
Citation: Sun, X.; Cai, M.; Ding, J.

A GPU-Accelerated Method for 3D

Nonlinear Kelvin Ship Wake Patterns

Simulation. Appl. Sci. 2023, 13, 12148.

https://doi.org/10.3390/

app132212148

Academic Editor: Inwon Lee

Received: 28 September 2023

Revised: 3 November 2023

Accepted: 3 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A GPU-Accelerated Method for 3D Nonlinear Kelvin Ship
Wake Patterns Simulation
Xiaofeng Sun 1,* , Miaoyu Cai 2 and Junchen Ding 1

1 Navigation College, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China; djc@dlmu.edu.cn
2 School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University,

No. 800 Dongchuan Road, Shanghai 200240, China; caimiaoyu@outlook.com
* Correspondence: xfsun_dlmu@163.com

Abstract: The study of ship waves is important for ship detection, coastal erosion and wave drag.
This paper proposed a highly paralleled numerical computation method for efficiently simulating
three-dimensional nonlinear kelvin waves. First, a numerical model for nonlinear ship waves is
established based on potential flow theory, the Jacobian-free Newton–Krylov (JFNK) method and the
boundary integral method. To reduce the amount of data stored in the JFNK method and improve
the computational efficiency, a banded preconditioner method is then developed by formulating the
optimal bandwidth selection rule. After that, a Graphics Process Unit (GPU)-based parallel computing
framework is designed, and we used the Compute Unified Device Architecture (CUDA) language to
develop a GPU solution. Finally, numerical simulations of 3D nonlinear ship waves under multiple
scales are performed by using the GPU and CPU solvers. Simulation results show that the proposed
GPU solver is more efficient than the CPU solver with the same accuracy. More than 66% GPU
memory can be saved, and the computational speed can be accelerated up to 20 times. Hence, the
computation time for Kelvin ship waves simulation can be significantly reduced by applying the
GPU parallel numerical scheme, which lays a solid foundation for practical ocean engineering.

Keywords: kelvin wake pattern; GPU acceleration; boundary integral method; JFNK method; banded
preconditioner method

1. Introduction

The focus of this research is on the innovation of highly parallel algorithms to simulate
the contours of a three-dimensional free surface that appears to be stationary at the stern
of a moving vessel, which are known as “Kelvin ship waves” [1]. Research on the kelvin
wave shape has been continuously put to practical use in hull design, ship detection and
environmentally friendly shipping policies [2].

Froude [3], a famous naval architect, first comprehensively described the morphology
and main characteristics of ship waves. Under the assumption of infinite water depth,
Kelvin [4] replaced a moving ship with a pressure disturbance point moving in a constant
velocity straight line on the water surface and proposed the famous Kelvin angle of 19.47◦.
In recent years, with the further study of ship wave characteristics, Rabaud [5] noted
that the wake angle will be less than the well-known Kelvin angle if the vessel speed
is sufficiently large. Subsequently, various effect factors for the Kelvin wake form were
discussed in plenty of papers, e.g., Froude number [6], non-axisymmetric and interference
effects, shear current,surface tension, the bottom topography, submergence depth, finite
water depth and viscosity [7], etc. Accordingly, the research method of ship waves has
gradually shifted from the previous analytical algorithms to numerical simulation.

The overwhelming majority of analytical algorithms of ship wave patterns concerns
linear theories. Havelock [8] provided a linear solution for the problem of flow under a
pressure distribution. Such ideal perturbations can also be replaced by a single submerged
point source singularity [8] and submerged bodies [2]. Moreover, thin ship theory was also

Appl. Sci. 2023, 13, 12148. https://doi.org/10.3390/app132212148 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212148
https://doi.org/10.3390/app132212148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5926-0382
https://doi.org/10.3390/app132212148
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212148?type=check_update&version=2

Appl. Sci. 2023, 13, 12148 2 of 19

used in the study of the ship wave pattern [9]. Alongside the development of computer
technology, numerical simulation methods are becoming increasing popular, and the
research focus has shifted from linear problems to nonlinear problems. Nowadays, there
are three numerical methods widely used to solve surface wave problems, including
the boundary integral method, finite-difference method and finite-element method. In
particular, Forbes [10] apply the boundary integral method to build a series of integro-
differential equations, and the full nonlinear free surface flow problem was solved with
moderate efficiencies. In more recent times, according to this method, many papers solve
fully 3D nonlinear ship waves with meshes between 60× 20 and 181× 61 [11,12]. And
Pethiyagoda [6] noted that the points used along the x-direction should be more than 100 to
make a sufficient standard regarding grid independence.

With increasing mesh size, however, the computation time increases exponentially
using only Central Processing Unit (CPU) computation power. Alongside the rapid im-
provement of the electronics industry, the Graphics Processing Unit (GPU) has become
another method of acceleration for optimizing the execution of large numbers of threads.
Currently, the powerful GPU parallel computing ability has been used to improve the stud-
ies on ocean engineering. Crespo [13] introduced the GPU acceleration technique into the
Smoothed Particle Hydrodynamics (SPH) method to simulate complex free-surface flows,
showing the high efficiency and stability of the GPU program in the SPH method. Hori [14]
simulated 2D dam-break flow by developing a GPU-based MPS code and achieved seven-
fold speedup. As for a 3D nonlinear free surface problem, Pethiyagoda [15] combined the
GPU acceleration technique with the boundary integral method, and LU [16] developed a
GPU-accelerated high-order spectral solver. Xie [17] developed the MPSGPU-SJTU solver
with a GPU acceleration technique for the liquid sloshing simulation.

