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Abstract: This paper offers a comprehensive overview of machine learning (ML) methodologies
and algorithms, highlighting their practical applications in the critical domain of water resource
management. Environmental issues, such as climate change and ecosystem destruction, pose sig-
nificant threats to humanity and the planet. Addressing these challenges necessitates sustainable
resource management and increased efficiency. Artificial intelligence (AI) and ML technologies
present promising solutions in this regard. By harnessing AI and ML, we can collect and analyze vast
amounts of data from diverse sources, such as remote sensing, smart sensors, and social media. This
enables real-time monitoring and decision making in water resource management. AI applications,
including irrigation optimization, water quality monitoring, flood forecasting, and water demand
forecasting, enhance agricultural practices, water distribution models, and decision making in de-
salination plants. Furthermore, AI facilitates data integration, supports decision-making processes,
and enhances overall water management sustainability. However, the wider adoption of AI in water
resource management faces challenges, such as data heterogeneity, stakeholder education, and high
costs. To provide an overview of ML applications in water resource management, this research
focuses on core fundamentals, major applications (prediction, clustering, and reinforcement learning),
and ongoing issues to offer new insights. More specifically, after the in-depth illustration of the ML
algorithmic taxonomy, we provide a comparative mapping of all ML methodologies to specific water
management tasks. At the same time, we include a tabulation of such research works along with
some concrete, yet compact, descriptions of their objectives at hand. By leveraging ML tools, we
can develop sustainable water resource management plans and address the world’s water supply
concerns effectively.

Keywords: climate change; ecosystem destruction; AI; machine learning (ML); water efficiency; water
resources management (WRM); data analysis; prediction; sustainability; decision making; supervised
learning; unsupervised learning; classification; regression; clustering

1. Introduction

The global political agenda has shifted towards urgently addressing environmental
issues, particularly climate change, as they pose potential existential threats to humanity
and civilization. As we face the destruction of Earth’s ecosystem, it is crucial to explore
innovative solutions to reverse damage and mitigate adverse effects caused by human ac-
tivities [1]. The unsustainable depletion of natural resources, driven by population growth
and increasing demands for food, water, and energy, is a pressing challenge. Traditional
practices in the primary sector lead to overconsumption, environmental pollution, and
land desertification. Poor water resource management, including inefficient irrigation
and misuse, exacerbates the problem [1,2]. Researchers and environmental governance
stakeholders are utilizing emerging technologies like AI, ML, deep learning (DL), IoT, and
wireless communications to address critical issues. These technologies enable automated
production processes, optimize resource utilization, and minimize human intervention.
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High-resolution remote sensing techniques, smart information and communication tech-
nologies, and social media platforms have significantly improved data collection, analysis,
and decision-making capabilities in weather forecasts, disaster management, and water–
energy management [2]. At the same time, the exponential growth of data presents many
challenges, making traditional statistical mathematical approaches inadequate. DL algo-
rithms address these challenges by allowing crucial feature extraction and prioritization,
optimizing decision-making processes, and reducing reliance on finite resources [2,3]. AI
applications have the potential to significantly improve water resource management, es-
pecially in urban areas. AI can enhance soil fertility, protect biodiversity, and optimize
water management for sustainable agriculture [3]. AI has proven successful in fertilizer
and crop selection, and smart irrigation systems using IoT sensors and ML techniques have
contributed to freshwater conservation. Artificial neural networks can also optimize soil
productivity and resource efficiency [4]. AI applications in water resources management
include recording and forecasting water demand, infrastructure installation, water quality
monitoring, and disaster prediction. These capabilities can help achieve the Sustainable
Development Goals for Water (2030) by facilitating efficient data collection, analysis, and
forecasting [5].

This paper utilizes the review papers, firstly, of the ML methodologies as a major
research area of AI and computer science as a whole, and then the specialized review
papers that explore the ML methodologies that have been applied to water management.
The first set covers fundamental algorithms like decision trees, support vector machines,
neural networks, clustering algorithms, and supervised classification algorithms within
ML (logistic regression, k-nearest neighbor, support vector machines, etc.). The latter set of
reviews is dedicated to the impact of a plethora of ML methodologies on analyzing climate
change, water resource constraints, population growth, and natural hazards, which forces
hydrologists worldwide to adapt and develop strategies to maintain water security. These
reviews utilize the rapid growth of hydrologic data repositories and advanced machine
learning (ML) models to provide improved assessments in hydrology. As we analyze in
the specific subsections of this work, ML models contribute to optimal decision making
in water resource management by efficiently modeling nonlinear, erratic, and stochastic
behaviors. Furthermore, ML techniques can reduce computational costs, allowing decision
makers to transition from physical-based models to ML models for complex problems.

This paper explores the potential of AI and ML applications in optimizing water
resources management, particularly in urban areas, to address challenges such as water
scarcity, unsustainable consumption, and climate variability through case studies and
research findings [6,7]. Addressing these challenges can revolutionize water resource
management for a sustainable future. Moreover, this work delves into AI applications in
agriculture, irrigation, water quality monitoring, disaster forecasting, and desalination, with
a focus on optimizing water consumption and resource allocation to achieve Sustainable
Development Goals, while also highlighting the potential of blockchain technology for
data security. However, this article can serve as a comprehensive survey of all the ML
methodologies used in water management techniques and modeling, rather than a detailed
literature review of water-management-related papers, which could include topic modeling,
clustering, and taxonomies. AI can revolutionize water management systems by enabling
sustainable practices, efficient resource allocation, and a greener future. In a united effort,
we aim to harness AI’s potential for enhanced water resource management, safeguarding
the essential element that sustains all life on Earth.

2. ML Methodologies

Machine learning (ML) in today’s world is a critically important tool in our everyday
lives [8]. It is essentially a programming technique inspired by AI that enables computers
to develop and enhance their learning abilities through data ingestion. The term “machine
learning” was first introduced at IBM in 1959 by Arthur Samuel, who gained fame for his
work on the game of checkers. He defined machine learning as a broad scientific field of
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study that enables computers to approach a problem as a human would, without needing
to be explicitly programmed each time. Machine learning is used to teach machines to
exploit data efficiently and constructively, making the final results easier to interpret. It
involves a set of algorithms and statistical models that, when implemented on computer
systems, can perform specific tasks automatically.

According to Ray [9], machine learning is applied in a variety of fields, including
robotics, virtual websites (e.g., Google), computer games, pattern recognition, data mining,
transportation networks, various predictions (e.g., online fraud detection), environmental
predictions, medicine, chatbots for online customer support (BoTs), social media services
(such as facial recognition on Facebook), and more.

There are four generalized categories of ML [10]: supervised learning, unsupervised
learning, semisupervised learning, and reinforcement learning [11].

2.1. Supervised Learning

Supervised learning essentially involves the desired outcome resulting from actions
taken by an instructor or programmer [12]. By using appropriately programmed inputs
with labeled data linked to corresponding outputs, it can develop predictive and classi-
fication models through a process of iterative learning [13]. This approach is applicable
in various social domains, including population evolution and characteristics, as well as
predictive indicators like health and water management [14].

Expanding on the earlier explanation, supervised learning requires a dataset that in-
cludes labeled examples representing the problem domain. Supervised learning algorithms
iteratively adjust their internal parameters to minimize the disparity between predicted
and actual labels, effectively capturing the relationships between input features and output
labels. This learning paradigm can be categorized into two distinct types: classification,
which deals with discrete labels, and regression, where the labels are continuous in na-
ture [15]. In classification, qualitative outputs are used for predictions, while regression
employs quantitative outputs for its predictions [16].

2.1.1. Classification

The primary feature of classification is its ability to aid in the construction of predictive
models [17]. Classification can be realized using structured or unstructured datasets.
The classification algorithm essentially comprehends a training set and, when presented
with new data points, assigns a specific function. This results in a reliable function that
predicts the class label for registering new data. Some of the terminologies encountered in
classification are as follows:

• Classifiers: They are algorithms that assign input data to specific classes. They can be
categorized into three main types: linear classifiers, nearest-neighbor classifiers, and
classification trees [18].

• Linear classifiers: Through the linear combination of feature values can make classifi-
cation decisions [19].

• Nearest-neighbor classifiers: Tag data objects that do not share the same label by
using the nearest objects from the training set [20].

• “Brute-force” method classifier: While not an algorithm, this method exhaustively
processes all data and all possible combinatorics to find the best possible classification
solution [17]. This method does not involve the intelligent modeling of data mining;
instead, it relies solely on computational combinatorics.

• Classification trees: A classification tree is a method that offers a descriptive graphical
representation of its incremental improvement. To determine the tests, a combination
table is utilized, in which class combinations are marked [21].

• Classification models: They attempt to make reasonable inferences from the input
values provided by the trainer to predict the labels associated with the classes for new
data [22].
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The types of classification tasks are binary classification, multiclass classification, and
multilabel classification.

• Binary classification: It is a classification that has two possible outcomes [23]. Basi-
cally, it is the process of classifying the data using predefined classes. It can be used in
drought prediction [24], hydrological forecasting (predicting extreme weather events
like heavy rainfall leading to flooding) [25], etc.

• Multiclass classification: We have more than two possible outcomes (classes) [26],
e.g., it can help automatically classify water quality based on various parameters
like chemical composition, turbidity, and biological indicators [27], water demand
forecasting [28], flood risk assessment [29], etc.

• Multilabel classification: A sample can even be assigned to more than one label [30].
It can be used in reservoir management [31], can forecast the streamflow condi-
tions [32], etc.

Linear and nonlinear classification are worthy to be included here as specific ap-
proaches or methods used for binary/multiclass/multilabel classifiers. More specifically:

• Linear classification: Algorithms assume that the decision boundary separating the
classes is a linear function of the input features. In other words, these algorithms try to
find a linear equation (a straight line in two dimensions, a plane in three dimensions,
or a hyperplane in higher dimensions) that best separates the data points of different
classes. Linear classification algorithms include techniques like logistic regression and
support vector machines (SVMs) with linear kernels. These algorithms work well
when the relationship between the input features and the classes is approximately
linear [13].

• Nonlinear classification: On the other hand, refers to the decision boundary that
separates classes in a classification problem. In linear classification, it is assumed
that the decision boundary is a linear function of the input features. This means that
the boundary that separates classes is a straight line (in two dimensions), a plane
(in three dimensions), or a hyperplane (in higher dimensions). Linear classifiers like
logistic regression and linear support vector machines work well when the relationship
between input features and classes are approximately linear. In nonlinear classification,
the decision boundary is not a straight line, plane, or hyperplane. Instead, it can have
curves, twists, or other complex shapes [13].

The steps that can be applied to create a classification model are as follows:

1. Data collection and preprocessing: Collect the dataset and perform data preprocess-
ing tasks, such as data cleaning, handling missing values, and transforming variables
if necessary. This step ensures that the dataset is in a suitable format for the classifica-
tion model and that the data are harmonized.

2. Model initialization: Choose an appropriate classification algorithm or model for the
task at hand. Select from options such as logistic regression, decision trees, random
forests, or support vector machines based on the problem and data characteristics.

3. Cross-validation and dataset separation: Split the dataset into training and testing
subsets using cross-validation techniques. This helps evaluate the model’s perfor-
mance by training on a portion of the data and testing on unseen data, allowing the
detection of issues such as overfitting or underfitting.

4. Training the model: Feed the training data into the classifier model. The model learns
from the labeled training data and adjusts its internal parameters to discover the best
decision boundaries or rules for classification. Iteratively update the model based on
the training data until satisfactory performance is achieved.

5. Evaluating the model performance: Once the model is trained, evaluate it as a newly
created classifier on the evaluation dataset. Apply the learned decision boundaries
or rules to classify attributes with unknown labels into predefined classes, providing
insights and aiding decision making.
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Below, Figure 1 serves as an informative illustration depicting the crucial phases in
the development of a classification model. This flowchart offers a comprehensive overview
of the essential steps required to establish a classifier with the capability to address a wide
range of classification tasks.
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By following these numbered steps, a classification model can be developed and
utilized to classify new observations based on their features, enabling various applications
in fields such as healthcare, finance, and customer behavior analysis [17].

Beneath, Table 1, provides a comprehensive overview of various linear classification
techniques. These algorithms assume that the decision boundary separating different
classes is a linear function of the input features.

Using the table above, we have now linked all the aforementioned water management
methodologies, mapping them to specific linear classification approaches, and provided
the relevant applications along with supported publication references for verification. We
depict this linkage in the following Table 2.

Table 1. Linear classification algorithms.

Algorithm Ref. Description

Logistic
regression [33]

Logistic regression models the probability of a binary outcome by fitting a linear
function to the input features and applying a logistic (sigmoid) function to obtain the
predicted class probabilities. It is widely used for binary classification tasks.

Support
vector machine
(SVM)

[34]

SVM is a powerful linear classification algorithm that aims to find an optimal hyperplane
that separates the input data into different classes. It maximizes the margin between the
hyperplane and the nearest data points from each class. SVM can also handle nonlinear
data by using kernel functions to map the data into a higher-dimensional space.

Perceptron [35]
The perceptron algorithm is a fundamental linear classification algorithm. It is a
single-layer neural network that learns to classify input data into two classes by
adjusting their weights based on misclassification errors.

Ridge classifier [36]

Ridge classifier is a linear classification algorithm that employs ridge regression to
address the issue of multicollinearity in the input features. It introduces a regularization
term to the logistic regression cost function, but applies L2 regularization, which helps
stabilize the model and reduce the impact of correlated features.

Lasso classifier [37]
The lasso classifier is similar to logistic regression but applies L1 regularization, resulting
in sparse feature selection. It can be useful for identifying the most relevant features
when dealing with high-dimensional datasets and reducing model complexity.
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Table 1. Cont.

Algorithm Ref. Description

Elastic net
classifier [38]

The elastic net classifier combines both L1 (lasso) and L2 (ridge) regularization terms to
overcome the limitations of each. It strikes a balance between feature selection and
feature grouping, making it effective in scenarios with correlated features and when
there are more predictors than observations.

Least squares
classifier [39]

The least squares classifier, also known as linear regression for classification, fits a linear
function to the input features using the least squares method. It assigns class labels
based on the threshold of the predicted continuous values. It can be used for both binary
and multiclass classification.

Stochastic
gradient
descent (SGD)
classifier

[40]

The SGD classifier optimizes the model parameters using stochastic gradient descent. It
updates the weights with a small subset of training samples (minibatches) at each
iteration, making it efficient for large-scale datasets. It is widely used for linear
classification problems and can be extended to handle nonlinear data using kernel tricks.

Naïve Bayes
classifier [41]

Naïve Bayes is a probabilistic linear classification algorithm based on Bayes’ theorem. It
assumes that the features are conditionally independent given the class label. Naïve
Bayes calculates the probability of each class and predicts the class with the highest
probability. When using linear kernels, naïve Bayes can be considered a linear classifier.

Linear
discriminant analysis
(LDA)

[42]

LDA is a linear classification algorithm that models the distribution of each class by
assuming a Gaussian distribution. It projects the input data onto a lower-dimensional
space while maximizing the class separability. The algorithm then assigns the class
based on the projected values.

Passive
aggressive
classifier

[43]

The passive aggressive algorithm is a linear classification algorithm that is especially
useful for online learning scenarios. It updates the weights based on misclassification
errors, but in a more “passive” or “aggressive” manner depending on the confidence of
the prediction. This algorithm is suitable for situations where the data distribution might
change over time.

