

CNN-LSTM 97.87 99.29 n/a n/a n/a

Zhang et al., 2023 [46] Signal 10 s D2AFNet 98.39 98.57 99.19 98.45 98.78

Phukan et al., 2023 [42] Signal
5 s

10 s
30 s

1D-CNN
99.26
99.72
98.57

95.30
93.23
93.99

n/a
97.68
97.50
96.70

n/a

Proposed method, 2023 RR interval AA features 30 beats LS-SVM 98.86 98.96 99.04 98.95 98.84

5. Conclusions

Atrial fibrillation is a condition that can have dangerous consequences for patients’
health if left undetected. Diagnosing this type of arrhythmia requires the long-term monitor-
ing of the heart, e.g., recording an ECG signal. Episodes of atrial fibrillation may be short and
sporadic, making them difficult to detect. However, using automatic AF detection methods
in the ECG signal can improve the AF detection performance in long-term signals. This study
proposed and evaluated a novel and reliable method for detecting atrial fibrillation episodes
in long-term ECG signals. Three signal decomposition techniques were used in this study,
i.e., the dual-Q tunable-Q wavelet transform, ensemble empirical mode decomposition,
and the corresponding analysis of variance from the maximum overlap discrete wavelet
transform. Various features were proposed, including one extracted from the heart rate and
others defined based on the segment of atrial activity in the ECG signal after decomposition
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with the abovementioned transforms. The LS-SVM classifier was applied with a five-fold
cross-validation procedure, outperforming other automatic AF detection methods proposed
in the literature. According to the numerical experiments, the first two transformations
(DQ-TQWT and EEMD) were the most useful for AF detection. The parameters obtained
from these experiments were essential components of a vector of features describing atrial
activity in AF detection. Feature selection was also performed such that the selected subset
of features provided the same or even better AF detection results than the complete set of
features. The algorithm achieved a high accuracy, sensitivity, specificity, PPV, and F1 score,
making it suitable for clinical applications. Individual ECG recordings were also classified
and compared with the results of the five-fold CV method. In this case, the classification
results were better than those presented in the literature, proving the proposed method’s
high effectiveness in detecting atrial fibrillation. The model can work efficiently with test
samples of any length, making it more applicable in clinical settings.

When developing this method, it is worth considering the ratio of AF events to total AF
plus non-AF events. A classifier with too few AF events will be unable to identify AF episodes
correctly. However, exceeding the specified lower limit of the abovementioned coefficient
would mean an AF episode detection rate of almost 100%. Reducing irrelevant features would
lead to a better understanding of which features to focus on to achieve even better AF detection
and interpretability by medical staff. Due to computational limitations, the proposed method
is currently more suitable for offline ECG analysis than implementation in real-time systems.
For new data, the derived model needs to be updated. Future research will focus on improving
its performance by appropriately selecting the parameters of the LS-SVM classifier; improving
the ECG pre-processing step; and, where possible, using more ECG channels.
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