This paper presents a parallel solution framework based on GPU for a nonlinear ship
wave problem, in which almost all operations are performed in a GPU device. Since the
nonlinear boundary integral equation on each node is independent of the synchronous
equations on other nodes, plenty of threads on the GPU can be used to complete the
integration operation for each node simultaneously. In addition, the parallel computing
method can be used for the calculation of the large-scale linear sparse system, while the
complex inversion process is quickly finished by using Compute Unified Device Architec-
ture (CUDA) language. According to this framework, a highly paralleled GPU solver is
proposed to simulate 3D nonlinear Kelvin ship waves. The computation speed for the 3D
nonlinear ship waves simulation can be significantly increased, which is convenient for
studying the larger scale problems. On the other hand, the size of Random-Access Memory
limits grid growth, and the application of the banded preconditioner method can greatly
save running memory to break through this limitation. The banded preconditioner method
helps to achieve the standard for the grid independence.

The rest of the paper is as follows. A brief introduction of the problem formulation is
given in Section 2. In Section 3, the banded preconditioner JFNK algorithm is described.
In Section 4, the theory and implementation of the GPU acceleration technique are presented.
The accuracy, efficiency and capability of the GPU solver are verified in Section 5, and a
summary in Section 6 concludes the paper.

2. Numerical Model

This paper supposes that a flow is moving at a uniform speed U along the positive
x-axis direction. Considering the inviscid incompressible fluid of infinite depth without
rotational flow, ignoring the influence of surface tension, the potential flow theory is applied.
Therefore, a source singularity of strength m is introduced at a distance L below the surface,
as illustrated in Figure 1. The transient waves can be generated with the disturbance of
source. The free surface wave height and flow field velocity potential can be expressed as
z = ζ(x, y) and Φ(x, y, z).

Appl. Sci. 2023, 13, 12148 3 of 19

Figure 1. Flow field diagram.

Dimensionless analysis is performed with fluid velocity U and distance L. The velocity
potential Φ(x, y, z) satisfies Laplace’s equation, the free surface kinematic and dynamic
boundary condition, the radiation condition and the limiting behavior of source singularity.
With φ(x, y) = Φ(x, y, ζ(x, y)), the boundary integral equation is written:

2π(φ(q)− x) =
∫ ∞

0

∫ ∞

−∞
[φ(p)− φ(q) + x− ρ]K1dσdρ

+
∫ ∞

0

∫ ∞

−∞
ζρ(P)K2dσdρ− ε

[y2 + x2 + (ζ(q) + 1)2]
1
2

(1)

where the K1 and K2 are kernel functions [12].
Moreover, the free surface conditions can be simplified by the symbol φ(x, y). Then,

the kinematic and dynamic boundary conditions of the free surface are combined to be

(1 + ζ2
x)φ

2
y +

(
1 + ζ2

y

)
φ2

x − 2ζxζyφxφy

2(1 + ζ2
x + ζ2

y)
+

ζ

F2 =
1
2

(2)

To solve the above nonlinear problem numerically, the N ×M mesh is established
on the free surface (N and M represent the number of longitude and latitude lines of
the mesh, respectively). The x-coordinates and y-coordinates of nodes are x1, x2, . . . , xN
and y1, y2, . . . , yN with regular intervals in the coordinate system; thus, the vector u of
2(N + 1)M unknowns is

u =[φ1,1, (φx)1,1, . . . , (φx)N,1, . . . , φ1,M, (φx)1,M, . . . , (φx)N,M

ζ1,1, (ζx)1,1, . . . , (ζx)N,1, . . . , ζ1,M, (ζx)1,M, . . . , (ζx)N,M]T . (3)

More 4M equations are provided by applying the radiation condition as follows:

x1((φx)1,l − 1) + γ(φ1,l − x1) = 0 (4)

x1((φxx)1,l − 1) + γ((φx)1,l − 1) = 0 (5)

x1(ζx)1,l + γζ1,l = 0 (6)

x1(ζxx)1,l + γ(ζx)1,l = 0 (7)

where γ is the decay coefficient.
Furthermore, more details about the governing equations, the boundary integral

method and numerical discretization are provided by Sun et al. [12].

Appl. Sci. 2023, 13, 12148 4 of 19

3. Banded Proconditioner JFNK Algorithm
3.1. Jacobian-Free Newton–Krylov Method

The JFNK method combines the inexact Newton iteration method with the Krylov sub-
space method. Its core content is the Generalized Minimum Residual (GMRES) algorithm,
according to the matrix free idea, which uses the finite difference form to approximate the
product of the coefficient matrix and vector, avoiding the Jacobian matrix calculation and
storage alone. The JFNK method mainly has two processes, namely external and internal
iterations. The external iteration is the inexact Newton iteration method, and the damping
parameter λk is used to ensure that the nonlinear residual decreases significantly in each
iteration for t = 0, 1, 2, . . . as follows:

ut+1 = λkδut + ut, λk ∈ (0, 1] (8)

Its internal iteration is the GMRES algorithm [18], which efficiently solves the correc-
tion in inexact Newton iteration; that is, it computes large-scale linear equations as follows:

J(ut)δut = −F(ut) (9)

where J(ut) = ∂F(ut)/∂ut is the Jacobian matrix [19].
Firstly, the approximate solution of δut is found by projecting obliquely onto the

Krylov subspace

Km(JtP−1, Ft) = span{Ft, JtP−1Ft, . . . , (JtP−1)m−1Ft} (10)

where m is the value of the subspace dimension.
An initial linear residual r0 is defined, given an initial guess u0, for the Newton

correction,
r0 = −F(u0)− J0P−1δu0 (11)

Subsequently, ‖rt‖ is minimized to a suitable value by the GMRES iteration wherein
Jacobian-vector products are approximated with finite difference:

JtP−1v ≈ F(ut + hP−1v)− F(ut)

h
(12)

where v represents an arbitrary vector used in building the Krylov subspace [20], and h is a
small perturbation

h =

√
(1 + ‖ut‖)hmach

‖v‖ (13)

Finally, the initial guess u0 can be defined as shown below:

ζ1,l = 0, (ζx)k,l = 0, φ1,l = x0, (φx)k,l = 1. (14)

The nonlinear equations are solved according to the calculation flow of a banded
preconditioner JFNK method, as shown in Figure 2. Note that v in the figure is a unit
orthogonal vector in the orthonormal basis of Krylov subspace.