Quadratic
discriminant analysis
(QDA)

[44]

QDA is a variant of LDA that allows for quadratic decision boundaries. While it
involves quadratic terms, it can be considered a linear classifier if the feature space is
transformed to include those quadratic terms. QDA models the distribution of each class
using quadratic terms and assigns class labels based on the calculated probabilities.

Table 2. Linear classification algorithms for water resources management.

Category Algorithm Description Applications Ref.

Hydrological modeling

Logistic regression Statistical modeling for
hydrological data.

Predicting flood occurrence based on
rainfall data. [45]

Support vector
machine

SVM-based modeling for
hydrology.

Forecasting drought severity using
climate data. [46]

Naïve Bayes classifier
Probabilistic classification
for water
quality.

Identifying waterborne
contaminants in drinking water. [47]

Water quality analysis

Ridge classifier
Regularized classification
for water
quality.

Detecting sources of pollution in
rivers and lakes. [48]

Lasso classifier
Lasso-based classification
for water
resources.

Classifying land use for urban water
management. [49]

Elastic net classifier Elastic net regularization
for water data.

Monitoring and classifying water
sources for quality. [50]

Streamflow forecasting

Least squares classifier
Linear regression for
streamflow
prediction.

Forecasting river discharge for flood
risk assessment. [51]

Stochastic gradient
descent (SGD) classifier

Gradient-based modeling
for streamflow.

Real-time streamflow forecasting for
water resource planning. [52]

Data-driven analysis
Linear
discriminant
analysis (LDA)

Dimensionality reduction
for water data.

Feature extraction for water quality
classification. [53]
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Table 2. Cont.

Category Algorithm Description Applications Ref.

Water
resources classification

Passive
aggressive classifier

Online learning for water
resource
classification.

Land use classification for watershed
management. [54]

Quadratic
discriminant analysis
(QDA)

Nonlinear classification
for water data.

Ecosystem classification in aquatic
environments. [55]

Perceptron Simple binary
classification algorithm.

Initial water quality classification in
field surveys. [56]

Table 3 provides an understandable overview of various nonlinear classification tech-
niques. These methods are specifically designed for scenarios where the decision boundary
separating different classes is not a linear function of the input features.

Table 3. Nonlinear classification algorithms.

Algorithm Ref. Description

Support vector
machine (SVM) [57]

SVM is a powerful algorithm that can perform both linear and nonlinear classification by
transforming the data into a higher-dimensional feature space. It finds the optimal
hyperplane that maximizes the margin between different classes.

Decision trees [58]

Decision trees partition the feature space into smaller regions based on different attribute
values. They can capture nonlinear relationships by splitting the data based on various
conditions at each internal node. The data are separated into specific parameters and
located in nodes, while decisions are contained in leaves. The use of decision trees helps
us better approximate and interpret categorical and quantitative values, as well as
address issues like filling in missing values in attributes with the most likely value.

Random forest [9,59]

Random forest is an ensemble method that combines multiple decision trees. It creates a
diverse set of trees by using random subsets of the features and then aggregates their
predictions to make the final classification. The goal of this method is to reduce the
number of variables required to make a prediction, alleviate the data collection burden,
accurately evaluate the prediction error rate, and improve efficiency in terms of the
number of variables, computation times, and the area under the receiver
operating curve.

Gradient
boosting [60]

Gradient boosting is another ensemble method that builds a sequence of weak learners
(typically decision trees) in a stage-wise manner. Each subsequent learner focuses on
correcting the mistakes made by the previous ones, resulting in a powerful
nonlinear classifier.

K-nearest
neighbors
(KNN)

[61]

KNN classifies new instances based on their proximity to labeled instances in the
training data. It can handle nonlinear classification by considering the class labels of the
k-nearest neighbors. The KNN algorithm calculates the probability that the test data
belong to the classes of the “K” training data, and the class with the highest probability
will be selected.

Neural
networks [62]

Neural networks consist of interconnected nodes (neurons) organized in layers. By using
nonlinear activation functions and multiple hidden layers, neural networks can capture
complex nonlinear relationships between the input features and the target variable.

Gaussian
naïve Bayes [63]

Gaussian naïve Bayes assumes that features are normally distributed and calculates the
posterior probability of each class using Bayes’ theorem. Although it assumes feature
independence, it can still capture nonlinear decision boundaries in the data.

Kernel
methods (e.g., kernel SVM) [64]

Kernel methods use a nonlinear mapping of the input space to a higher-dimensional
feature space. By using a kernel function, they can implicitly compute the dot products
in the higher-dimensional space, enabling nonlinear classification.

Bayesian
networks [65]

Bayesian networks model the probabilistic relationships among variables using directed
acyclic graphs. They can capture nonlinear dependencies between variables and are
particularly useful when dealing with uncertain data.

In Table 4, we establish connections between different water management methods
and their specific nonlinear classifications, along with practical applications and supporting
references for verification.
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Table 4. Nonlinear classification algorithms for water resources management.

Category Algorithm Description Applications Ref.

Hydrological modeling

Support vector
machines (SVMs)

SVM-based modeling for
classification. Flood risk assessment based on historical data. [66]

Decision trees Tree-based models for
classification. Predicting river flow patterns in watersheds. [67]

Random forest Ensemble of decision trees
for improved accuracy.

Forest cover classification for
water conservation. [68]

Gradient boosting Ensemble method for
boosted decision trees.

Estimating groundwater
contamination sources. [69]

Water quality analysis

K-nearest
neighbor (KNN)

Classify data based on
neighboring points.

Water quality monitoring using
sensor networks. [70]

Neural networks Deep learning models
with multiple layers. River pollution detection from satellite imagery. [71]

Gaussian naïve Bayes Probabilistic classifier
based on Bayes’ theorem.

Forecasting of lake water quality and algal
bloom prediction in reservoirs. [72]

Kernel methods
(e.g., kernel
SVM)

Nonlinear classification
with kernel functions.

Soil moisture prediction for
agricultural planning. [73]

Data-driven
analysis

Bayesian
networks

Probabilistic graphical
models for classification. Hydrological risk assessment in watersheds. [74]

2.1.2. Regression

Regression belongs to the field of supervised ML and is primarily used for predicting
continuous numerical values [75]. It is a statistical method that aims to understand the
relationship between independent variables, denoted as X (input variables), and dependent
variables, denoted as Y (continuous output). Regression plays a crucial role in developing
prediction models within ML. In regression, the model is trained using a set of labeled
data known as the training data. The training process involves finding the best-fitting line
or curve that represents the relationship between the input variables and the continuous
output. Once the model is trained, it can be used to make predictions on new, unlabeled data
called the test data [15]. The model utilizes the learned patterns from the training data to
estimate the output values for the test data. There are various regression methods available,
each suited for different scenarios. However, regression can generally be classified into two
main categories: simple linear regression and multiple regression [76].

Simple linear regression involves establishing a linear relationship between a single
input variable and the output variable. The goal is to find a straight line that best fits the
data points, minimizing the overall error or the vertical distance between the observed and
predicted values [76].

Multiple regression involves predicting a dependent variable based on two or more
independent variables. It assumes a linear relationship between the variables, meaning
that the change in the dependent variable is assumed to be proportional to the change in
the independent variables [76].

Nonlinear regression is used when the relationship between the dependent and inde-
pendent variables is not linear. It models relationships that may follow curves, exponential
growth, or other nonlinear patterns [77].

Regression analysis provides valuable insights into the relationships between variables
and helps in making predictions or estimating values for new observations.

Downward, Table 5 provides a concise overview of diverse linear regression algo-
rithms. These methods are fundamental tools for modeling linear relationships between
variables, making them valuable in numerous statistical and machine learning applications.
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Table 5. Linear regression algorithms.

Algorithm Ref. Description

Ordinary
least squares
(OLS)

[78] OLS is a commonly used linear regression algorithm that minimizes the sum of squared residuals to find
the best-fitting line. It assumes a linear relationship between the input variables and the output.

Ridge
regression [79] Ridge regression is a regularized linear regression algorithm that adds a penalty term to the least squares

objective function. It helps reduce the impact of multicollinearity and can prevent overfitting.

Lasso
regression [80] Lasso regression is a regularized linear regression algorithm that adds a penalty term based on the

absolute values of the coefficients. It promotes sparsity by shrinking some coefficients to exactly zero.

Elastic net
regression [81] Elastic net regression combines L1 (lasso) and L2 (ridge) regularization to address some limitations of

both methods. It balances between variable selection and coefficient shrinkage.

Bayesian
linear
regression

[82] Bayesian linear regression incorporates prior knowledge about the coefficients and allows for
probabilistic inference. It estimates a posterior distribution over the coefficients using Bayes’ theorem.

Stepwise
regression [83] Stepwise regression is an iterative method that automatically selects a subset of input variables by adding

or removing them based on statistical criteria. It helps to build a parsimonious model.

In Table 6, we correlate various water management methodologies with distinct
linear regression techniques. We also provide applications and publication references
for validation.

Table 6. Linear regression algorithms for water resources management.

Category Algorithm Description Applications Ref.

Regression and water
resources management Ordinary least squares (OLS) Minimizes the sum of squared differences

between observed and predicted values.
River flow forecasting,
reservoir management. [84]

Hydrological modeling and
prediction Ridge regression

Adds L2 regularization to OLS, helps
prevent overfitting by adding a penalty
for large coefficients.

Groundwater level
prediction, water
quality modeling.

[85]

Water quality
analysis and pollution tracking Lasso regression

Adds L1 regularization to OLS,
encourages sparse coefficient selection by
penalizing nonessential features.

Streamflow modeling,
feature selection in
hydrology.

[86]

Hydrological modeling and data fusion Elastic net regression
Combines L1 (lasso) and L2 (ridge)
regularization to balance feature selection
and coefficient shrinkage.

Hydrological modeling,
water resource
Optimization.

[87]

Water
resource allocation
and management

Bayesian linear regression
Uses Bayesian framework to estimate
model parameters and uncertainty in
predictions.

Flood risk assessment,
climate change impact
modeling.

[88]

Environmental data analysis and modeling Stepwise regression Iteratively adds or removes predictors to
build the best-fitting model.

Water resource
allocation, reservoir
operation optimization.

[89]

Table 7 provides a concise overview of various nonlinear regression algorithms. Non-
linear regression is a powerful approach for modeling relationships between variables when
the underlying patterns are not strictly linear. These algorithms are essential tools in data
analysis and machine learning, enabling the modeling of complex, nonlinear associations
in various applications.

Table 7. Nonlinear regression algorithms.

Algorithm Ref. Description

Polynomial
regression [90]

Fits a polynomial function to the data by including higher-order terms of the input variables. It
can capture nonlinear relationships by introducing polynomial features, allowing for more
flexible curve fitting.

Support vector
regression (SVR) [91]

Uses support vector machines to perform regression. It aims to find a nonlinear function that
best fits the data by mapping the input variables to a higher-dimensional feature space. SVR
uses a loss function that allows for a certain tolerance or margin around the predicted values,
providing flexibility to capture nonlinear patterns.
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Table 7. Cont.

Algorithm Ref. Description

Decision tree
regression [92]

Builds a regression model by recursively splitting the data based on the values of the input
variables. Each internal node represents a test on a specific feature, and each leaf node
represents a predicted value. Decision trees can capture complex nonlinear relationships and
are easily interpretable.

Random forest
regression [93]

An ensemble learning method that combines multiple decision trees to perform regression. It
constructs a multitude of decision trees and generates predictions by averaging the predictions
of individual trees. Random forest regression is capable of handling nonlinear relationships
and reducing overfitting.

Gradient boosting
regression [60]

Builds a regression model by iteratively adding weak learners, typically decision trees, to
minimize the loss function. It constructs an ensemble of models where each subsequent model
focuses on reducing the errors made by the previous models. Gradient boosting regression can
effectively capture nonlinear relationships and handle complex datasets.

Neural network
regression [94]

Utilizes artificial neural networks (ANNs) to perform regression. ANNs consist of
interconnected nodes (neurons) organized into layers. By learning the weights and biases of
these connections, neural networks can model complex nonlinear relationships between input
variables and the target variable.

K-nearest neighbor
(KNN)
regression

[95]
Predicts the target variable based on the average of the values of its k-nearest neighbors in the
feature space. KNN regression can capture nonlinear relationships by considering local
patterns in the data.

Gaussian process
regression [96]

Uses a Gaussian process to model the relationship between the input variables and the target
variable. It can capture complex nonlinear relationships and provides uncertainty estimates
for predictions.

Support vector
machines (SVMs) [97]

Originally designed for classification, SVM can be extended to regression tasks. It aims to find
a hyperplane that best separates the data points while maximizing the margin. SVM regression
can handle nonlinear relationships by using kernel functions.

Bayesian
regression [98]

Combines prior knowledge with observed data to estimate the posterior distribution of the
model parameters. Bayesian regression can capture nonlinear relationships by using flexible
probabilistic models.

Table 8 links different water management methods with nonlinear regression ap-
proaches, along with their practical applications and supporting references.

Table 8. Nonlinear regression algorithms for water resources management.

Category Algorithm Description Applications Ref.

Regression and water
resources management Polynomial regression Fits a polynomial equation to the data, allowing

for curved relationships between variables.
Time-series forecasting,
hydrological modeling. [99]

Hydrological modeling and
prediction

Support vector
regression (SVR)

Uses support vector principles to find a
hyperplane that best fits the data in a
higher-dimensional space.

Groundwater level
prediction, water
quality modeling.

[100]

Water quality analysis
and prediction

Decision tree
regression

Uses a tree-like model to represent decisions
based on feature values, suitable for nonlinear
relationships.

River flow forecasting,
water
resource optimization.

[101]

Hydrological modeling and
risk assessment

Random
forest regression

Ensemble of decision trees to improve prediction
accuracy and reduce overfitting.

Land use change
prediction, flood
risk assessment.

[102]

Streamflow forecasting and
hydrology

Gradient boosting
regression

Builds multiple decision trees sequentially, each
correcting the errors of the previous one.

Streamflow modeling,
feature selection in
hydrology.

[103]

Hydrological data
modeling and analysis

Neural
network regression

Utilizes artificial neural networks to model
complex relationships between inputs
and outputs.

Rainfall-runoff modeling,
water
demand forecasting.

[104]

Water resource allocation
and prediction

K-nearest
neighbor (KNN)
regression

Predicts values based on the average of its
k-nearest neighbors in the training dataset.

Water quality
prediction, aquifer
characterization.

[105]

Environmental data
analysis and modeling

Gaussian process
regression

Models the relationship between variables as a
distribution, allowing for
uncertainty quantification.

Climate modeling,
uncertainty analysis. [106]

Water resource
management and
assessment

Bayesian regression Uses Bayesian framework to estimate model
parameters and uncertainty in predictions.

Flood risk assessment,
climate change
impact modeling.

[107]
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2.2. Unsupervised Learning

Unsupervised learning, also known as observational learning, is a branch of ML
that focuses on analyzing and clustering unlabeled datasets. Unlike supervised learning,
which relies on labeled data for training, unsupervised learning algorithms work with
unannotated data to identify hidden patterns and groupings. This approach enables the
algorithms to discover insights and extract meaningful information from the data without
human intervention.

The primary goal of unsupervised learning is to discern similarities and differences
within the dataset, facilitating tasks such as data segmentation and image recognition [108].
By autonomously exploring the data, unsupervised learning algorithms can uncover un-
derlying structures and relationships that might not be immediately apparent.

There are two main methods commonly used in unsupervised learning: clustering
and association.

Clustering algorithms aim to group similar data points together based on their inherent
characteristics [109]. These algorithms employ various techniques, such as density-based
clustering, hierarchical clustering, or k-means clustering, to identify clusters or clusters
of clusters within the dataset. By organizing the data into meaningful groups, clustering
enables researchers and practitioners to gain insights into the underlying patterns and
structures present in the data.

Association algorithms, on the other hand, focus on discovering relationships and
associations between different variables in the dataset [110]. These algorithms search for
frequent co-occurrence patterns or associations among items, enabling the identification
of rules or correlations. Association analysis has applications in various fields, including
market basket analysis, recommender systems, and anomaly detection.

Both clustering and association methods provide valuable tools for exploratory data
analysis and knowledge discovery. Unsupervised learning algorithms play a crucial role in
extracting useful information from unlabeled datasets, enabling researchers and practition-
ers to uncover hidden insights, generate hypotheses, and make data-driven decisions.

2.2.1. Clustering

Clustering, as an unsupervised learning method, plays a crucial role in organizing
unlabeled data into groups of similarity known as clusters. Each cluster represents a
collection of data points that exhibit similar characteristics, and these clusters can vary in
terms of their similarity or dissimilarity to data points in other clusters [111]. The main
objective of clustering is to identify groups of similar objects within a dataset while ensuring
that dissimilar objects are separated into different clusters or labeled as noise points [112].

From a statistical analysis perspective, clustering involves examining the underlying
structure and patterns present in the data. By leveraging similarity metrics and distance
measures, clustering algorithms aim to partition the data in a way that maximizes in-
tracluster similarity and minimizes intercluster dissimilarity. This process enables the
identification of natural groupings or clusters within the dataset [113].

The applications of clustering extend across various fields, including ML, data mining,
pattern recognition, image analysis, and bioinformatics. In ML, clustering can be employed
to group similar instances together, aiding in tasks such as customer segmentation, anomaly
detection, and recommendation systems. In data mining, clustering assists in exploratory
data analysis, helping researchers discover hidden patterns and structures within large
datasets. Pattern recognition leverages clustering to identify similar objects or patterns
in images, texts, or signals. Image analysis techniques often utilize clustering to segment
images into meaningful regions or objects. In the field of bioinformatics, clustering helps
identify groups of genes with similar expression patterns or clusters proteins based on their
functional similarities [113].

Clustering algorithms have evolved to encompass various approaches, each with
its own strengths and suitability for different types of data. These algorithms consider
factors such as data distribution, distance metrics, and cluster representation to effectively
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organize the data. The k-means algorithm partitions the data into a predetermined number
of clusters based on the centroids, while hierarchical clustering builds a hierarchy of clusters
through merging or splitting. Expectation maximization employs probabilistic models
to estimate the parameters of the underlying distribution, and density-based clustering
focuses on regions of high density in the data space [111,112].

By employing clustering techniques, researchers and practitioners can gain valuable
insights into complex datasets, enabling them to make informed decisions, identify patterns,
and extract meaningful information. Clustering serves as a fundamental tool for uncovering
hidden structures and relationships within unlabeled data, ultimately contributing to
advancements in various domains.

Table 9 presents an overview of various clustering algorithms. Clustering is a crucial
technique in data analysis and machine learning that groups similar data points together
based on certain criteria. These algorithms play a pivotal role in uncovering patterns and
structures within data, making them essential for tasks such as customer profiling, pattern
recognition, and anomaly detection.

Table 10 provides a concise summary of common error functions used in clustering.
Error functions are essential for evaluating the quality and performance of clustering
algorithms. These functions help quantify the dissimilarity between data points and cluster
centroids, aiding in the assessment and optimization of clustering results.

In Table 11, we establish connections between water management methodologies
and specific nonlinear regression techniques, highlighting applications and references for
verification.

Table 9. Clustering algorithms.

Algorithm Ref. Description

K-means [114]

K-means is an iterative algorithm that divides data into k clusters. It aims to minimize the sum of squared
distances within each cluster. Initially, k centroid points are randomly assigned, and each data point is
assigned to the nearest centroid. The centroids are updated iteratively by computing the mean of the points
within each cluster until convergence is achieved.

DBSCAN [115]

DBSCAN is a density-based clustering algorithm that groups data points based on their density. It defines
clusters as dense regions separated by areas of lower density. The algorithm starts with an arbitrary point
and expands the cluster by adding nearby points that have a sufficient number of neighbors within a
specified distance. Outliers are considered as points with low density and are not assigned to any cluster.

Hierarchical clustering [116]

Hierarchical clustering builds a tree-like structure of clusters by iteratively merging or splitting clusters
based on similarity. It can be agglomerative, starting with individual data points as separate clusters and
merging the most similar ones, or divisive, starting with a single cluster and recursively splitting it into
smaller clusters. The result is a dendrogram that provides insights into the hierarchical structure of the data.

Gaussian
mixture models (GMMs) [117]

GMM assumes that the data are generated from a mixture of Gaussian distributions. It models each cluster
as a Gaussian distribution with its own mean and covariance matrix. The algorithm estimates the parameters
of the Gaussian components using the expectation maximization (EM) algorithm, which maximizes the
likelihood of the observed data. GMM provides probabilistic cluster assignments, allowing soft assignments
where data points can belong to multiple clusters with varying probabilities.

Mean shift [118]

Mean shift is an iterative algorithm that aims to find the modes or peaks of the data distribution. It starts
with an initial set of points and iteratively shifts them towards the direction of the highest density, which is
determined by a kernel density estimation. The algorithm continues until convergence, resulting in clusters
centered around the modes of the data distribution.

Spectral
clustering [119]

Spectral clustering transforms the data into a lower-dimensional space using eigenvectors of a similarity
matrix and then applies traditional clustering techniques. It considers the pairwise similarity between data
points and constructs a similarity matrix. The eigenvectors corresponding to the largest eigenvalues are used
to embed the data into a lower-dimensional space, where clustering algorithms like k-means or Gaussian
mixture models can be applied. Spectral clustering can handle nonlinearly separable data and is particularly
effective for graph-based clustering.

OPTICS [120]

OPTICS (ordering points to identify the clustering structure) is a density-based clustering algorithm similar
to DBSCAN. It creates a reachability plot that represents the ordering of data points based on their density
reachability. It captures both dense regions and density-based hierarchical relationships in the data. OPTICS
is particularly useful for analyzing the varying density of clusters and identifying clusters of different sizes
and shapes.

Agglomerative clustering [121]

Agglomerative clustering is a hierarchical clustering algorithm that starts with each data point as a separate
cluster and iteratively merges the most similar clusters until a stopping criterion is met. It can be based on
various distance metrics and linkage criteria such as single linkage, complete linkage, or average linkage.
The result is a dendrogram that shows the hierarchical structure of the data.

Density-based clustering [122]

Density-based clustering algorithms identify clusters as areas of high data density separated by regions of
low density. These algorithms, such as DBSCAN and OPTICS, do not require specifying the number of
clusters in advance and can handle datasets with varying densities and irregular shapes. They are robust to
noise and capable of identifying outliers.
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Table 10. Common error functions in clustering.

Metric. Ref. Description

Calinski–Harabasz [123]

The CH index measures the quality of a clustering algorithm by evaluating the distance between
cluster centroids and the global centroid (numerator), and the distances between centroids
within each cluster (denominator). A higher CH index indicates a valid optimal partition with
well-separated clusters.

Chou–Su–Lai [124]

The CS index assesses the quality of a clustering partition by calculating the sum of average
maximum distances within each cluster (numerator) and the sum of minimum distances between
clusters (denominator). The clustering partition with the smallest CS index is considered valid
and optimal.

Dunn’s index [125]
The DI index evaluates the quality of a partition by measuring the minimum between-cluster
distance (numerator) and the maximum within-cluster distance (denominator). An optimally
valid partition is indicated by the largest DI index.

Davies–Bouldin’s
index [126] The DB index measures the quality of a clustering partition, with the optimal partition identified

by the smallest DB index value.

Davies–Bouldin’s
index [127] The DB index identifies a valid and optimal partition, similar to the original DB index, with the

smallest DB value indicating the optimal partition.

Silhouette
coefficient [128] An optimal and valid partition is indicated by the largest SC (silhouette coefficient) value.

Hybrid
validity index [129] SCD (cluster validity index) encompasses three robust measures of cluster validity: silhouette

coefficient (SC), connectivity and separation (CS), and Davies–Bouldin (DB) index.

Table 11. Clustering algorithms for water resources management.

Category Algorithm Description Applications Ref.

Water resources
management and analysis K-means Divides water quality data into clusters based on

similarity, aiding in pollution source identification.
Water quality analysis,
source tracking. [130]

Water resources
management and monitoring DBSCAN Identifies spatial clusters of monitoring stations for

efficient water quality network design.
Sensor network optimization,
anomaly detection. [131]

Hydrological modeling
and watershed planning

Hierarchical
clustering

Groups similar hydrological stations for the purpose
of watershed delineation and land use classification.

Watershed management, land
use planning. [132]

Hydrological data
analysis and modeling

Gaussian
mixture models
(GMMs)

Models complex hydrological data patterns to
identify different flow regimes in river systems.

Hydrological data modeling,
flow regime analysis. [133]

Rainfall pattern analysis
and forecasting Mean shift Detects peaks in rainfall patterns to identify areas

with similar precipitation characteristics.
Rainfall pattern analysis,
flood forecasting. [134]

Remote sensing and
water quality monitoring

Spectral
clustering

Clusters remote sensing images of water bodies to
monitor changes in water quality and quantity.

Remote sensing in water
resources, image analysis. [135]

Environmental impact
assessment and monitoring OPTICS Identifies spatial clusters of water quality anomalies

for environmental hotspot detection.

Water quality
monitoring, anomaly
identification.

[136]

Hydrological network design
and data collection

Agglomerative
clustering

Clusters hydrological monitoring stations to
optimize network design for efficient data collection.

Hydrological network design,
data collection. [137]

Anomaly detection and
environmental assessment

Density-based
clustering

Detects anomalies in water quality data, such as
pollutant spikes, for environmental
impact assessment.

Anomaly detection in
water quality data. [138]

2.2.2. Association Rules

Association rules mining is a powerful and popular unsupervised data mining tech-
nique that aims to uncover meaningful associations, relationships, and dependencies within
vast collections of data items. This method operates on data that are typically organized in
the form of transactions, which can be generated through an external process or extracted
from relational databases and data warehouses [139]. By examining these transactions,
association rules mining endeavors to discover valuable patterns and connections that may
be hidden within the data, providing valuable insights and facilitating decision-making
processes in various domains. This approach is particularly useful in tasks such as market
basket analysis, customer segmentation, recommendation systems, and fraud detection,
where identifying significant associations between different items can lead to enhanced
understanding, improved efficiency, and better decision outcomes [140]. Table 12 provides
a concise summary of association rules algorithms. These algorithms are fundamental tools
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in the realm of data mining and analytics, empowering the revelation of captivating and
occasionally surprising connections within vast datasets.

Table 13, connects various water management methods with association rules ap-
proaches, practical applications, and supporting references for validation.

Table 12. Association rules algorithms.

Algorithm Ref. Description

Apriori [141]
Apriori is a classic algorithm for mining frequent itemsets and generating association rules. It
uses a breadth-first search approach to discover itemsets and prune infrequent ones based on
minimum support.

FP-Growth [142]
FP-Growth is an algorithm that efficiently discovers frequent itemsets by using a prefix tree
(FP-tree) data structure. It avoids candidate generation and employs a divide-and-conquer
strategy for mining.

Eclat [143]
Eclat (equivalence class transformation) is an algorithm for mining frequent itemsets based on
vertical data format. It uses a depth-first search strategy to explore the itemset lattice and identify
frequent itemsets.

CAR-SPAN [144]
CAR-SPAN (closed and approximate repeated sequential pattern mining) is an algorithm that
discovers closed and approximate frequent sequential patterns. It adopts a two-phase approach
involving pattern growth and pruning.

FPMax [145]
FPMax is an algorithm that extends FP-Growth to mine maximal frequent itemsets. It efficiently
discovers itemsets that are not a subset of any other frequent itemsets, reducing redundancy in
the results.

RuleGrowth [146]
RuleGrowth is an algorithm that integrates pattern growth and rule generation. It discovers
frequent itemsets using a compact pattern tree and generates high-quality association rules based
on interestingness measures.

R-Mine [147] R-Mine is an algorithm that mines rules from relational databases. It uses a lattice structure to
represent itemsets and employs an efficient method for computing the support of rules.

Tertius [148]
Tertius is an algorithm that focuses on mining association rules with time constraints in
transactional databases. It incorporates temporal information to capture time-dependent
associations in the data.

Table 13. Association rules algorithms for water resources management.

Category Algorithm Description Applications Ref.

Data mining and water
resources management Apriori Discovers frequent itemsets in water quality

data for association rule mining.

Pattern discovery in water
quality data,
anomaly detection.

[149]

Data mining and
hydrological analysis

FP-
Growth

Efficiently mines frequent patterns in
hydrological time series data.

Hydrological pattern
discovery,
streamflow analysis.

[150]

Water quality analysis and
pattern mining Eclat

Identifies frequent itemsets in water quality
datasets, aiding in pollution
source identification.

Water quality assessment,
pollution source tracking. [151]

Data mining and water
quality monitoring

CAR-
SPAN

Discovers closed frequent patterns in sensor
data to monitor water quality changes.

Sensor network data
analysis, water
quality monitoring.

[152]

Hydrological pattern
recognition FPMax Extends FP-Growth for maximal frequent

pattern mining in hydrological datasets.

Hydrological pattern
recognition,
rainfall analysis.

[153]

Data mining and
environmental assessment RuleGrowth Mines association rules to identify relationships

between environmental variables.

Environmental impact
assessment,
ecological modeling.

[154]

Hydrological data analysis
and pattern mining R-Mine Discovers recurring patterns in hydrological

time series data.
Hydrological forecasting,
drought prediction. [155]

Data mining and water
resource allocation Tertius Supports decision making in water allocation

by mining patterns in water usage data.

Water resource allocation
optimization, demand
management.

[156]
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2.3. Semisupervised Learning

Semisupervised learning (SSL) is a powerful technique in ML that combines the
benefits of both supervised and unsupervised learning approaches. While supervised
learning requires large amounts of labeled training data to classify new data accurately,
which can be time-consuming and costly to obtain, unsupervised learning lacks the ability
to properly identify and cluster unknown data accurately. To address these limitations,
SSL leverages a combination of labeled and unlabeled data during the training process. It
starts with a small set of labeled patterns, where each pattern is associated with a known
label. The model then utilizes these labeled patterns to learn the underlying patterns and
relationships within the data. This process is similar to traditional supervised learning.
However, what makes SSL unique is that it also takes advantage of the larger set of
unlabeled patterns. These unlabeled patterns do not have corresponding labels but contain
valuable information about the data’s distribution and structure. By incorporating this
unlabeled data, the model can gain a more comprehensive understanding of the dataset
and generalize better to unseen data. It is divided into two types: (i) semisupervised
classification and (ii) semisupervised clustering [157].