Appl. Sci. 2023, 13, 12148 5 of 19

Figure 2. Calculation flow chart of the banded preconditioner JFNK method.

3.2. Banded Preconditioner Method

Iterative methods, e.g., the GMRES method etc., are currently the most popular
choices for solving large sparse linear systems of equations. However, this process of
prcconditioning is essential to the most successful application of iterative methods, since
the convergence of a matrix iteration depends on the properties of the matrix, e.g., the
eigenvalue, etc. [21]. Generally, the methods for choosing the appropriate preconditioner
are different for the specific problems. In this section, a banded preconditioner method for
solving the nonlinear ship wave problem is proposed.

3.2.1. Building Preconditioner Matrix

For a good preconditioner P, it should be cheap to form and to factorize. Meanwhile,
the preconditioned Jacobian JtP−1 should be easier to solve, which means the eigenvalues
are more concentrated. In general, it is feasible to consider a matrix constructed from the

Appl. Sci. 2023, 13, 12148 6 of 19

same problem under simplified physics. This paper applies the numerical scheme to the
linearized governing equations which apply formally in the limit ε→ 0.

The equations of the linear free surface boundary condition are described [22]:

ζx = φz on z = ζ(x, y) (15)

φx − 1 +
ζ

F2 = 0 on z = ζ(x, y) (16)

According to the linear free surface boundary condition, the boundary integral equa-
tion is described:

2π(φ(q)− x) = − ε

(x2 + y2 + 1)
1
2
+
∫ ∞

0

∫ ∞

−∞
φρ(p)K3(ρ, σ, x, y)dσdρ (17)

After numerical discretization, the linear system can be described as follows:

F1k,l = φk,l(q) +
ζk,l(q)

F2 − 1 (18)

F2k,l = 2π(φk,l(q)− xk) +
ε

[x2
k(q)− y2

l(q) + 1]
1
2
−

N

∑
i=1

M

∑
j=1

w(i, j)[(ζρ)i,j − (ζx)i,j]K
(3)
i,j,k,l − (ζx)i,j I (19)

where w(i, j) is the weighting function for numerical integration, for k = 1 . . . (N − 1),
l = 1 . . . M. Then, the linear Jacobian can be calculated directly, by differentiating the
linear system with respect to φ1,m, (φx)n,m, ζ1,m and (ζx)n,m. Therefore, the preconditioner
matrix P can be formed cheaply, and the eigenvalues of JtP−1 obviously cluster as shown
in Figure 3.

(a) Jt (b) JtP−1

Figure 3. The distribution of eigenvalues of Jt and JtP−1 on a 31× 11 mesh.

3.2.2. Preconditioner Factorisation and Storage

The JFNK method requires the result of the product of the inverse preconditioner
matrix and vector, P−1v. In general, the operation of inverting a matrix should be converted
to solving a system of linear equations, Pr = v. Find the solution r, and the result of P−1v
will be obtained. In order to calculate this linear system rapidly, the following block matrix
method is used to process the preprocessing matrix,

P =

[
A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D− CA−1B

][
I A−1B
0 I

]
(20)

where I, A, B, C and D are the unit matrix and the four submatrices.

Appl. Sci. 2023, 13, 12148 7 of 19

Accordingly, the vector v can be divided into upper and lower parts [v1 v2]T, and
then the solution r can be obtained after three cheap steps, as follows:[

o1
o2

]
=

[
v1

v2 − CA−1v1

]
(21)

[
s1
s2

]
=

[
A−1o1

(D− CA−1B)−1o2

]
(22)

[
r1
r2

]
=

[
s1 −A−1Bs2

s2

]
(23)

The calculation of P−1v in Equation (12) can be facilitated according to the progressive
order from Equations (21)–(23).

3.2.3. The Banded Preconditioner

After the factorization operation, the calculation and storage of preconditioner matrix
P are optimized. However, the size of submatrix D is (N + 1)M × (N + 1)M, and it
will increase dramatically as the size of mesh increases. Consequently, there will be two
problems when the preconditioner matrix size is large. One is a memory problem, since
the running memory of this computer cannot accommodate this preconditioner matrix;
the other is an efficiency problem, since inverting the preconditioner matrix will take
much time.

By observing the preconditioner matrix, it can be found that the values decay with
distance from the main block diagonal. This observation suggests using a banded ap-
proximation to the matrix for our preconditioner, as shown in Figure 4. Moreover, batch
construction avoids the problem of insufficient running memory due to the large size of the
submatrix D. The compressed sparse row (CSR) data format is used to save this matrix.
Hence, a lot of memory can be saved.

Figure 4. Construction of the banded preconditioner, the area marked in red lines indicates
the bandwidth.

The feasibility of the banded preconditioner matrix method is verified, as shown in
Figure 5. The tightness of clustering can be further improved by increasing the band-
width. When the band = 21, the eigenvalues of JtP−1 have been clustered, satisfying the
requirement of the GMRES method.

For certain bandwidth values, the computing speed of GMRES will not be significantly
improved by increasing the bandwidth further. However, the time required for inverse
operation will increase in these cases as the banded preconditioner matrix size increases.
The bandwidth regulates the runtime of inverting the banded preconditioner matrix and
the number of the inner iterations of the GMRES method. The runtime of inverting the
banded preconditioner matrix increases with the bandwidth, while the inner iterations
decrease with the bandwidth. Therefore, the total runtime will decrease first and then

Appl. Sci. 2023, 13, 12148 8 of 19

increase with the bandwidth, as shown in Figure 6. The case is ε = 0.4, 121× 41 mesh
and F = 0.7, when b′ (bandwidth band = b′ × (N + 1)) is less than 14, an ill-conditioned
coefficient matrix is formed, and the accuracy of the solution is low. The runtime decrease
with b′ ranges from 14 to 16; then, the runtime increases monotonically with b′ ranging from
16 to 20. For the case of 121× 41 mesh, the shortest running time is 5.6 s with the optimal
bandwidth band = 16× (N + 1). Therefore, provided that the appropriate bandwidth is
selected, it can not only save memory but also improve the computational efficiency.