2.3.1. Semisupervised Classification

Semisupervised classification is an ML approach that combines labeled and unlabeled
data to enhance model performance. By leveraging the additional information present
in the unlabeled data, it helps improve the accuracy and generalization capabilities of
the model.

One of the key advantages of semisupervised classification is its ability to reduce the
reliance on large amounts of labeled data. Labeled data can be scarce, expensive, or time-
consuming to obtain, while unlabeled data are often more abundant and easily accessible.
By incorporating unlabeled data into the learning process, the model can make use of the
additional information to learn more robust and representative patterns from the data.

Semisupervised classification techniques typically involve utilizing the structure or
distribution of the unlabeled data. This can be achieved through methods such as cluster-
ing, where the unlabeled data are grouped based on similarities, or by leveraging density
estimation techniques to identify regions of high density within the data. These approaches
help the model capture the underlying structure of the data, resulting in improved classifi-
cation performance.

By combining labeled and unlabeled data, semisupervised classification strikes a
balance between the benefits of supervised and unsupervised learning. It allows the model
to benefit from the guidance provided by labeled data while also leveraging the information
embedded in the unlabeled data. This approach is particularly valuable in situations where
acquiring labeled data is challenging, expensive, or time-consuming, making it a powerful
tool in various real-world applications [157]. Table 14 offers a compact overview of semi-
supervised classification algorithms. These algorithms are essential tools in machine
learning, bridging the gap between labeled and unlabeled data to enhance the accuracy of
classification tasks.

Table 15 illustrates the relationships between different water management methods and
semisupervised classification techniques, including applications and verification references.

2.3.2. Semisupervised Clustering

Semisupervised clustering is a powerful approach that combines labeled and unla-
beled data to enhance clustering accuracy and interpretability. By incorporating labeled
information, this technique guides the clustering algorithm to form more meaningful and
accurate clusters. Labeled data provide explicit class labels, acting as a valuable anchor in
the clustering process. Simultaneously, unlabeled data capture the underlying structure
and patterns in the dataset, allowing for noise reduction and improved clustering outcomes.
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Table 14. Semisupervised classification algorithms.

Algorithm Ref. Description

Self-training [158]
In self-training, a model is initially trained on the labeled data and then used to make predictions
on the unlabeled data. The confident predictions are added to the labeled set, and the process is
iterated to improve the model’s performance.

Co-training [159]
Co-training involves training multiple models on different subsets of features or data and then
using their predictions to label the unlabeled data. The models iteratively update each other by
adding the confident predictions, enhancing classification accuracy.

Multiview learning [160]
Multiview learning utilizes multiple views or perspectives of the data to improve classification
performance. Each view provides different information and combining them leads to a more
comprehensive understanding of the underlying patterns and relationships.

Generative
models [161]

Generative models, such as Gaussian mixture models (GMM) or variational autoencoders (VAE),
learn the underlying data distribution and generate synthetic samples. These models can be used
to generate additional labeled data for training the classification model.

Graph-based
methods [162]

Graph-based methods construct a graph representation of the data, where nodes represent
instances and edges capture relationships. Techniques like label propagation or graph-based
regularization propagate labels through the graph to classify unlabeled instances.

Transductive support
vector
machines (TSVMs)

[163]
TSVM treats the labeled and unlabeled data as separate sets and aims to find a decision boundary
that separates the labeled instances while considering the unlabeled instances as potential
support vectors. It leverages the information in both labeled and unlabeled data for classification.

Table 15. Semisupervised classification algorithms for water resources management.

Category Algorithm Description Applications Ref.

Machine learning and
water resources
management

Self-training Utilizes unlabeled water quality data to
improve water quality prediction models.

Water quality
prediction, sensor
data enhancement.

[164]

Machine learning and
hydrological analysis Co-training

Leverages data from multiple
hydrological sensors to enhance
streamflow forecasting accuracy.

Hydrological
modeling,
streamflow prediction.

[165]

Data integration and
water quality
monitoring

Multiview learning

Combines diverse water quality data
sources (e.g., remote sensing and in situ
measurements) for more
comprehensive assessments.

Water quality
assessment, pollution
source tracking.

[166]

Machine learning and
environmental assessment Generative models

Generates synthetic environmental data
for simulating scenarios in
impact assessments.

Environmental impact
assessment,
scenario modeling.

[167]

Graph-based methods and
hydrological analysis Graph-based methods

Utilizes graph-based representations to
model hydrological networks and
optimize water resource allocation.

Hydrological network
analysis, water
allocation
optimization.

[168]

Machine learning and
environmental monitoring

Transductive support
vector machines (TSVMs)

Labels data points based on their
relationships with labeled instances,
aiding in anomaly detection.

Environmental
anomaly detection,
sensor data analysis.

[169]

Various techniques, such as constrained clustering and co-training, are employed
to effectively integrate labeled and unlabeled data. Constrained clustering leverages the
constraints derived from labeled data to guide the clustering process. Co-training utilizes
multiple models trained on different subsets of features or data, leveraging their predictions
to label the unlabeled instances.

By leveraging both labeled and unlabeled data, semisupervised clustering offers several
benefits. It enhances the accuracy and interpretability of clustering results, providing a more
comprehensive understanding of the underlying data structure. This facilitates insightful
decision making and enables researchers and practitioners to gain valuable insights from their
data. Overall, semisupervised clustering is a valuable technique for exploring complex datasets
and extracting meaningful patterns [157]. Table 16 offers a brief overview of semi-supervised
clustering algorithms. These algorithms are fundamental in the field of clustering, helping to
improve clustering accuracy in scenarios involving partially labeled data.
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Table 16. Semisupervised clustering algorithms.

Algorithm Ref. Description

Co-training
clustering [170]

Co-training clustering utilizes multiple clustering algorithms trained on different subsets of
features or data. The algorithms iteratively update each other by assigning labels to the
unlabeled data points. By leveraging the agreement between the algorithms, it enhances
clustering accuracy and mitigates the impact of noise and outliers.

Self-training clustering [171]

Self-training clustering initially trains a clustering algorithm on the labeled data and then uses it
to cluster the unlabeled data. The most confident cluster assignments are added to the labeled
data, and the process is iterated. This approach improves the clustering performance by
progressively incorporating the unlabeled data into the training process.

Constrained clustering [172]

Constrained clustering integrates prior knowledge in the form of constraints into the clustering
process. These constraints can be pairwise must-link and cannot-link constraints or other forms
of side information. By incorporating the constraints, the algorithm guides the clustering to
respect the specified relationships, resulting in more accurate and meaningful
clustering outcomes.

Semisupervised
expectation maximization
(semi-EM)

[173]

Semi-EM is an adaptation of the expectation maximization (EM) algorithm for semisupervised
clustering. It incorporates both labeled and unlabeled data in the estimation of cluster
parameters. The algorithm iteratively assigns data points to clusters and updates the parameters
based on the expectations and maximization steps. Semi-EM improves clustering results by
leveraging the information in both labeled and unlabeled data.

Co-EM
clustering [174]

Co-EM clustering is an extension of the EM algorithm for semisupervised clustering. It
simultaneously estimates cluster parameters and assigns labels to the unlabeled data points. The
algorithm iteratively updates the cluster parameters and refines the labels by incorporating
information from both labeled and unlabeled data, improving the clustering accuracy.

Table 17 presents correlations between water management methodologies and semisu-
pervised clustering methods, along with practical applications and references for validation.

Table 17. Semisupervised clustering algorithms for water resources management.

Category Algorithm Description Applications Ref.

Machine learning and water
resources
management

Co-training

Enhances water quality prediction models
by leveraging data from multiple sources,
such as remote sensing and in
situ measurements.

Water quality prediction,
data fusion from
diverse sources.

[175]

Data mining and water
quality assessment Clustering

Clusters water quality data to identify
patterns and anomalies for improved
monitoring and assessment.

Water quality analysis,
anomaly detection in
sensor data.

[176]

Machine learning and
environmental monitoring Self-training clustering

Utilizes unlabeled water quality data to
improve clustering algorithms for water
quality assessment.

Water quality clustering,
unsupervised
anomaly detection.

[177]

Data integration and
environmental assessment Constrained clustering

Applies constraints to clustering
algorithms to account for domain
knowledge in water quality analysis.

Water quality clustering
with domain-
specific constraints.

[178]

Semisupervised learning and
environmental data Semisupervised

Combines labeled and unlabeled
environmental data to improve water
quality modeling and assessment.

Water quality prediction,
leveraging partial labels. [179]

Statistical modeling and
environmental data

Expectation maximization
(semi-EM)

Uses the expectation maximization
algorithm to estimate parameters in
semisupervised water quality models.

Parameter estimation in
semi-supervised models. [180]

Machine learning and
environmental data Co-EM clustering

Integrates expectation maximization and
clustering for semisupervised water
quality analysis.

Semisupervised
clustering in water
quality assessment.

[181]

2.4. Reinforcement Learning

Reinforcement learning (RL) is an essential learning method that differs from super-
vised and unsupervised learning [182]. Unlike other learning approaches, RL focuses
on training an agent to maximize its performance by rewarding desirable behaviors and
penalizing undesirable ones. The primary objective of RL is to enable machines to surpass
known methods and excel in complex decision-making tasks.
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In RL, an agent interacts with its environment, perceiving and interpreting its state,
taking actions, and receiving feedback in the form of rewards or penalties [183]. Through
repeated interactions and learning from trial and error, the agent improves its decision-
making abilities and optimizes its behavior to achieve the highest cumulative reward
over time.

The scope of RL extends beyond traditional ML domains. It explores how both
physical and artificial systems can learn to predict the consequences of their actions and
optimize their behavior in dynamic environments [184]. RL finds applications in diverse
fields such as ethology, economics, psychology, and control theory. It enables researchers to
understand and simulate how organisms and systems adapt, learn, and make decisions
based on the outcomes of their actions. By leveraging the principles of RL, researchers aim
to develop intelligent systems that can autonomously learn and improve their performance
in complex and uncertain environments. RL provides a framework for understanding
and modeling the decision-making process, enabling machines to make informed choices
and achieve superior performance in a wide range of applications. Table 18 provides an
overview of reinforcement learning algorithms. These algorithms are central in the field of
machine learning, as they are designed for training agents to make sequential decisions in
dynamic environments.

Table 19 shows connections between water management techniques and reinforcement
methods, with practical applications and references for verification.

Table 18. Reinforcement algorithms.

Algorithm Ref. Description

Q-learning [185]
Q-learning is a model-free reinforcement learning algorithm that learns an action-value function,
known as the Q-function. It iteratively updates the Q-values based on the rewards received and
estimates the optimal policy for an agent to maximize its cumulative reward over time.

Deep Q-network (DQN) [186]

DQN is an extension of Q-learning that utilizes deep neural networks to approximate the
Q-values. It overcomes the limitations of traditional Q-learning by enabling the agent to handle
high-dimensional state spaces. DQN incorporates experience replay and target networks to
stabilize and improve learning performance.

Policy gradient methods [187]

Policy gradient methods directly learn a parameterized policy that determines the agent’s actions
based on the observed state. These methods use gradient ascent to iteratively update the policy
parameters, aiming to maximize the expected cumulative reward. Common variants include
REINFORCE, proximal policy optimization (PPO), and trust region policy optimization (TRPO).

Actor–critic methods [188]

Actor–critic methods combine policy gradient and value function estimation. The actor learns
the policy, while the critic estimates the value function to evaluate the policy’s performance. This
approach provides a balance between exploring new actions and exploiting the current policy,
enhancing the stability and efficiency of learning.

Proximal policy optimization
(PPO) [189]

PPO is a policy optimization algorithm that employs a surrogate objective function to update the
policy parameters. It ensures that policy updates remain within a specified range, preventing
drastic policy changes. PPO is known for its sample efficiency and stable learning performance,
making it a popular choice for continuous control tasks.

Deep
deterministic
policy gradient (DDPG)

[190]

DDPG is an off-policy actor–critic algorithm that is well suited for continuous action spaces. It
uses a deterministic policy to learn the optimal policy, and a deep neural network is employed to
approximate both the actor and critic functions. DDPG combines Q-learning and policy gradient
methods, enabling stable learning in continuous action domains.

Monte Carlo methods [191]

Monte Carlo methods estimate the value of states or state–action pairs by averaging the observed
returns from sampled trajectories. These methods do not rely on a model of the environment and
learn directly from episodes of interaction. They are suitable for episodic tasks where the
complete trajectory is available.

Temporal difference (TD) learning [192]

TD learning combines ideas from both Monte Carlo methods and dynamic programming. It
updates value estimates based on bootstrapping, using estimates from subsequent time steps.
TD algorithms, such as SARSA and Q-lambda, enable learning during ongoing interactions
without requiring complete episodes of experience.

Asynchronous advantage
actor–critic (A3C) [193]

A3C is an actor–critic algorithm that uses multiple agents operating in parallel to learn a policy
and value function. Each agent interacts with a separate copy of the environment, and their
experiences are asynchronously combined to update the shared network parameters. A3C is
known for its scalability and efficient use of computational resources.
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Table 18. Cont.

Algorithm Ref. Description

Proximal value optimization
(PPO) [194]

PPO is a policy optimization algorithm that focuses on updating the policy within a trust region.
It leverages a clipped surrogate objective function to ensure conservative policy updates. PPO
offers a balance between sample efficiency and stable learning, making it suitable for a wide
range of reinforcement learning tasks.

Soft actor–critic (SAC) [195]

SAC is an off-policy actor–critic algorithm that incorporates the concept of entropy regularization.
It maximizes the expected cumulative reward while also maximizing the entropy of the policy
distribution, promoting exploration and robustness. SAC is particularly effective in continuous
action spaces and has been successful in various domains, including robotics and control tasks.

Twin delayed deep deterministic
policy gradient (TD3) [196]

TD3 is an off-policy actor–critic algorithm that builds upon DDPG. It addresses overestimation
bias and enhances stability by introducing twin critics and delayed policy updates. TD3 has
shown improved sample efficiency and robustness in continuous control tasks with large
action spaces.

Table 19. Reinforcement algorithms for water resources management.

Category Algorithm Description Applications Ref.

Reinforcement learning
and water resources
management

Q-learning
Learns optimal control policies for
water resource management through
exploration and exploitation.

Optimal water resource allocation,
reservoir management. [197]

Machine learning and
hydrological modeling Deep Q-network (DQN)

Utilizes deep neural networks to
approximate Q-values in
hydrological
decision-making problems.

Flood control, reservoir operation,
hydrological modeling. [198]

Reinforcement learning
and environmental man-
agement

Policy gradient methods
Directly optimizes the policy of
water resource management based
on gradients.

Water allocation optimization, river
basin management. [199]

Machine learning and
water resource allocation Actor–critic methods

Combines actor and critic networks
to balance exploration and
exploitation in water
resource management.

Water allocation decision making,
adaptive control. [200]

Reinforcement learning
and environmental policy

Proximal policy
optimization (PPO)

Employs the PPO algorithm to
optimize water resource
management policies while
ensuring stability.

Sustainable water resource
management, policy optimization. [201]

Machine learning and
water resource allocation

Deep deterministic policy
gradient (DDPG)

Utilizes deep reinforcement learning
for continuous action spaces in water
allocation problems.

Irrigation management, water
distribution control. [198]

Reinforcement learning
and
hydrological modeling

Monte Carlo methods
Estimates value functions and
policies through episodic simulations
in hydrological decision making.

Hydrological modeling,
reservoir operation. [202]

Machine learning and
water resource
management

Temporal difference (TD)
learning

Learns from consecutive time steps
to update value functions and
improve water
management strategies.

Water resource allocation, real-time
decision making. [203]

Reinforcement learning
and water resource
allocation

Asynchronous advantage
actor–critic (A3C)

Utilizes asynchronous training for
more efficient learning of water
allocation policies.

Efficient water allocation,
reservoir control. [204]

Machine learning and
water resource policy

Proximal value
optimization (PVO)

Optimizes value functions and
policies for water resource
management in a stable manner.

Sustainable water policy
development, adaptive control. [205]

Reinforcement learning
and environmental
management

Soft actor–critic (SAC)
Enhances exploration in continuous
action spaces of water management
problems for better policies.

River flow control,
ecological preservation. [206]

Machine learning and
water allocation

Twin delayed deep
deterministic policy
gradient (TD3)

Extends DDPG to improve stability
and convergence in water
allocation problems.

Water distribution optimization,
adaptive control. [207]
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2.5. Evaluation Methods and Performance Metrics in ML

ML approaches can produce different outcomes, making it crucial to assess their
performance based on the achieved results. Various statistical evaluation measures have
been proposed to gauge the effectiveness of ML prediction techniques. In Table 9, we
present a summary of commonly used evaluation metrics, categorized as magnitude,
absolute, or squared error metrics.

Magnitude metrics include mean normalized bias and mean percentage error, which
quantify the disparities between predicted and observed values. These metrics offer insights
into the magnitude of deviations.

For cases where the focus is solely on the deviation from the norm, absolute error
metrics can be employed. These metrics report the absolute error as a positive value, using
observed (Y), predicted (Ŷ), mean of observed (Y), and mean of predicted (Ŷ) values.

Squared error metrics, such as mean squared error and root mean squared error,
emphasize the squared differences between observed and predicted values. These metrics
help in understanding the overall accuracy of the predictions, with higher values indicating
larger errors.

Additionally, there are metrics like accuracy, precision, recall, and F1 score that are
commonly used for evaluating classification models. Accuracy measures the proportion of
correctly classified instances, while precision focuses on the proportion of true positives
out of predicted positives. Recall quantifies the proportion of true positives out of actual
positives, and the F1 score provides a balanced measure between precision and recall.

By employing these evaluation metrics, ML practitioners can assess the performance
of their models, gaining valuable insights into their effectiveness and areas for improve-
ment [125]. Table 20 illustrates the criteria used to evaluate prediction models. These
criteria are fundamental in the realm of predictive modeling, providing a means to assess
the accuracy and effectiveness of various models in their predictive capabilities. They rep-
resent vital tools in the process of model assessment, aiding researchers and practitioners in
making informed decisions regarding the quality and reliability of their predictive models.

2.6. Bibliometric Analysis and Search Method for the ML Methodologies

A bibliometric study offers an overview that is useful for outlining a research field’s
organizational structure and linkages to other fields. Furthermore, when analysis is per-
formed using word statistical analysis tools, potential research trends, hotspots, and the
direction of science can be determined. The Scopus database was selected due to its exten-
sive collection of peer-reviewed literature and numerous tools that enable citation analysis,
data export for additional research, and visual mapping.

Although the research is biased towards English publications and ignores nonindexed
journals and grey literature, we think this still offers a useful, if constrained, summary of
the new literary trends. Additionally, we think that a key component of the bibliometric
study is the search technique. By lowering false positives and false negatives, the search
terms are refined with the goal of guaranteeing that pertinent articles are included in the
study.

A preliminary search for the key phrase “machine learning methodologies” (title/
abstract/keyword search) generated 17,112 results. In terms of time period, all searches
were not time-restricted since there are many older methods that are still used currently.
While “machine learning”, “supervised machine learning”, “unsupervised machine learn-
ing”, clustering, classification, “semisupervised machine learning”, etc. appeared promi-
nently, there were cases such as “reinforcement learning” and “association rules” that
hardly featured in the top keywords. Even when considering only methodology-related
keywords, then “uncertainty analysis”, “regression analysis”, and “mathematical models”
were the more common keywords and not the previous ones.
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Table 20. Performance criteria for prediction model evaluation [208,209].

Metric. Description

Mean normalized bias error MBE = 1
n

n
∑

i=1

Yi−Ŷi
Yi

Estimation of the average bias of the prediction approach used
to decide on measures for correcting the approach bias.

Mean percentage error MPE = 1
n

n
∑

i=1

Yi−Ŷi
Yi
× 100

The average percentage error, calculated by comparing the
forecasts of a model with the actual values of the quantity
being predicted.

Mean absolute error. MAE = 1
n ∑n

i=1

∣∣Ŷi −Yi
∣∣ The mean absolute error (MAE) is a statistical measure that

evaluates the average magnitude of errors in a set of forecasts,
irrespective of their direction.

Mean absolute percentage error MAPE = 1
n

n
∑

i=1

Yi−Ŷi
Yi
× 100

The accuracy rating metric assesses accuracy as a percentage by
calculating the average absolute percentage error minus the
actual amounts divided by the actual amounts.

Relative absolute error RAE =
∑n

i=1|Yi−Ŷi |
∑n

i=1|Yi−Y|
A relative performance metric used to evaluate the effectiveness
of a prediction model.

Weighted mean absolute percentage error WMAPE =
∑n

i=1|Yi−Ŷi |
∑n

i=1|Yi |

A weighted version of the mean absolute percentage error
(MAPE) that serves as a measure of prediction accuracy for a
forecasting method.

Normalized mean absolute error NMAE = MAE
1
n ∑n

i=1|Yi |
A metric designed to facilitate the comparison of datasets with
varying scales in relation to the mean absolute error (MAE).

Mean squared error MSE = 1
n ∑n

i=1
(
Yi − Ŷi

)2 This metric quantifies the discrepancy between the mean
squares of the actual and forecasted values.

Root mean square error RMSE =
√

1
n ∑n

i=1
(
Yi − Ŷi

)2 An estimation of the average error magnitude.

Coefficient of variation
CV =

√
∑n

i=1(Yi−Ŷi)
2

n
Y

The relative standard deviation is a standardized measure that
quantifies the dispersion of a probability distribution.

Normalized root
mean square error NRMSE = RMSE

Yimax−Yimin

A normalized root mean square error (RMSE) that enables
comparisons between datasets and models with different scales.

Coefficient of determination R2 = 1− ∑n
i=1(Ŷ−Y)2

∑n
i=1(Y−Y)2

A metric that measures the variance ratio of a dependent
variable with respect to an independent variable.

Willmott’s index agreement WI = 1−
[

∑n
i=1(Yi−Yi)

2

∑n
i=1 =

(
|Yi−Yi |+

∣∣∣Ŷi−Ŷi
∣∣∣)2

]
A metric that measures the ratio between the mean square error
and the potential error.

Legates–McCabe’s LM = 1−
[

∑n
i=1|Yi−Ŷi |

∑n
i=1|Yi−Yi |

] A robust alternative metric for evaluating goodness-of-fit or
relative error that addresses the limitations of
correlation-based metrics.

Kling–Gupta efficiency
KGE =

√
[r− 1]2 + [α− 1]2 + [β− 1]2

r =
cou(Ŷ,Y)

σ(Ŷ)·σ(Y)
, α =

σ(Ŷ)
σ(Y) , β = Ŷ

Y

This metric assesses model efficiency by considering accuracy,
precision, and consistency components. It incorporates the
correlation coefficient (r), bias (α), and variance ratios (β)
between predicted and observed values, with σ representing the
standard deviation.

Akaike information criterion AIC = −2log
(

L
(

θM̂L
∣∣∣Y))+ 2i

This measure evaluates model performance while considering
model complexity. It utilizes the vector of maximum likelihood
estimates of the model parameters (θM̂L) and the number of
observed values (i).

Probabilistic Metric Description

Continuous ranked probability score CRPS =
∫ +∞
−∞

[
P
(
Ŷi
)
− H

(
Ŷi −Yi

)]2
dŶi

This metric quantifies the quadratic difference between the
forecasted and empirical cumulative distribution functions
(CDF). It involves the prediction CDF (P

(
Ŷi
)
) and the Heaviside

step function (H), which equals 0 if the forecasted value (Ŷi) is
less than the observed value (Yi), and 1 otherwise.

Average width of the prediction intervals AWPI = 1
n

n
∑

i=1

(
Ŷi

u − Ŷi
l
) This is an estimation of an interval, with a specified confidence

level, within which a future observation is expected to fall based
on prior observations. The upper and lower bounds of the 95%
prediction interval are denoted by u and l, respectively.

Prediction interval coverage
PICP = 1

n

n
∑

i=1
ci , ci =

1, i f Yiε
[
Ŷi

l
, Ŷi

υ
]

0, i f Yi@
[
Ŷi

l
, Ŷi

υ
] The proportion of instances in a holdout set for which the

prediction interval successfully captures the actual value.

Prediction interval normalized average width PINAW = 1
n

n
∑

i=1

Ŷi
υ−Ŷi

l

R

This metric quantifies the width or extent of the prediction
interval. The range of variation of the observed value (R) is used
to determine the width of the interval.

In order to arrive at the set of articles within the intersection of ML methodologies and
water management in general, we integrated the two search terms into one. To cast a wider
net and ensure minimal articles were systematically filtered out from the search, the most
prominent keywords were generated in the “water resource” keyword search, as discussed
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in Section 3 later on in a separate bibliometric discussion. The vast majority of records were
removed before screening. Specifically, 5523 records were duplicates, 4993 records were
marked as ineligible by automation tools, and 4527 records were removed for other reasons.
From the remaining 2069 records, 768 were excluded, creating 1301 reports which were
sought for retrieval.

However, out of the legitimate reports, 784 were not able to be retrieved, resulting
in 517 reports which were assessed for eligibility. From the number of the 517 elements,
(a) 257 articles were not accessible due to restricted access rules to the journal sites, (b) 75 ar-
ticles presented methodological incompatibility, and (c) 60 articles were off-topic findings,
leaving, finally, a number of 125 articles that were included in this study, with 85 of them
being actual reports of the included studies. The following PRISMA diagram (Figure 2)
depicts our findings.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 27 of 50 
 

 
Figure 2. PRISMA analysis flowchart for the bibliometrics of the “machine learning methodologies”. 

3. Using ML for Water Activities 
From the late twentieth century to the present day, the rate of land use and land cover 

change (LULC) has been steadily increasing, primarily driven by uncontrolled population 
growth and economic and industrial development, especially in developing countries 
[210]. Desirable quality and quantity of water resources are essential for human survival 
and sustainable development. With a continuous increase in population, the demand for 
water is rising in tandem. ML plays a crucial role in managing, interpreting, and analyzing 
water resources. ML can predict water quality, map groundwater contaminants, classify 
water resources, detect contaminant sources, assess contaminant toxicity in natural water 
systems, model treatment techniques, aid in characterization analysis, facilitate drinking 
water purification and distribution, and assist in wastewater collection and treatment in 
engineered water systems [211]. Determining and managing water quality are crucial for 
human wellbeing, but challenges arise from human errors. ML applications have become 
important in facilitating these processes, as demonstrated by successful integration into 
public systems and detailed investigations on shared datasets in water research [212]. Wa-
ter resources management planning emphasizes the importance of careful planning and 
forecasting hydrological parameters like rainfall, runoff, solar radiation, groundwater, 
and evaporation for effective water resource management [213]. 

Mapping of the area of interest is carried out by applying remote sensing [214]. 
Through remote sensing, crop disaster monitoring, urban planning, and water resource 

Figure 2. PRISMA analysis flowchart for the bibliometrics of the “machine learning methodologies”.

3. Using ML for Water Activities

From the late twentieth century to the present day, the rate of land use and land cover
change (LULC) has been steadily increasing, primarily driven by uncontrolled population
growth and economic and industrial development, especially in developing countries [210].
Desirable quality and quantity of water resources are essential for human survival and
sustainable development. With a continuous increase in population, the demand for water
is rising in tandem. ML plays a crucial role in managing, interpreting, and analyzing
water resources. ML can predict water quality, map groundwater contaminants, classify
water resources, detect contaminant sources, assess contaminant toxicity in natural water
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systems, model treatment techniques, aid in characterization analysis, facilitate drinking
water purification and distribution, and assist in wastewater collection and treatment in
engineered water systems [211]. Determining and managing water quality are crucial for
human wellbeing, but challenges arise from human errors. ML applications have become
important in facilitating these processes, as demonstrated by successful integration into
public systems and detailed investigations on shared datasets in water research [212].
Water resources management planning emphasizes the importance of careful planning and
forecasting hydrological parameters like rainfall, runoff, solar radiation, groundwater, and
evaporation for effective water resource management [213].

Mapping of the area of interest is carried out by applying remote sensing [214].
Through remote sensing, crop disaster monitoring, urban planning, and water resource
management can be achieved. The creation of a thematic map from the satellite images
of the area is achieved by image classification. In order to perform water detection from
satellite images, software must be developed that uses multiple spectral bands to enable
parallel image classification using supervised or unsupervised learning. The information
obtained from the analysis can be used in protected natural areas to monitor water behavior
over time [214]. High-resolution remote sensing techniques, also through big data and
ML technologies, have the potential to impact many aspects of environmental and water
management (EWM). Based on these, weather forecasting, disaster management, and the
creation of smart water and energy management systems can be achieved. ML, like DL,
tries to simplify as much as possible the difficulty of interpreting big data, due to the
huge amount of information, by developing powerful algorithms and thereby extracting
hierarchical features from the data [215]. Algorithms such as random forest (RF), sup-
port vector machine (SVM), artificial neural network (ANN), fuzzy adaptive supervised
coordination theory and predictive mapping (fuzzy ARTMAP), spectral angle mapper
(SAM), and Mahalanobis distance (MD) are capable of evaluating the accuracy through
the use of kappa coefficient, RoC, and root mean square error (RMSE) [210]. Exploration
of the potential applications of big data in the field of water resource engineering is the
central focus. This inquiry encompasses an in-depth analysis of the merits and demerits
associated with the utilization of big data techniques. Additionally, a succinct overview of
the pertinent literature and empirical case studies is provided. Ultimately, it is postulated
that the adoption of big data methodologies has the capacity to significantly enhance the
precision and effectiveness of engineering solutions within the domain of water resources.
The proposal of implementing a platform-based big data system for sharing critical data
is highlighted, enabling the production of high-value and reliable information through
the rapid processing of large and diverse datasets. The work underscores the necessity of
establishing standard operating procedures to preclude and address computational errors
and malfunctions inherent in big data applications [216].