(a) band = 1 (b) band = 11 (c) band = 21

Figure 5. The distribution of eigenvalues of JtP−1 on a 31× 11 mesh for: band = 1, band = 11, band = 21.

Figure 6. The plot of runtime against the bandwidth computed on a 121× 41 mesh, band = b′× (N + 1).

4. GPU Parallel Computing Framework

Although the banded preconditioner JFNK algorithm can improve the computational
efficiency of the nonlinear ship wave problem, the running time of the program will
increase significantly with the increase of the mesh size, which is very unfavorable to the
further study of nonlinear ship waves. The reason is that the CPU is not good at handling
such large-scale nonlinear equations. Compared with the CPU, the GPU possesses more
arithmetic logic units in the same chip area [23]. The computational efficiency of nonlinear
ship waves can be greatly improved by utilizing the GPU acceleration technique.

4.1. Parallel Computing Framework Design

Compute Unified Device Architecture (CUDA) language is used to develop the numer-
ical scheme for computing ship wave patterns. CUDA is a parallel computer platform and
programming model developed by NVIDIA, powered by the GPU [23]. The CUDA toolkit
includes abundant GPU-accelerated libraries, tools and a runtime library, which can be
compiled in the C language, C++ language and Fortran language. In addition, the CUDA
source program can be executed on multiple GPUs. By applying the hybrid programming

Appl. Sci. 2023, 13, 12148 9 of 19

model, the parallel computing process consists of a kernel function on the device and serial
code on the host CPU. Figure 7 shows the CUDA execution mode and thread hierarchy.

Figure 7. Illustration of CUDA execution mode and thread organization hierarchy [23].

As for the solver of ship wave patterns, as described above, there are four main parts:
building a preconditioner matrix, creating a nonlinear system, inverting a preconditioner
matrix and solving linear equations by the GMRES algorithm. Simulation results of the
CPU solver proposed by Sun et al. [12] show that creating a nonlinear system and inverting
a preconditioner matrix take up most of the time, as shown in Figure 8. This figure shows
the computation time distribution of the CPU solver on a 151× 51 mesh case. The total
runtime is 185.8 s, in which the runtime of the inverting preconditioner matrix and time
requires for the creation of a nonlinear system is 95.8 and 80.4 s, respectively. Each of
them takes up nearly half of the total runtime. Therefore, calculations on these two parts
parallelly are vital for improving computational efficiency. And building the preconditioner
matrix and solving linear equations will also be executed in a GPU to further shorten the
program running time.

Figure 8. The computation time distribution of a ship wave solver. The alphabet I represents
the step of inverting the preconditioner matrix, the alphabet C represents the step of creating a
nonlinear system, the alphabet B represents the step of building a preconditioner matrix, the alphabet
S represents the step of solving linear equations by the GMRES algorithm and the alphabet O
represents the step of other codes in the solver.

Based on the above analysis, the GPU solver of Kelvin ship waves adopts a hybrid
programming model. The entire parallel computing procedure is shown as follows:

Appl. Sci. 2023, 13, 12148 10 of 19

Step 1: Input calculation parameters including the initial guess; the data are transferred
from the CPU to GPU;

Step 2: According to the calculation parameters, the nonlinear equations are created in the
GPU device;

Step 3: The banded preconditioner method is applied to build the banded preconditioner
matrix in the GPU;

Step 4: The QR decomposition algorithm is used to invert the preconditioner matrix, and
it saves the decomposition results outside the loop body to avoid repeated QR
decomposition of preprocessing;

Step 5: The result of P−1v is calculated directly using the QR decomposition results; by com-
bining the result of P−1v with the approximate solution u of the nonlinear equations,
the finite difference approximation is carried out to obtain the linear equations;

Step 6: The GMRES algorithm is used to calculate the linear equations, obtain the correction
values and update the approximate solutions u;

Step 7: Check the approximate solutions of the nonlinear equations: if the accuracy require-
ment is not met, back to step 5; if the accuracy requirement is met, the result is
transferred from the GPU to the CPU.

The corresponding calculation flow chart is shown in Figure 9, which shows the
calculation procedure more clearly.

Figure 9. The computational flow chart of GPU implementation.

Appl. Sci. 2023, 13, 12148 11 of 19

4.2. GPU Solver Implementation
4.2.1. Creating Nonlinear System

The programming for creating a nonlinear system on a GPU by using CUDA language
is briefly shown in Algorithm 1. On the whole, the dimension of the GPU grid is the
equivalent of the size of the mesh, which means that one block can complete the relevant
equations of one node in the mesh. One block has 1024 threads; these threads can calculate
Equation (1), Equation (2) and Equations (4)–(7) simultaneously.

Algorithm 1 The programming of creating nonlinear system on the GPU

Require: Initial values and model parameters
Ensure: Nonlinear System

for Device Part do
for __device__double Integral(double a,double b,double c,double d,double e) do

double val= b/sqrt(c)*log(2*c*a + d*b+ 2*sqrt(c*(c*a*a+ d*b*b +e*b*b)));
end for
for __device__double Integrall(double a,double b,double c,double d,double e) do

double val = a/sqrt(e)*log(2*d*b + d*s+ 2*sqrt(e*(c*a*a+ d*a*b +e*b*b)));
end for

threadPos = threadIdx.x; k = blockIdx.x; l = blockIdx.y ;
for threadPos = 0 to M× N do

Calculate necessary values
end for
for threadIdx.x = blockDim.x− 1 to blockDim.x− 16 do

Calculation of the 16 parts to the closed integral
end for
for i = blocDim/2 to 0 do

Sum up all thread contributions
end for
if (k == 0&&l == 0 . . . k == 0&&l == 5) then