Water has a direct relationship with energy and food. Modeling and analysis of the
energy, water, and food (EWF) relationship is performed with static, deterministic models
that facilitate decision making for well-behaved and predictable resource systems over
time. These frameworks, however, are partially limited in their functionality since they
do not take into account the exposure of systems to the dynamic nature of exogenous
uncertainties and associated risks at the interface. Through reinforcement learning based
on sequential decision making called Markov decision process (MDP), design and control
can be applied that could help achieve adaptive systems under unstable conditions with
the aim of maximizing economic output and improving their operational resilience [217].

Another crucial aspect to address is data control. The collected data may sometimes be
incomplete or noisy, resulting in missing features. Therefore, additional data samples are
required to extract useful supervised or unsupervised classification methods. This issue can
be addressed by decomposing the signal to compute missing features (data augmentation),
classifying noisy samples, and artificially generating new data samples (data augmenta-
tion). ML plays a vital role in applications such as brain–computer interfaces, epileptic
classification of intracranial electroencephalographic signals, face recognition/verification,



Appl. Sci. 2023, 13, 12147 24 of 44

and water network data analysis [218]. In terms of the urban sector, the use of hot water
in homes plays a dominant role in people’s lives, especially in winter periods. In recent
years, renewable energy sources, such as wind and photovoltaic generation, have been
increasingly applied, which has led to some problems in power systems, such as the duck
curve and unreliability due to environmental variability [219]. An effective solution to this
problem is demand response (DR). Learning hot water usage behavior allows water heating
systems to continuously adapt to stochastic demand and reduce energy consumption.
Electric water heaters (EWHs) are considered ideal candidates for DR due to their ability
to store energy. Through ML, several objectives can be achieved, such as the following:
1. To determine the state of the art for energy optimization and scheduling of EWHs by
creating smart grids and smart buildings; 2. To be able to predict the stochastic behavior of
domestic hot water (DHW) demand and explore the potential energy use reduction by an
adaptive system–smart dynamic simulation system for hot water use. ML models, such
as random forest, multilayer perceptron, long short-term memory neural network, and
LASSO regression, can be used in both classification and regression [220].

Another problem that households have to face is frequent attacks on water supply
facilities, because this way, water distribution systems (WDSs) are deregulated [221]. To
address this problem, it is proposed that in addition to traditional solutions such as data
encryption and authentication, it is proposed to detect attacks on WDSs to reduce the cases
of disruption. The attack detection system should meet two critical requirements: high
accuracy and near-real-time detection. To achieve these two requirements, we can use self-
predictive and unsupervised algorithms for attack detection in the cyberphysical domain
(CP). For high accuracy, heuristic adaptive self-predictive algorithms are applied for near-
real-time decision making and detection sensitivity. Unsupervised algorithms attempt to
detect the attacks to maintain high detection accuracy as much as possible using isolation
forest [221]. Based on the problems mentioned above, the World Health Organization has
taken actions on water safety plans (WSPs), which involve holistic assessment and risk
assessment. For proper water management and water quality, drinking water suppliers
should also take the income of the residents into consideration. Many countries and regions
lack case studies, legal requirements, and educational resources for WSPs, corresponding
to widespread capacity deficiencies in the water sector. For this reason, a taxonomy of WSP
training through ML is proposed [222]. Renewable energy sources have the potential to be
converted into different types of energy. For example, solar energy can be converted into
chemical energy in addition to thermal energy with the help of ML. ML contributes to the
acquisition of detailed scientific knowledge about the underlying principles governing light-
harvesting phenomena and can accelerate the fabrication of light-harvesting devices [223].
Supervisory control and data acquisition (SCADA) systems play an important role in
providing remote access, monitoring, and control of critical infrastructure (CI), including
power systems, water distribution systems, nuclear power plants, etc. The increasing
interconnectivity, standardization of communication protocols, and remote accessibility
of modern SCADA systems have massively contributed to the exposure of SCADA and
CS systems to various forms of security. Any form of intrusive action on SCADA units
and communication networks can create catastrophic consequences for nations due to their
strategic importance to CS operations.

Therefore, prompt and effective detection and classification of intrusions in SCADA
systems hold great importance for the operational stability of national CSs. Through su-
pervised learning techniques, intrusion solutions for SCADA can be found [224]. The
challenges facing agriculture are multifaceted and multifactorial. Mainly, problems arise
in crops due to the unpredictable nature of climate change, water, and pests [225]. To
be able to maximize crop yields, appropriate assessments of microclimate parameters
need to be implemented at the commercial scale for indoor and emission-free farming.
This is achieved using Internet of Things (IoT)-based sensors. To select the appropriate
model for microclimate parameter assessment using IoT sensors, a comparison is made
between greenhouse crop production systems as well as the outdoor environment. With
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this analysis, a better environment for cultivation can be achieved and, thus, productivity
can be increased. The supervised learning algorithm offers self-adjusting reference inputs
based on the selected crop. Solar radiation, water vapor pressure deficit, relative humidity,
temperature, and soil fertility are the raw data processed using the appropriate model.
Also, various growth stages such as light conditions and timeframes are considered to
determine the reference limits for categorizing the variation in each parameter. The mi-
croclimate parameters can be dynamically estimated using the Simulink model and IoT
sensor nodes [225]. The models used for crop improvement, yield prediction, crop disease
analysis, and water stress detection are random forest (RF), which is a supervised ML
algorithm [226], decision trees, support vector machines, Bayesian networks, and artificial
neural networks. These methods enable the analysis of soil, climate, and water regime,
which are significantly involved in crop development and precision agriculture [227].

In water treatment, AI techniques like ANN, DNN, gradient boosting, and random
forest regression have been used. Multivariate LSTM models generate valuable data, and
data preprocessing methods like interpolation and anomaly detection are explored. The
random forest regression algorithm excels, accurately predicting MIW parameters like Fe
and acidity over 60 days. This underscores AI’s role in optimizing water treatment and the
need for rigorous statistical analysis in model development [228].

The prediction of removal of different types of water pollutants is also carried out
using ML algorithms. The combination of different ML techniques such as multilayer
perceptron, artificial neural network (MLPANN), least square support vector machine
(LS-SVM) method and feedforward backpropagation neural network (FFBPANN) were
most effective for analyzing water quality and predicting the performance of different
water treatment processes. Therefore, hybrid ML models are more suitable for interpreting
and addressing these challenges [229]. Moreover, it is equally vital to comprehend the
trends in both quantity and quality of produced water (PW) within the oil and gas industry
for effective management. A recent study delved into this by analyzing historical data from
the New Mexico portion of the Permian Basin. ML algorithms were employed, with the ran-
dom forest regression model demonstrating remarkable accuracy in predicting PW quantity.
Additionally, the autoregressive integrated moving average model yielded satisfactory re-
sults in forecasting PW volume as a time series. The examination of water quality revealed
intriguing insights; PW samples from the Delaware and Artesia Formations exhibited the
highest and lowest average total dissolved solids concentrations, measuring 194,535 mg/L
and 100,036 mg/L, respectively [230]. Furthermore, a comprehensive assessment of AI
techniques applied in river streamflow forecasting revealed a dual-wave evolution. These
AI models have made substantial strides in augmenting the accuracy of streamflow predic-
tions, albeit with challenges such as overfitting and prolonged learning. The subsequent
wave introduces innovative hybrid models and ensemble techniques, promising enhanced
data processing efficiency and suggesting prospective research directions [231].

ML-based forecasting models have shown promise in assisting reservoir operators
with releasing water during heavy rainstorms and conserving water during drought sea-
sons. The evaluation of various models using performance metrics such as mean absolute
error and R-square suggests that VARMAX performs best, indicating a seasonal compo-
nent in the dataset, while ARIMA struggles to produce satisfactory results in the presence
of a seasonal component. The MAE and RMSE values of both models support this ar-
gument [232]. Additionally, a study found that various machine learning models, such
as Boosted Decision Tree Regression (BDTR) and Bayesian Linear Regression (BLR), per-
formed well in predicting water levels, offering potential benefits for reservoir management.
Further research should consider additional input parameters, including climate-induced
rainfall changes [233].

For water resource management, power generation, and drought prevention, the
accurate forecasting of water levels in reservoirs is of great importance. Hybrid meta-
heuristic algorithms, including ANN, ANFIS, BA, COA, and SVM, have been employed
to identify factors and challenges in water level prediction from 2000 to 2020 [234]. To
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improve water management planning in drought-prone regions like the American West, the
results show that RF provides the most accurate results and reduces modeling run times,
enabling exploration of future climate changes and drought conditions [235]. Forecasting
water levels is a critical task in disaster prevention, and while physically based models
have historically been effective but computationally expensive, data-driven models like
statistical ML methods and the ARIMA model offer cost-effective solutions with improved
performance [236].

Recent advancements in ML algorithms have significantly enhanced the ability to
forecast the complex and dynamic process of lake water level fluctuations, which are
challenging to predict accurately due to their nonlinear and stochastic nature [237]. In a
related context, a real-time data analysis platform uses ML to predict water consumption.
It employs a web-oriented architecture for better management and monitoring of water
usage. The platform collects data, handles uneven time series, and employs learning ca-
pabilities for analysis and forecasting. Rigorous data checks and advanced methods like
long short-term memory and backpropagation neural network ensure accurate predictions
of water consumption levels and timings, even without prior knowledge [238]. The rapid
proliferation of ML and data management has led to the expansion of ML applications
across various engineering disciplines. This expansion is driven by the recognition of
the world’s water supply’s growing significance in this century. As a result, extensive
research has focused on applying ML strategies to integrated water resources manage-
ment (WRM) [239]. A substantial amount of clean water is lost worldwide due to leaks,
but smart water networks can decrease this wastage by reducing water production and
purchase, as well as the energy needed for distribution and treatment, as exemplified by a
leak management project in the UK that employs advanced metering infrastructure and
innovative instruments for precise monitoring and data analysis using the AURA-Alert
anomaly detection system [240].

In the field of water supply network optimization and management, accurate fore-
casting of water demand in urban areas is of great importance, especially in the context of
Milan, Italy. The study evaluates several forecasting models for short- and long-term water
demand forecasting in urban areas and investigates the potential enhancement achieved
by incorporating a wavelet data-driven forecasting framework (WDDFF). The findings
reveal that, overall, the incorporation of WDDFF improves the predictive ability of the
models. The LSTM wavelet decomposition technique combined with the LSTM technique
shows high accuracy, with an R2 value exceeding 0.9 for short- and long-term urban water
demand forecasts. In addition, the LightGBM model effectively reduces predictors and
demonstrates the ability to predict and identify critical features in the field of hydrology
and water resources [241].

In a multitude of studies, ML has proven to be invaluable in addressing diverse
challenges in water resource management:

3.1. Water Resource Management and Quality Prediction
3.1.1. Water Resource Management Techniques

– Irrigation optimization [242]: XGBoost is harnessed to optimize irrigation scheduling,
particularly in regions like Morocco, aiding in efficient water usage for crop cultivation.

– Urban groundwater quality [243]: Leveraging least squares support vector machines
(LS-SVM), this study focused on enhancing the quality of urban groundwater. It effec-
tively monitored and predicted groundwater quality, particularly in areas vulnerable
to contamination due to urbanization.

– Water level forecasting [244]: Multiple ML models, including multilayer perceptrons
(MLP), long short-term memory (LSTM), and XGBoost, were employed for accurate
water level forecasting. These models contributed significantly to flood warning
systems and freshwater resource management.
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– Superiority of MLP [245]: Among the models used for water level prediction, MLP
emerged as the standout performer. It exhibited a high degree of accuracy, especially
in capturing short-term dependencies.

3.1.2. Flood Forecasting and Hydrological Models

– Flood forecasting with TVF-EMD [246]: A hybrid approach combining time-varying
filtering with empirical mode decomposition (TVF-EMD) and ML techniques was
employed for flood forecasting. This approach excelled in handling nonstationary
time series data.

– Mekong River water levels [247]: Support vector regression (SVR) was applied to
predict water levels in the Mekong River. SVR achieved a satisfactory mean absolute
error, meeting stringent requirements for flood forecasting by the Mekong River Com-
mission.

3.1.3. Water Demand Prediction and Climate Adaptation

– Precise water demand predictions [248]: Advanced ML techniques were utilized for
accurate predictions of water demand in urban areas. These models underscored the
significance of temporal dynamics in water usage patterns.

– Vapor pressure deficit in Egypt [249]: ML algorithms, including random forest (RF),
were used to predict vapor pressure deficit (VPD) in different regions of Egypt. RF
emerged as the top-performing model, supporting climate adaptation efforts.

3.2. Water Quality and Streamflow Management
3.2.1. ML Applications in Water Resource Management

– Streamflow and water quality management [250]: A novel approach was introduced
for water resource management, addressing the nonlinearity and uncertainty of stream-
flow. The proposed hybrid model effectively predicted water quality and quantity,
offering improved accuracy in capturing nonlinear characteristics.

– Enhanced streamflow forecasting [251]: With LSTM and metaheuristic optimiza-
tion, we can improve streamflow forecasting. The results demonstrated significant
enhancements in model performance, with the potential to support more effective
flood management.

– Smart farming in India [252]: India’s smart farming endeavors employed the Internet
of Things (IoT) and ML classifiers, particularly the binary support vector machine
(SVM). These technologies assisted farmers in optimizing crop irrigation, enhanc-
ing sustainability.

– Urban water demand forecasting [253]: Adaptive urban water demand forecasting
was proposed, utilizing ML models to cater to changing consumption patterns and
improving water resource management.

– Cybersecurity in water infrastructure [254]: Combining ML with operational metrics,
this study enhanced cybersecurity measures in critical water infrastructure, addressing
the increasing risk of cyberattacks in modernized water plants.

3.2.2. Water Management and Predictions

– Water management simulations [255]: Rule-based reservoir management models
(RMM) were augmented with ML, specifically long short-term memory (LSTM), for
reservoir simulations. These hybrid models improved accuracy and forecasting in
large-scale water management.

– ML in inland water science [256]: This chapter explored the integration of ML with
limnological knowledge, enhancing the accuracy and interpretability of models in
inland water science, particularly in predicting water quality and quantity.

– Waste separation for a circular economy [257]: To combat environmental pollution,
this study proposed waste separation techniques involving sensor-equipped con-
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veyor belts. This approach contributed to recycling and organic manure production,
promoting a circular economy.

– Water demand prediction in Brazil [258]: A novel hybrid model, combining support
vector regression (SVR) and artificial neural networks (ANNs), excelled in predicting
water demand for reservoirs supplying the Metropolitan Region of Salvador, Brazil.
This advancement enhanced water resource management.

3.2.3. Advanced Predictive Models and Data Analysis

– Water demand forecasting in urban areas [259]: Hybrid models (WBANN and
WANN) were developed for weekly and monthly water demand forecasting in urban
areas with limited data. These models were more accurate, with improved reliability
through wavelet analysis and bootstrap techniques.

– Surface water electrical conductivity prediction [260]: This study investigated sur-
face water electrical conductivity (EC) prediction in the Upper Ganga basin. The
random forest (RF) model outperformed others, showing improved accuracy and
high correlation.

– Data-centric water demand prediction [261]: This study analyzed the impact of
training data length, temporal resolution, and data uncertainty on water demand
prediction. It was found that random forest (RF) and neural network (NN) models
outperformed others, offering accurate short-term water demand forecasts.

– Daily reservoir inflow prediction [262]: This study explored daily reservoir inflow
prediction using deep learning (LSTM) and ML (BRT) algorithms. LSTM demonstrated
superior precision across various statistical measurements.