Split the free surface condition and radiation conditions between 5 blocks
end if

end for
for Host Part do

InitialData(double* cpuData, double* gpuData);
cudaMemcpy(cpuData, gpuData, Datasize, cudaMemcpyHostToDevice);
dim3 block(1024, 1); dim3 grid(M, N - 1);
Nonlinear� grid, block�(gpuData);
cudaMemcpy(gpuData, cpuData, Datasize, cudaMemcpyDeviceToHost);

end for
return Nonlinear System

In the device part, there are two device functions which are utilized by the kernel
function multiple times. These two device functions are formed to solve the singularity
in the second integral of the boundary integral equation. The 16 special threads are set
separately for fast computation. Other threads with the same CUDA code are used to
complete the calculation of the remaining parts of the boundary integral equation. After the
threads have finished computing, all thread contributions are summed up, and (N − 1)M
nonlinear equations are built. Then, we arbitrarily choose five blocks to calculate the free
surface condition and the radiation condition, after which (N + 3)M nonlinear equations
can be obtained. Therefore, these equations are formed by using the 1024× (N − 1)M
threads on the GPU.

In the host part, the environment variables are configured firstly. Then, the data are
transferred from the CPU to GPU, and the parallel instruction is sent to the GPU. Finally,
the CPU obtains the computation results from the GPU.

Appl. Sci. 2023, 13, 12148 12 of 19

4.2.2. Building Preconditioner Matrix

The building preconditioner matrix is decomposed to several tasks that can be operated
in parallel by corresponding kernel functions in GPU blocks. The parallel idea and program
structure are roughly similar to the part of creating nonlinear equations.

In the device part, in order to avoid data storage conflicts in the GPU, three kernel
functions are used to construct the preconditioner matrix in turn. As mentioned above, the
preconditioner matrix size is 2(N + 1)M× 2(N + 1)M, and four submatrices are formed
by the block decomposition method and banded preconditioner method: submatrix A is a
tridiagonal matrix of size 3× (N + 1)M; submatrix B and C only differ between coefficients,
and the base matrix B0 can be constructed to represent them, respectively, with a size of
(N + 1)× (N + 1), B = 1/F2 ·B0 and C = 2π ·B0; the submatrix D is a sparse matrix with
a size of band× (N + 1)M/3. Firstly, M× (N + 1) thread blocks are called in the GPU to
fulfill the parallel construction of the four submatrices by the kernel function precondition,
and the two device functions mentioned above are also used to eliminate the singularity
of the linear boundary integral equation. Then, the kernel function matrix is written to
call N + 1 thread blocks for the parallel computation of CA−1B, which involves solving
multiple right-handed linear systems and matrix multiplication. Finally, the subtraction
operation between matrices is completed by kernel function Schur(), and M × (N + 1)
thread blocks are called to perform a parallel operation of D− CA−1B. The programming
for building a preconditioner matrix on the GPU by using CUDA language is briefly shown
in Algorithm 2.

Algorithm 2 The programming of building preconditioner matrix on the GPU

Require: Model parameters
Ensure: Preconditioner matrix

for function precondition do
for threadPos = 0 to N + 3 do

Calculate submatrix A
end for
if blockIdx.x == 0 then

for threadPos = 0 to N + 1 do
Calculate basis matrix B0

end for
end if
for threadPos = 0 to N ×M do

Calculate submatrix D
end for
for i = blocDim/2 to 0 do

Sum up all thread contributions
end for

end for
for function matrix do

if k == 0 then
for threadPos = 0 to N + 1 do

Calculate CA−1B
end for

end if
end for
for function schur do

for threadPos = 0 to N + 1 do
Calculate D− CA−1B

end for
end for
return Preconditioner matrix

Appl. Sci. 2023, 13, 12148 13 of 19

In the host part, the variables are first defined according to calculation parameters.
Then, data are transferred from the CPU to the GPU, the dimension of the thread blocks
and thread grid is specified, and finally, the kernel functions precondition(), matrix(),
and Schur() are successively released. This part of the host side code is similar to the
establishment of nonlinear equations and will not be repeated here.

4.2.3. Inverting Preconditioner Matrix

Comparing the Math Kernel Library which is famous for the computation of sparse lin-
ear algebra, the cuSolverSP library is generally faster for solving sparse linear systems [24].
In this paper, the cuSolverSP library is adopted to invert the preconditioner matrix. The
present sparse linear system is special; the right-hand side of the system v changes continu-
ously in the iteration, whereas the left-hand side does not. The characteristic of the sparse
linear system suggests using QR factorization to calculate P−1v [21]. By QR factorization,
the sparse matrix is decomposed into an orthogonal matrix and an upper triangular matrix,
which are saved in GPU memory and are directly used to solve linear equations in each
iteration. Finally, the preconditioner-vector products P−1v can be obtained.

Step 1: Using CSR data format to save the preconditioner matrix with an appropriate
bandwidth;

Step 2: In the analysis stage, cusolverSpXcsrqrAnalysis() function is used to analyze the
sparsity of orthogonal matrix and upper triangular matrix in QR decomposition.
This process may consume a large amount of memory. If the memory is insuf-
ficient to complete the analysis, the program will stop running and return the
corresponding error message;

Step 3: In the preparation stage, cusolverSpXcsrqrAnalysis() function is used to select the
appropriate computing space to prepare for QR decomposition. Here, two memory
blocks are prepared in the GPU: one to store the orthogonal matrix and the upper
triangular matrix, and the other to perform QR decomposition;

Step 4: The cusolverSpDcsrqrSetup() function is called to allocate storage space for the or-
thogonal and upper triangular matrices based on the results of the preparation stage.
Then, cusolverSpDcsrqrFactor() function is used to complete the QR decomposition
of coefficient matrix outside the cycle;

Step 5: Using the cusolverSpDcsrqrZeroPivot() function checks the singularity of the de-
composition results, if the nearly singular the program terminates operation and
error is given, return to step 1 to choose the bandwidth again;

Step 6: In the loop body, the cusolverSpDcsrqrSolve() function is repeatedly called, and the
solution of linear equations can be obtained directly by using the decomposition
results stored in the GPU;

The main CUDA functions are shown in Table 1.

Table 1. The list of CUDA functions for QR factorization.

No. Function Name Goal

1 cusolverSpXcsrqrAnalysisHost(); Analyze structure
2 cusolverSpDcsrqrBufferInfoHost(); Set up workspace
3 cusolverSpDcsrqrSetupHost(); QR factorization
4 cusolverSpDcsrqrFactorHost(); QR factorization
5 cusolverSpDcsrqrZeroPivotHost(); Check singular
6 cusolverSpDcsrqrSolveHost(); Solve system

4.2.4. Solving Linear Equations by GMRES Algorithm

In the process of solving linear equations, because the matrix free idea is adopted to
avoid the storage of the coefficient matrix, there is no product operation of the coefficient
matrix and vector in the GMRES algorithm, so the operations that can be parallel in this

Appl. Sci. 2023, 13, 12148 14 of 19

part are operations between vectors. Therefore, this paper mainly uses the cuBLAS library
to complete the CUDA programming of the GMRES algorithm to solve linear equations.

The cuBlasDdot() function is used to realize the inner product of vectors in the GMRES
algorithm; the vector subtraction is calculated using the cublasDaxpy() function; the cublas-
Dnrm2() function is used to calculate the Euclidean norm of the vector; the cublasDscal()
function is used to divide vector and scalar. After obtaining the orthonormal basis of
Krylov subspace and the upper Hessnberg matrix, the cublasDrotg() function is used to
perform Givens rotation transformation on the upper Hessnberg matrix in a GPU device to
obtain the upper triangular matrix. Then, the solution of the linear least squares problem
in the GMRES algorithm is obtained, and the cublasDspmv() function is used to achieve an
orthonormal basis and vector multiplication to obtain the solution of linear equations.

5. Numerical Simulations and Discussion

In this section, a numerical simulation of ship waves in multiple cases is carried out using
the CPU and GPU solvers, and the simulation results are discussed. The effectiveness of the
developed banded preconditioner JFNK method is first verified. Then, comparisons between
the proposed GPU solver and the CPU solver regarding accuracy and efficiency are performed.
Finally, we verify the capability of the GPU solver by comparing the simulation results with
real ship wakes. The parameters of the computing environment are listed in Table 2.

Table 2. The computing environment of a high-performance computing cluster.

CPU GPU

Card Intel Xeon Bronze 3204 NVIDIA Tesla A100
Memory 64 GB 40 GB

Max Cores 6 per node 6912
Programming language C++ CUDA, C++

5.1. Verification of the Banded Preconditioner JFNK Method

To reveal the effectiveness of the banded preconditioner method, numerical simu-
lations on different mesh sizes, i.e., 181 × 61, 241 × 81, 301 × 101 and 361 × 121 with
∆x = 0.3, ∆y = 0.3 are carried out.

The overall runtimes against bandwidth on these four mesh sizes are illustrated in
Figure 10. An optimal value of bandwidth b′ exists for a certain mesh size. Furthermore,
the optimal value of b′ increases with the mesh size and approximately equals M

3 , in which
M means the number of latitude lines of the mesh. Therefore, the optimal bandwidth can
be set to M

3 × (N + 1) to obtain an optimal efficiency.

Figure 10. Optimal values of bandwidth b′ for different mesh sizes.

Appl. Sci. 2023, 13, 12148 15 of 19

According to the optimal bandwidth selection rule, the running memories against
the bandwidth are shown in Table 3. Correspondingly, the required running memory
is drastically reduced by applying the banded preconditioner JFNK method. The mean
reduction ratio is about 3.2; this means that the banded preconditioner JFNK method can
save running memory by at least two-thirds.

Table 3. The running memory usage before and after applying the banded preconditioner method.

Mesh Size Before b′ After Reduction Ratio

181× 61 0.9 1GB 19 0.28 GB 3.2
241× 81 2.9 GB 24 0.88 GB 3.3

301× 101 6.9 GB 33 2.3 GB 3.0
361× 121 15 GB 38 4.6 GB 3.3

5.2. Verification of the GPU Solver
5.2.1. Accuracy

To verify the accuracy of the GPU solver, numerical simulations are conducted on
F = 0.7 and ε = 0.4 with a 361 × 121 mesh and ∆x = 0.3, ∆y = 0.3. The simulated
wave heights on the centerline are compared with those of the CPU solver proposed by
Sun et al. [12], which is shown in Figure 11. Almost all points in the figure are traversed
through the center by a line, indicating that the calculation results of the GPU solver are
very consistent with those of the CPU solver.

Furthermore, the MSE is used to further explain the error between them, as follows:

MSE =
1
n

n

∑
i=1

(Truchi −Valuei)
2 (24)

where n is the amount of data, while Truchi and Valuei represent CPU results and GPU
results, respectively. According to Equation (24), the calculated MSE is 9.37× 10−8, indicat-
ing that the calculation error between the GPU and CPU solver is minimal. Since the CPU
solver has been verified by Sun et al. [12], the accuracy of the proposed GPU solver can
also be acceptable.

Figure 11. A comparison of the centerline profiles for the simulation results of the CPU solver and
GPU solver, which are computed on a 361× 121 mesh with ∆x = 0.3, ∆y = 0.3, F = 0.7 and ε = 0.4.
The solid line represents the simulation result of the GPU solver, while the solid circles represent the
simulation result of the CPU solver.