3.3. Advanced Techniques and Sustainability
3.3.1. Innovations in Water Resource Management and Forecasting

– Optimizing agricultural irrigation [263]: This study discussed the use of innovative
technologies like UAVs, ML, and IoT to optimize irrigation in agriculture, improving
water status monitoring and prediction.

– Deep learning for agricultural water management [264]: This study proposed a
novel method using deep learning for feature extraction and classification in agricul-
tural water management, achieving high accuracy and performance metrics.

– Urban water demand forecasting with limited data [265]: This study evaluated the
effectiveness of extreme learning machine (ELM) models for daily urban water de-
mand forecasting. The ELMW model achieved high accuracy, particularly in predict-
ing peak demand.

– Water demand forecasting in Kuwait [266]: This study compared water demand
forecasting methods in Kuwait, showing differences in accuracy between ARIMA and
support vector linear regression models compared to actual consumption.

3.3.2. Advancements in Water Management and Quality Assessment

– Intelligent water management system [267]: This study proposed an intelligent sys-
tem for optimizing water collection and distribution, including water consumption
prediction, without specific performance metrics.

– Water quality index prediction [268]: This study developed water quality index
(WQI) prediction models using water samples from North Pakistan. Hybrid algo-
rithms showed superior performance with high accuracy and low error metrics.

– Dynamic time scan forecasting (DTSF) [269]: This study introduced the DTSF method
for water demand forecasting in urban supply systems, demonstrating comparable or
better predictions with fewer computational resources.
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3.3.3. Role of Artificial Intelligence and Deep Learning in Water Research

– Deep learning in water sector research [270]: This study reviewed deep learning
methods in the water sector for various tasks, serving as a roadmap for future chal-
lenges in water resources management.

– Factors affecting nonrevenue water (NRW) [271]: This study classified factors affecting
NRW in water distribution networks, offering a systematic approach for management.

– AI in river water quality assessment [272]: This study reviewed the use of AI models
in river water quality assessment, highlighting the need for handling missing data
and implementing early warning systems.

3.4. Reservoir and River Quality Management
3.4.1. Innovations in Water Resource Management and Quality

– Reservoir operation optimization [273]: This study presented a classification system for
organizing literature on reservoir operation optimization, providing practical recommen-
dations.

– Soft computing for water quality index (WQI) [274]: This study developed a WQI using
soft computing techniques, with ANFIS demonstrating reliability for WQI prediction.

– Groundwater quality assessment in Sri Lanka [275]: This study assessed the quality of
groundwater for irrigation in Sri Lanka’s tank cascade system, suggesting suitable areas.

– Combatting reservoir sedimentation [276]: This study categorized strategies for com-
bating reservoir sedimentation, offering a checklist for evaluating sediment manage-
ment options.

– Underground water level prediction [277]: This study utilized a hybrid model to
predict underground water levels in Khuzestan province, achieving high accuracy in
water resource modeling.

– River water quality modeling [278]: This study utilized AI models to predict river
water quality index (WQI) based on water quality variables. H2O deep learning and
random forest models were effective, especially for small catchments.

– Superabsorbent hydrogel (SH) [279]: This study explored the application of super-
absorbent hydrogel (SH) in agriculture and slow-release fertilizers and discussed
nutrient release mechanisms, highlighting the potential for sustainable agriculture.

– Urbanization and groundwater quality [280]: This study examined the impact of
urbanization and land use on groundwater quality in Xi’an City, China, supporting
sustainable urban development and groundwater management in Xi’an City.

– Leakage detection [281]: This study focused on efficient leakage detection in wa-
ter distribution systems and emphasized the importance of enhancing operational
efficiency and minimizing water losses.

– ML in water systems [282]: This study explored the application of ML in natural and
engineered water systems and discussed the advantages and disadvantages of various
ML algorithms for water-related issues.

– Groundwater nitrate contamination [283]: This study utilized ML techniques to pre-
dict nitrate concentrations in Mexico’s groundwater and identified pollution hotspots
and health concerns, emphasizing the need for sustainable agricultural practices.

– Smart water management [284]: This study discussed how smart water meters and
data analytics improve urban water system design and highlighted enhanced efficiency
throughout the water cycle.

– River water quality prediction [285]: This study developed ML models to predict
river water quality and classify index values and achieved efficient prediction and
classification of water quality index values.

– Flow-regime-dependent streamflow prediction [286]: This study proposed a flow-
regime-dependent approach using various techniques to improve streamflow predic-
tion, enhancing streamflow prediction for water resources management and planning.
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– Water use and management indicators [287]: This study evaluated water use and
management indicators based on sustainability criteria and identified indicators meet-
ing sustainability criteria for informed decision making.

3.4.2. Factors Influencing Water Consumption and Water Quality

– Household water consumption [288]: This study proposed a framework for review-
ing and analyzing the literature on determinants of household water consumption,
aiding in prioritizing determinants for future research and practical recommendations.

– Sürgü Stream water quality [289]: This study evaluated the water quality of the Sürgü
Stream in Turkey, assessed its impact on soil and crop performance, and provided
insights into water quality index and suitability classes for irrigation.

– Groundwater monitoring with ML [290]: This study reviewed ML algorithms for
groundwater monitoring and highlighted the effectiveness of ML in monitoring
groundwater characteristics.

– Water consumption in Qatar [291]: This study analyzed factors affecting water con-
sumption in Qatar and identified temperature and population density as key influ-
ences on water consumption.

– Environmentally friendly toilets [292]: This study developed a novel mechanism to
reduce water consumption in toilets, aiming to make flushing more environmentally
friendly, potentially conserving global water and energy.

– Predicting water connection leaks [293]: This study used ML to predict water con-
nection vulnerability to ruptures and leaks. Models showed potential for effective
distribution network management.

– Corporate water management practices [294]: This study examined the impact of
macro factors on corporate water management practices, and identified factors driving
water management practices for leading, average, and laggard companies.

– Water quality parameter modeling [295]: This study modeled water quality parame-
ters in a river basin using regression models and provided water quality distribution
maps based on watershed features.

– Factors influencing domestic water consumption [296]: This study analyzed factors
influencing domestic water consumption in Joinville, Brazil. Socioeconomic and
building characteristics play a significant role in water consumption.

– Groundwater dynamics and prediction [297]: This study used ML recharge. Rainfall
was identified as a key influencing factor for groundwater recharge.

– Energy-efficient underwater sensor networks [298]: This study proposed an energy-
efficient approach for underwater wireless sensor networks, utilizing clustering and
routing techniques for efficient energy usage.

– Groundwater management in arid regions [299]: This study assessed groundwater
management in Kebili’s complex terminal aquifer and provided suitability classes for
irrigation based on groundwater quality.

– Model-independent leak detection [300]: This study introduced a model-independent
approach for placing pressure sensors in water distribution networks. It utilized ge-
netic algorithms for leak detection without a hydraulic model.

– Variable-rate irrigation (VRI) [301]: This study explored the development of variable-
rate irrigation (VRI) technologies for precision water management in agriculture. It
highlighted the need for further research and practical support information.

– Groundwater quality in Ojoto [302]: This study assessed the quality of drinking
groundwater in Ojoto, Nigeria, using pollution and ecological risk indices. It identified
areas with contaminated water and suitability for drinking.

These clusters group the bullets based on their shared themes and topics, providing a
more organized overview of the content.
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3.5. Bibliometric Analysis and Search Method for Water Management

In this bibliometric study, the initial search for the keyword “Water Management” (uti-
lizing title, abstract, and keyword fields) yielded a total of 4173 results. We did not impose
any specific time restrictions during the searches as we recognized that older methods con-
tinue to hold relevance in the field, as we did previously with the bibliometric analysis of
the ML methodologies. While conducting the analysis, we observed that keywords such as
“Water Management”, “Groundwater”, “Reservoir”, “Water Quality”, “Irrigation”, “Water
Demand Forecasting”, and others were prominent. However, certain terms like “river” and
“evaporation” were less frequently encountered in the top keywords, even though they are
equally important in the wider field of water management. Moreover, when focusing solely
on methodology-related keywords, terms like “water resource assessment”, “efficiency
analysis”, and “management models” were more prevalent compared to the others.

A significant number of records was excluded prior to the screening process. To be
specific, 1523 records were identified as duplicates, 703 records were flagged as ineligible
by automated tools, and 505 records were removed for various reasons. This initial culling
left us with 1442 records that were further evaluated, and 627 were subsequently excluded,
resulting in 815 reports that were sought for retrieval.

However, from the pool of legitimate reports, 494 could not be retrieved, leaving us
with 319 reports to assess for eligibility. Among these 319 elements, (a) 37 articles were
found to be irrelevant to the field of water management, (b) 58 articles contained outdated
information, (c) 35 articles were not peer-reviewed, and (d) 15 articles were hindered by
language barriers.

This process ultimately led to the inclusion of 174 articles in our study, with 106 of
them representing the actual reports of the included studies. Our findings are depicted in
the PRISMA diagram (Figure 3).
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4. Conclusions

This paper is a first exploration of the significant influence of ML methods in the field
of the water management aiming to facilitate the monitoring, analysis, and optimization of
water resources use. In a world grappling with escalating water scarcity and increasing
demand, the convergence of technological innovation and scientific knowledge offers
a glimmer of hope. The utilization of ML has revolutionized the landscape of water
resource management. From predicting water quality and detecting pollutants to mapping
underground aquifers and monitoring distribution systems, these tools shape a more
sustainable future for water. Furthermore, the fusion of supervised and unsupervised
algorithms, supported by the analytical prowess of deep learning, propels us towards
intelligent decision making. Although there are many advantages of such an extensive
survey, there are also disadvantages/limitations which are associated with this review.

In terms of advantages, this work consolidates information from various sources,
highlighting trends, practices, and emerging techniques in water management using ML
methodologies. It provides a knowledge synthesis, identifying gaps and issues for further
investigation. It also intensifies interdisciplinary insights and approaches, serving as
an educational resource for students, researchers, and practitioners interested in ML’s
application in water management. This foundational understanding makes it easier for
newcomers to enter the field. Moreover, in our comprehensive exploration, we meticulously
constructed tables that establish vital connections between diverse water management
methodologies (distinct classification, regression, and other techniques). These tables offer
invaluable insights into the practical applications of these methodologies and provide
supporting references for verification, fostering a deeper understanding of the intricate
field of water management. Overall, this extensive research covers the latest advancements
in ML in connection to water management, aiming to maintain relevance despite potential
outdatedness, balancing depth of analysis with breadth of coverage.

ML methodologies offer promising solutions in water management, but they face
challenges such as data quality and quantity, interpretability and explainability, gener-
alization, and integration with domain knowledge. Incomplete or inaccurate data can
lead to unreliable predictions, affecting decision making in water management. Deep
learning models are often considered “black boxes”, making understanding the reasoning
behind model decisions crucial. Generalization is also a challenge, as ML models need
to be able to make accurate predictions in new scenarios. Finally, integrating ML with
domain-specific knowledge is essential for effectively addressing real-world water manage-
ment problems. Addressing these limitations is vital to harness the full potential of ML in
water management.

Future research directions in ML in water resource management include the develop-
ment of hybrid ML models that combine various algorithms to improve water resource
management predictions. The goal is to enhance the interpretability of ML models for
transparency and understanding for stakeholders. The research can be applied to integrated
water–energy management, urban water systems resilience, data and sensor integration,
data privacy and security solutions, cost-effective AI solutions, stakeholder education and
engagement, sustainable water resource governance, and climate change adaptation. Hy-
brid ML models can improve the accuracy and robustness of water resource management
predictions. Explainable AI in water management can enhance the decision-making process
for stakeholders. Advanced data fusion techniques can improve real-time monitoring and
decision making in water resource management. Data privacy and security solutions can
be addressed by researching ML-based methods for securing sensitive data while ensuring
accessibility for authorized stakeholders. Future research should also explore sustainable
water resource governance models and climate change adaptation strategies.

As the field evolves, researchers and practitioners must actively work to overcome
these challenges and make ML methods more effective and applicable in real-world water
resource management scenarios. The continuous pursuit of efficient water use through
interdisciplinary approaches underscores our commitment to preserve this irreplaceable
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resource for future generations. In subsequent work, we will focus on a comprehensive
review of studies related to water management that have already been implemented,
exploring potential enhancements aimed at better adaptation to our study area.
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245. Sattar, A.M.A.; Ertuğrul, F.; Gharabaghi, B.; McBean, E.A.; Cao, J. Extreme learning machine model for water network management.
Neural Comput. Appl. 2017, 31, 157–169. [CrossRef]

246. Jamei, M.; Ali, M.; Malik, A.; Prasad, R.; Abdulla, S.; Yaseen, Z.M. Forecasting Daily Flood Water Level Using Hybrid Advanced
Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach. Water Resour. Manag. 2022, 36,
4637–4676. [CrossRef]

247. Nguyen, T.-T.; Huu, Q.N.; Li, M.J. Forecasting Time Series Water Levels on Mekong River Using Machine Learning Models. In
Proceedings of the 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City,
Vietnam, 8–10 October 2015; pp. 292–297. [CrossRef]

248. Duerr, I.; Merrill, H.R.; Wang, C.; Bai, R.; Boyer, M.; Dukes, M.D.; Bliznyuk, N. Forecasting urban household water demand with
statistical and machine learning methods using large space-time data: A Comparative study. Environ. Model. Softw. 2018, 102,
29–38. [CrossRef]

249. Elbeltagi, A.; Srivastava, A.; Deng, J.; Li, Z.; Raza, A.; Khadke, L.; Yu, Z.; El-Rawy, M. Forecasting vapor pressure deficit for
agricultural water management using machine learning in semi-arid environments. Agric. Water Manag. 2023, 283, 108302.
[CrossRef]

250. Panahi, J.; Mastouri, R.; Shabanlou, S. Insights into enhanced machine learning techniques for surface water quantity and quality
prediction based on data pre-processing algorithms. J. Hydroinform. 2022, 24, 875–897. [CrossRef]

251. Tan, W.Y.; Lai, S.H.; Teo, F.Y.; Armaghani, D.J.; Pavitra, K.; El-Shafie, A. Three Steps towards Better Forecasting for Streamflow
Deep Learning. Appl. Sci. 2022, 12, 12567. [CrossRef]

252. Swetha, T.M.; Yogitha, T.; Hitha, M.K.S.; Syamanthika, P.; Poorna, S.S.; Anuraj, K. IOT Based Water Management System for Crops
Using Conventional Machine Learning Techniques. In Proceedings of the 2021 12th International Conference on Computing
Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–4.

253. Candelieri, A.; Soldi, D.; Archetti, F. Layered Machine Learning for Short-Term Water Demand Forecasting. Environ. Eng. Manag.
J. 2015, 14, 2061–2072. [CrossRef]

254. Neshenko, N.; Bou-Harb, E.; Furht, B.; Behara, R. Machine learning and user interface for cyber risk management of water
infrastructure. Risk Anal. 2023. [CrossRef]

255. Gangrade, S.; Lu, D.; Kao, S.; Painter, S.L. Machine Learning Assisted Reservoir Operation Model for Long-Term Water
Management Simulation. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 1592–1603. [CrossRef]

256. Appling, A.P.; Oliver, S.K.; Read, J.S.; Sadler, J.M.; Zwart, J. Machine Learning for Understanding Inland Water Quantity, Quality,
and Ecology. September 2022. Available online: https://eartharxiv.org/repository/view/3565/ (accessed on 2 October 2023).