5.2.2. Efficiency

To verify the efficiency of the GPU solver, numerical simulations are conducted on
F = 0.7 and ε = 0.4 with five mesh sizes, namely 121× 41, 181× 61, 241× 81, 301× 101,
361× 121 and ∆x = 0.3, ∆y = 0.3. The overall runtimes of the GPU solver are compared
with those of the CPU solver proposed by Sun et al. [12] (note that we keep the same
calculation parameters as the GPU solver when running the CPU solver), as shown in
Figure 12. It clearly shows that the overall runtimes of the GPU solver are much shorter

Appl. Sci. 2023, 13, 12148 16 of 19

than those of the CPU solver. The clear accelerated-up ratios between the GPU solver and
the CPU solver are shown in Table 4. The accelerated-up ratio on all cases are around 20.0.
Therefore, the computation efficiency of the proposed GPU solver is much higher than that
of the CPU solver.

Figure 12. The runtime of the GPU solver and CPU solver at different mesh sizes; red bars represent
the GPU solver results and blue bars represent the CPU solver results.

Table 4. The comparisons of runtime between the CPU solver and GPU solvers on different mesh
sizes; the CPU solver is proposed by Sun et al. [12], one GPU solver is proposed in this paper, and the
other GPU solver is proposed by Pethiyagoda [15] (results of Exp.).

Mesh Size CPU Solver Exp. GPU Solver Accelerated-Up Ratio

121× 41 8.96× 101 s 1.61× 101 s 5.60× 100 s 16.1
181× 61 2.70× 102 s 1.22× 102 s 1.13× 101 s 23.9
241× 81 8.70× 102s 5.51× 102 s 5.37× 101 s 16.0

301× 101 2.56× 103 s 1.78× 103 s 1.32× 102 s 19.3
361× 121 6.08× 103 s 5.04× 103 s 2.95× 102 s 20.6

The proposed GPU solver has also been compared with another GPU solver proposed
by Pethiyagoda [15] on these cases. The comparison of computation time between them
is shown in Table 4. Obviously, the efficiency of the GPU solver proposed in this paper
is higher than that of the GPU solver proposed by Pethiyagod [15], and the advantage is
more significant with the increase of the mesh size. The reason is that Pethiyagoda [15] only
introduced the GPU acceleration technique in the boundary integral method rather than
the whole processs, whereas this paper proposes a complete parallel computing framework
including the parallel process for inverting the preconditioner matrix. Thanks to the process
of inverting the larger mesh size and the heavier computational load, the advantage of the
GPU solver proposed in this paper can be more significant.

5.2.3. Capability

In the proposed GPU solver, like the CPU solver [12], three parameters can be used
to regulate simulation results: namely source strength, source type and Froude number.
The wake characteristics can be regulated by adjusting these parameters. For example,
the wake waves of vessels of high speed and small overall length can be generated by
using the Rankine source, lower source strength and larger Froude number; oppositely, it
is appropriate to choose a small Froude number and a higher strength Kelvin source. As
shown in Figure 13, the simulation patterns of the GPU solver are compared with the real
ship wave patterns. It is found that the simulation patterns are consistent with the real ship
waves, while the proposed GPU solver can also generate high-quality simulation patterns
for a 3D nonlinear ship wave.

Appl. Sci. 2023, 13, 12148 17 of 19

(a) Real wake pattern of speedboat (b) Simulation wake pattern of speedboat

(c) Real wake pattern of fishing ship (d) Simulation wake pattern of fishing ship

(e) Real wake pattern of large vessel (f) Simulation wake pattern of large vessel

Figure 13. Wake pattern of real ship waves and the GPU solver computational results. The picture
of a real speedboat wake pattern came from the internet https://www.quanjing.com, accessed on
1 September 2023; the picture of a real fishing ship wake came from https://www.shutterstock.com,
accessed on 1 September 2023; the picture of a real large vessel wake came from the internet https:
//blogs.worldbank.org, accessed on 6 September 2023.

6. Conclusions

The numerical simulation of ship waves is important for practical ocean engineering.
This paper proposes a highly paralleled numerical scheme for simulating three-dimensional
(3-D) nonlinear Kelvin ship waves effectively, including a numerical model for nonlinear
ship waves, a banded preconditioner JFNK method and a GPU-based parallel computing
framework. Numerical simulations show that the proposed GPU solver can save GPU
memory and obtain high efficiency significantly. This highly paralleled numerical scheme
provides an opportunity for the further study of the nonlinear Kelvin ship waves on a
large scale.

(1) The bandwidth has an effect on the running memory and runtime of the GPU solver.
Based on the mesh size, the value of the most appropriate bandwidth is around
M
3 × (N + 1); more than 66% GPU memory can be saved.

(2) The GPU solver can obtain an accurate numerical solution. The mean square error
of the GPU solver results and CPU solver results is MSE = 9.37 × 10−8, which
is acceptable.

(3) By designing the GPU parallel computing framework, the computation of ship wave
simulation is accelerated up to 20 times.

Although a highly paralleled numerical scheme for nonlinear ship waves is proposed
in this paper, some assumptions are still made in the construction of the numerical model,

https://www.quanjing.com
https://www.shutterstock.com
https://blogs.worldbank.org
https://blogs.worldbank.org

Appl. Sci. 2023, 13, 12148 18 of 19

such as infinite water depth and the steady motion of a ship on calm water. It is of great
significance to improve simulation results by further exploring the influence of finite water
depth, tangential flow and unsteady ship motion on nonlinear ship waves.

Author Contributions: Validation, X.S., M.C. and J.D.; investigation, X.S.; writing—original draft
preparation, X.S. and M.C.; writing—review and editing, X.S. and M.C.; supervision, X.S. All authors
have read and agreed to the published version of the manuscript.

Funding: The work was supported by the National Key R&D Program of China (No. 2022YFB4300803,
2022YFB4301402), the Ministry of Industry and Information Technology of the People’s Republic
of China (No. CBG3N21-3-3), and the National Science Foundation of Liaoning Province, China
(No. 2022-MS-159). The authors would like to express sincere thanks for their support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
JFNK Jacobian-free Newton–Krylov
GMRES Generalized Minimum Residual
CUDA Compute Unified Device Architecture
GPU Graphics Process Unit
CPU Central Processing Unit
MSE Mean Square Error

References
1. Dias, F. Ship Waves and Kelvin. J. Fluid Mech. 2014, 746, 1–4. [CrossRef]
2. Tuck, E.; Scullen, D. A comparison of linear and nonlinear computations of waves made by slender submerged bodies. J. Eng.

Math. 2002, 42, 255–264. [CrossRef]
3. Froude, W. Experiments upon the Effect Produced on the Wave-Making Resistance of Ships by Length of Parallel Middle Body; Institution

of Naval Architects: London, UK, 1877.
4. Kelvin, L. On Ship Waves. Proc. Inst. Mech. Eng. 1887, 38, 409–434. [CrossRef]
5. Rabaud, M.; Moisy, F. Ship Wakes: Kelvin or Mach Angle? Phys. Rev. Lett 2013, 110, 214503.1–214503.5. [CrossRef] [PubMed]
6. Pethiyagoda, R.; Moroney, T.; Lustri, C.; McCue, S. Kelvin Wake Pattern at Small Froude Numbers. J. Fluid Mech. 2021, 915, A126.

[CrossRef]
7. Ma, C.; Zhu, Y.; Wu, H.; He, J.; Zhang, C.; Li, W.; Noblesse, F. Wavelengths of the Highest Waves Created by Fast Monohull Ships

or Catamarans. Ocean Eng. 2016, 113, 208–214. [CrossRef]
8. Havelock, T. Wave resistance: Some cases of three-dimensional fluid motion. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys.

1919, 95, 354–365.
9. Michell, J.H. The wave resistance of a ship. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1898, 45, 106–123. [CrossRef]
10. Forbes, L. An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys. 1989, 82, 330–347. [CrossRef]
11. Parau, E.; Vanden-Broeck, J. Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos. Trans. R.

Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 2973–2988.
12. Sun, X.; Cai, M.; Wang, J.; Liu, C. Numerical Simulation of the Kelvin Wake Patterns. Appl. Sci. 2022, 12, 6265. [CrossRef]
13. Crespo, A.; Domínguez, J.; Barreiro, A.; Gómez-Gesteira, M.; Rogers, B. GPUs, a New Tool of Acceleration in CFD: Efficiency and

Reliability on Smoothed Particle Hydrodynamics. PLoS ONE 2011, 6, e20685. [CrossRef] [PubMed]
14. Hori, C.; Gotoh, H.; Ikari, H.; Khayyer, A. GPU-Acceleration for Moving Particle Semi-Implicit Method. Comput. Fluids 2011,

51, 174–183. [CrossRef]
15. Pethiyagoda, R. Mathematical and Computational Analysis of Kelvin Ship Wave Patterns. Ph.D. Thesis, Queensland University

of Technology: Brisbane, QLD, Australia, 2016.
16. Lu, X.; Dao, M.H.; Le, Q.T. A GPU-accelerated domain decomposition method for numerical analysis of nonlinear waves-current-

structure interactions. Ocean Eng. 2022, 259, 111901. [CrossRef]
17. Xie, F.; Zhao, W.; Wan, D. CFD Simulations of Three-Dimensional Violent Sloshing Flows in Tanks Based on MPS and GPU.

J. Hydrodyn. 2020, 32, 672–683. [CrossRef]

http://doi.org/10.1017/jfm.2014.69
http://dx.doi.org/10.1023/A:1016131128042
http://dx.doi.org/10.1243/PIME_PROC_1887_038_028_02
http://dx.doi.org/10.1103/PhysRevLett.110.214503
http://www.ncbi.nlm.nih.gov/pubmed/23745883
http://dx.doi.org/10.1017/jfm.2021.193
http://dx.doi.org/10.1016/j.oceaneng.2015.12.042
http://dx.doi.org/10.1080/14786449808621111
http://dx.doi.org/10.1016/0021-9991(89)90052-1
http://dx.doi.org/10.3390/app12126265
http://dx.doi.org/10.1371/journal.pone.0020685
http://www.ncbi.nlm.nih.gov/pubmed/21695185
http://dx.doi.org/10.1016/j.compfluid.2011.08.004
http://dx.doi.org/10.1016/j.oceaneng.2022.111901
http://dx.doi.org/10.1007/s42241-020-0039-8

Appl. Sci. 2023, 13, 12148 19 of 19

18. Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J.
Sci. Stat. Comput. 1986, 7, 856–869. [CrossRef]

19. Brown, P.; Saad, Y. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat. Comput. 1990, 11, 450–481.
[CrossRef]

20. Dembo, R.; Eisenstat, S.; Steihaug, T. Inexact Newton Methods. SIAM J. Numer. Anal. 1982, 19, 400–408. [CrossRef]
21. Trefethen, L.; Bau, D. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997.
22. Lustri, C.J.; Chapman, S.J. Steady Gravity Waves Due to a Submerged Source. J. Fluid Mech. 2013, 732, 400–408. [CrossRef]
23. NVIDIA. CUDA Toolkit Documentation v11.7.1; NVIDIA: Santa Clara, CA, USA, 2022.
24. Grossman, M.; Mckercher, T. Professional CUDA C Programming; China Machine Press: Beijing, China, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0911026
http://dx.doi.org/10.1137/0719025
http://dx.doi.org/10.1017/jfm.2013.425

	Introduction
	Numerical Model
	Banded Proconditioner JFNK Algorithm
	Jacobian-Free Newton–Krylov Method
	Banded Preconditioner Method
	Building Preconditioner Matrix
	Preconditioner Factorisation and Storage
	The Banded Preconditioner

	GPU Parallel Computing Framework
	Parallel Computing Framework Design
	GPU Solver Implementation
	Creating Nonlinear System
	Building Preconditioner Matrix
	Inverting Preconditioner Matrix
	Solving Linear Equations by GMRES Algorithm

	Numerical Simulations and Discussion
	Verification of the Banded Preconditioner JFNK Method
	Verification of the GPU Solver
	Accuracy
	Efficiency
	Capability

	Conclusions
	References