257. Vinothkumar, U.; Suresh, S.; Sasireka, S.; Hariprabhu, M.; Nagarathna, P. Machine learning integrated with an Internet of
Things-based water management System. In Proceedings of the 2022 IEEE 2nd Mysore Sub Section International Conference
(MysuruCon), Mysuru, India, 16–17 October 2022; pp. 1–7.

258. Jesus, E.d.S.d.; Gomes, G.S.d.S. Machine learning models for forecasting water demand for the Metropolitan Region of Salvador,
Bahia. Neural Comput. Appl. 2023, 35, 19669–19683. [CrossRef]

259. Tiwari, M.K.; Adamowski, J.F. Medium-Term Urban Water Demand Forecasting with Limited Data Using an Ensemble Wavelet–
Bootstrap Machine-Learning Approach. J. Water Resour. Plan. Manag. 2015, 141. [CrossRef]

260. Kumar, D.; Singh, V.K.; Abed, S.A.; Tripathi, V.K.; Gupta, S.; Al-Ansari, N.; Vishwakarma, D.K.; Dewidar, A.Z.; Al Othman, A.A.;
Mattar, M.A. Multi-ahead electrical conductivity forecasting of surface water based on machine learning algorithms. Appl. Water
Sci. 2023, 13, 13. [CrossRef]

261. Liu, G.; Savic, D.; Fu, G. Short-term water demand forecasting using data-centric machine learning approaches. J. Hydroinform.
2023, 25, 895–911. [CrossRef]

262. Latif, S.D.; Ahmed, A.N. Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water
Supply Management. Water Resour. Manag. 2023, 37, 3227–3241. [CrossRef]

263. Ahansal, Y.; Bouziani, M.; Yaagoubi, R.; Sebari, I.; Sebari, K.; Kenny, L. Towards Smart Irrigation: A Literature Review on the Use
of Geospatial Technologies and Machine Learning in the Management of Water Resources in Arboriculture. Agronomy 2022, 12,
297. [CrossRef]

264. Lin, Y.-C.; Alorfi, A.S.; Hasanin, T.; Arumugam, M.; Alroobaea, R.; Alsafyani, M.; Alghamdi, W.Y. Water agricultural management
based on hydrology using machine learning techniques for feature extraction and classification. Acta Geophys. 2023, 1–11.
[CrossRef]

265. Tiwari, M.; Adamowski, J.; Adamowski, K. Water demand forecasting using extreme learning machines. J. Water Land Dev. 2016,
28, 37–52. [CrossRef]

266. Ibrahim, T.; Omar, Y.; Maghraby, F.A. Water Demand Forecasting Using Machine Learning and Time Series Algorithms. In
Proceedings of the 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 12–14
March 2020; pp. 325–329.

267. Sophia, S.G.G.; Sharmila, V.C.; Suchitra, S.; Muthu, T.S.; Pavithra, B. Water management using genetic algorithm-based machine
learning. Soft Comput. 2020, 24, 17153–17165. [CrossRef]

https://doi.org/10.1016/j.heliyon.2023.e17689
https://www.ncbi.nlm.nih.gov/pubmed/37456046
https://doi.org/10.1007/s00521-017-2987-7
https://doi.org/10.1007/s11269-022-03270-6
https://doi.org/10.1109/kse.2015.53
https://doi.org/10.1016/j.envsoft.2018.01.002
https://doi.org/10.1016/j.agwat.2023.108302
https://doi.org/10.2166/hydro.2022.022
https://doi.org/10.3390/app122412567
https://doi.org/10.30638/eemj.2015.221
https://doi.org/10.1111/risa.14209
https://doi.org/10.1111/1752-1688.13060
https://eartharxiv.org/repository/view/3565/
https://doi.org/10.1007/s00521-023-08842-0
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000454
https://doi.org/10.1007/s13201-023-02005-1
https://doi.org/10.2166/hydro.2023.163
https://doi.org/10.1007/s11269-023-03499-9
https://doi.org/10.3390/agronomy12020297
https://doi.org/10.1007/s11600-023-01082-9
https://doi.org/10.1515/jwld-2016-0004
https://doi.org/10.1007/s00500-020-05009-0


Appl. Sci. 2023, 13, 12147 43 of 44

268. Aslam, B.; Maqsoom, A.; Cheema, A.H.; Ullah, F.; Alharbi, A.; Imran, M. Water Quality Management Using Hybrid Machine
Learning and Data Mining Algorithms: An Indexing Approach. IEEE Access 2022, 10, 119692–119705. [CrossRef]

269. Groppo, G.d.d.S.; Costa, M.A.; Libânio, M. Predicting time-series for water demand in the big data environment using statistical
methods, machine learning and the novel analog methodology dynamic time scan forecasting. Water Supply 2023, 23, 624–644.
[CrossRef]

270. Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in
hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [CrossRef] [PubMed]

271. Jang, D. A Parameter Classification System for Nonrevenue Water Management in Water Distribution Networks. Adv. Civ. Eng.
2018, 2018, 3841979. [CrossRef]

272. Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J.
Hydrol. 2020, 585, 124670. [CrossRef]

273. Dobson, B.; Wagener, T.; Pianosi, F. An argument-driven classification and comparison of reservoir operation optimization
methods. Adv. Water Resour. 2019, 128, 74–86. [CrossRef]

274. Patil, D.; Kar, S.; Gupta, R. Classification and Prediction of Developed Water Quality Indexes Using Soft Computing Tools. Water
Conserv. Sci. Eng. 2023, 8, 16. [CrossRef]

275. Kumari, M.K.N.; Sakai, K.; Kimura, S.; Yuge, K.; Gunarathna, M.H.J.P. Classification of Groundwater Suitability for Irrigation in
the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy 2019, 9, 351. [CrossRef]

276. Morris, G.L. Classification of Management Alternatives to Combat Reservoir Sedimentation. Water 2020, 12, 861. [CrossRef]
277. Rahimi, M.; Ebrahimi, H. Data driven of underground water level using artificial intelligence hybrid algorithms. Sci. Rep. 2023,

13, 10359. [CrossRef]
278. Tiyasha; Tung, T.M.; Yaseen, Z.M. Deep Learning for Prediction of Water Quality Index Classification: Tropical Catchment

Environmental Assessment. Nat. Resour. Res. 2021, 30, 4235–4254. [CrossRef]
279. Liu, Y.; Wang, J.; Chen, H.; Cheng, D. Environmentally friendly hydrogel: A review of classification, preparation and application

in agriculture. Sci. Total. Environ. 2022, 846, 157303. [CrossRef] [PubMed]
280. He, S.; Li, P.; Wu, J.; Elumalai, V.; Adimalla, N. Groundwater quality under land use/land cover changes: A temporal study from

2005 to 2015 in Xi’an, Northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 2771–2797. [CrossRef]
281. Wan, X.; Kuhanestani, P.K.; Farmani, R.; Keedwell, E. Literature Review of Data Analytics for Leak Detection in Water Distribution

Networks: A Focus on Pressure and Flow Smart Sensors. J. Water Resour. Plan. Manag. 2022, 148, 03122002. [CrossRef]
282. Aivazidou, E.; Banias, G.; Lampridi, M.; Vasileiadis, G.; Anagnostis, A.; Papageorgiou, E.; Bochtis, D. Smart technologies for

sustainable water management: An urban analysis. Sustainability 2021, 13, 13940. [CrossRef]
283. Mahlknecht, J.; Torres-Martínez, J.A.; Kumar, M.; Mora, A.; Kaown, D.; Loge, F.J. Nitrate prediction in groundwater of data scarce

regions: The futuristic fresh-water management outlook. Sci. Total. Environ. 2023, 905, 166863. [CrossRef] [PubMed]
284. Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O.; Siriwardene, N. Re-engineering traditional urban water management practices

with smart metering and informatics. Environ. Model. Softw. 2018, 101, 256–267. [CrossRef]
285. Nair, J.P.; Vijaya, M.S. River Water Quality Prediction and index classification using Machine Learning. J. Phys. Conf. Ser. 2022,

2325, 012011. [CrossRef]
286. Chu, H.; Wei, J.; Wu, W. Streamflow prediction using LASSO-FCM-DBN approach based on hydro-meteorological condition

classification. J. Hydrol. 2019, 580, 124253. [CrossRef]
287. Pires, A.; Morato, J.; Peixoto, H.; Botero, V.; Zuluaga, L.; Figueroa, A. Sustainability Assessment of indicators for integrated water

resources management. Sci. Total Environ. 2017, 578, 139–147. [CrossRef]
288. Cominola, A.; Preiss, L.; Thyer, M.; Maier, H.R.; Prevos, P.; Stewart, R.A.; Castelletti, A. The determinants of household water

consumption: A review and assessment framework for research and practice. NPJ Clean Water 2023, 6, 11. [CrossRef]
289. Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected

by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [CrossRef] [PubMed]
290. Ahmadi, A.; Olyaei, M.; Heydari, Z.; Emami, M.; Zeynolabedin, A.; Ghomlaghi, A.; Daccache, A.; Fogg, G.E.; Sadegh, M.

Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water 2022, 14, 949. [CrossRef]
291. Alshaikhli, M.; Aqeel, S.; Valdeolmillos, N.; Fathima, F.; Choe, P. A Multi-Linear Regression Model to Predict the Factors Affecting

Water Consumption in Qatar. IOP Conf. Ser. Earth Environ. Sci. 2021, 691, 012004. [CrossRef]
292. Girish, A.; Selladurai, S.; Lolla, A.D.; Prasanth, A.S. A Novel Mechanism to Decrease Water Consumption in Commodes. In

Proceedings of the 2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE),
Pattaya City, Thailand, 26–28 October 2022; pp. 1–6.

293. Gouveia, C.G.N.; Soares, A.K. Water Connection Bursting and Leaks Prediction Using Machine Learning. In World Environmental
and Water Resources Congress 2021; ASCE: Reston, VI, USA, 2021; pp. 1000–1013.

294. Ortas, E.; Burritt, R.L.; Christ, K.L. The influence of macro factors on corporate water management: A multi-country quantile
regression approach. J. Clean. Prod. 2019, 226, 1013–1021. [CrossRef]

295. Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random
forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [CrossRef] [PubMed]

296. Grespan, A.; Garcia, J.; Brikalski, M.P.; Henning, E.; Kalbusch, A. Assessment of water consumption in households using statistical
analysis and regression trees. Sustain. Cities Soc. 2022, 87, 104186. [CrossRef]

https://doi.org/10.1109/ACCESS.2022.3221430
https://doi.org/10.2166/ws.2023.008
https://doi.org/10.2166/wst.2020.369
https://www.ncbi.nlm.nih.gov/pubmed/33341760
https://doi.org/10.1155/2018/3841979
https://doi.org/10.1016/j.jhydrol.2020.124670
https://doi.org/10.1016/j.advwatres.2019.04.012
https://doi.org/10.1007/s41101-023-00190-3
https://doi.org/10.3390/agronomy9070351
https://doi.org/10.3390/w12030861
https://doi.org/10.1038/s41598-023-35255-9
https://doi.org/10.1007/s11053-021-09922-5
https://doi.org/10.1016/j.scitotenv.2022.157303
https://www.ncbi.nlm.nih.gov/pubmed/35839887
https://doi.org/10.1080/10807039.2019.1684186
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001597
https://doi.org/10.3390/su132413940
https://doi.org/10.1016/j.scitotenv.2023.166863
https://www.ncbi.nlm.nih.gov/pubmed/37690767
https://doi.org/10.1016/j.envsoft.2017.12.015
https://doi.org/10.1088/1742-6596/2325/1/012011
https://doi.org/10.1016/j.jhydrol.2019.124253
https://doi.org/10.1016/j.scitotenv.2016.10.217
https://doi.org/10.1038/s41545-022-00208-8
https://doi.org/10.1016/j.envpol.2020.115417
https://www.ncbi.nlm.nih.gov/pubmed/32823067
https://doi.org/10.3390/w14060949
https://doi.org/10.1088/1755-1315/691/1/012004
https://doi.org/10.1016/j.jclepro.2019.04.165
https://doi.org/10.1016/j.envres.2021.111660
https://www.ncbi.nlm.nih.gov/pubmed/34265353
https://doi.org/10.1016/j.scs.2022.104186


Appl. Sci. 2023, 13, 12147 44 of 44

297. Huang, X.; Gao, L.; Crosbie, R.S.; Zhang, N.; Fu, G.; Doble, R. Groundwater Recharge Prediction Using Linear Regression,
Multi-Layer Perception Network, and Deep Learning. Water 2019, 11, 1879. [CrossRef]

298. Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An Efficient Metaheuristic-Based Clustering with Routing
Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [CrossRef]

299. Ben Brahim, F.; Boughariou, E.; Hajji, S.; Bouri, S. Assessment of groundwater quality with analytic hierarchy process, Boolean
logic and clustering analysis using GIS platform in the Kebili’s complex terminal groundwater, SW Tunisia. Environ. Earth Sci.
2022, 81, 419. [CrossRef]

300. Romero-Ben, L.; Cembrano, G.; Puig, V.; Blesa, J. Model-free Sensor Placement for Water Distribution Networks using Genetic
Algorithms and Clustering*. IFAC-PapersOnLine 2022, 55, 54–59. [CrossRef]

301. Neupane, J.; Guo, W. Agronomic Basis and Strategies for Precision Water Management: A Review. Agronomy 2019, 9, 87.
[CrossRef]

302. Egbueri, J.C. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and
hierarchical cluster analysis (HCA): A case study. Groundw. Sustain. Dev. 2019, 10, 100292. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/w11091879
https://doi.org/10.3390/s22020415
https://doi.org/10.1007/s12665-022-10541-3
https://doi.org/10.1016/j.ifacol.2022.11.009
https://doi.org/10.3390/agronomy9020087
https://doi.org/10.1016/j.gsd.2019.100292

	Introduction 
	ML Methodologies 
	Supervised Learning 
	Classification 
	Regression 

	Unsupervised Learning 
	Clustering 
	Association Rules 

	Semisupervised Learning 
	Semisupervised Classification 
	Semisupervised Clustering 

	Reinforcement Learning 
	Evaluation Methods and Performance Metrics in ML 
	Bibliometric Analysis and Search Method for the ML Methodologies 

	Using ML for Water Activities 
	Water Resource Management and Quality Prediction 
	Water Resource Management Techniques 
	Flood Forecasting and Hydrological Models 
	Water Demand Prediction and Climate Adaptation 

	Water Quality and Streamflow Management 
	ML Applications in Water Resource Management 
	Water Management and Predictions 
	Advanced Predictive Models and Data Analysis 

	Advanced Techniques and Sustainability 
	Innovations in Water Resource Management and Forecasting 
	Advancements in Water Management and Quality Assessment 
	Role of Artificial Intelligence and Deep Learning in Water Research 

	Reservoir and River Quality Management 
	Innovations in Water Resource Management and Quality 
	Factors Influencing Water Consumption and Water Quality 

	Bibliometric Analysis and Search Method for Water Management 

	Conclusions 
	References

