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Abstract: With the current upsurge in the desire to foster healthy lifestyles and consume nutritious
food products, the food industry has been propelled to develop novel food processing technologies.
In our study, we critically evaluated the influence of pulsed electric field (PEF) processing by compar-
ing it to conventional thermal pasteurization protocols—low temperature, long time (LTLT), high
temperature, short time (HTST), and microfiltration (MF)—and its ramifications on the nutritional
properties inherent in raw milk, which comprises vitamins, whey protein, amino acids, cholesterol,
and fatty acids. A significant difference in β-lactoglobulin content was observed in PEF-treated liquid
whey samples compared to those treated with high-temperature (HT) pasteurization, where 4.8-fold
reduction with a concentration of 0.80 mg/mL was observed. Liquid whey samples treated with
PEF, LTLT, HTST and MF retained β-lactoglobulin content, PEF-treated samples yielded 3.85 mg/mL,
while HTST, LTLT, and MF-treated samples had β-lactoglobulin content of 3.62 mg/mL, 3.63 mg/mL,
and 3.62 mg/mL compared to raw whey control (RWC) at 3.81 mg/mL. The concentrations of
nutritional properties, like vitamins (A, D, E), amino acids, cholesterol, and fatty acids, remained ap-
proximately consistent across all the pasteurization methodologies. Moreover, the bacterial viability
in the context of various pasteurization methodologies was scrutinized, with an absence of colonies
observed in whey specimens subjected to thermal pasteurization. PEF-treated samples exhibited a
substantial 1.6-log reduction in coliform colony count to less than 4 CFU/mL after curd reduction, in
contrast to raw milk samples.

Keywords: milk; PEF; food nutrition; bacterial inactivation; whey protein; microbiological safety

1. Introduction

In recent years, pulsed electric fields (PEFs) have gained significant attention as a
non-thermal alternative to traditional thermal pasteurization in the food industry. PEF
technology utilizes high-voltage pulses of electricity to create electric fields that can per-
meabilize cell membranes, leading to inactivation of microorganisms and preservation
of the nutritional properties of liquid foods. Several studies have investigated the appli-
cation of PEFs for the inactivation of microorganisms in various liquid foods [1–8]. For
instance, PEFs have been used for the inactivation of yeast in apple juice, resulting in up
to 5-log yeast inactivation by varying PEF parameters [9]. Similarly, paneer cheese made
from PEF-treated milk exhibited better sensory quality compared to cheese made from
conventionally pasteurized milk. The cheese was softer, had a higher whiteness index,
and only a slight decrease in shelf stability compared to the conventionally pasteurized
cheese [10]. Whey protein, characterized by its exceptional nutritional profile and diverse
functional properties, serves as a remarkably functional ingredient within the domain of
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the food industry [11]. Despite its numerous advantages, the thermal processing associ-
ated with whey protein powder can exert detrimental effects on its functional attributes,
namely, solubility, emulsification, and foaming capabilities [12]. Elevated thermal condi-
tions instigate denaturation, aggregation, and cross-linking of the protein macromolecules,
consequently undermining their functionality [13–15]. Moreover, these high temperatures
can potentially give rise to the generation of off flavors and off odors [16,17], further com-
promising its consumer appeal. As a result, PEF treatment presents a robust and promising
solution for the preservation of the desired functional characteristics of whey protein
following the completion of processing [18]. This evolving understanding underscores
the potential for innovative approaches to maintaining the integrity of whey protein’s
distinctive attributes in the face of processing challenges. Moreover, PEF treatment can
be conducted at lower temperatures than thermal processing [19], reducing the risk of
off-flavor development [16,17].

As the field of food science continually evolves, a salient topic of investigation pertains
to the implications of processing methods on the nutritional integrity of consumables.
The focus of this research endeavor is to critically appraise and juxtapose the nutritional
profiles of milk and liquid whey subjected to pulsed electric field (PEF) treatment versus
those processed via traditional thermal pasteurization methodologies, encompassing high
temperature, short time (HTST), low temperature, long time (LTLT), and microfiltration
(MF). This study seeks to elucidate potential differences, with the ultimate goal of informing
optimized processing strategies that balance food safety and nutritional preservation. In
this study, we analyzed the preservation of important nutrients, such as whey protein,
casein, amino acids, cholesterol, fatty acids, and vitamins A, D, and E, to determine the
effectiveness of PEFs in preserving these properties.

PEF technology has shown great potential for the food industry as a non-thermal
alternative to traditional pasteurization methods. The ability to preserve nutritional prop-
erties while effectively inactivating microorganisms makes PEFs a promising technology
in the production of liquid foods [20,21]. Our study seeks to evaluate the efficacy of curd
reduction and pulsed electric field (PEF) treatments in microbial load reduction, specifically
focusing on coliform and mesophilic lactic acid bacteria, in comparison to thermal pasteur-
ization methods. Furthermore, this study aims to determine the impact of these treatments
on the integrity of milk components, including β-lactoglobulin, amino acids, cholesterol,
essential fatty acids, glycomacropeptide (GMP), vitamins A, D, and E, and their radical
scavenging activity.

2. Materials and Methods
2.1. Raw Milk Preparation

The raw milk used in this study was sourced from local farmers and subjected to cool-
ing on ice and degasification before each pulsed electric field (PEF) experiment. Vacuum
degasification was performed in a laboratory using a vacuum system comprising a vacuum
chamber and a vacuum pump (Mini Diaphragm Vacuum Pump N 816.3KN.18, KNF Neu-
berger GmbH, Freiburg, Germany). The vacuum degasification process was carried out for
1 h at a pressure of −0.8 bar. In the present investigation, the local manufacturer-obtained
milk samples that had been subjected to different pasteurization techniques, as previously
conducted, were replaced. Instead, all thermal pasteurization treatments were carried out
in a laboratory setting. In this scientific investigation, we employed various processing
strategies to examine their respective impacts on milk. These methodologies encompassed
low-temperature, long-time (LTLT) pasteurization, conducted at a temperature of 63 ◦C
sustained over a duration of 30 min, high-temperature short time (HTST) pasteurization
implemented at 72 ◦C for a succinct 25-s period, and a microfiltration (MF) process uti-
lizing a filter with pore size of 1.4 µm, followed by a secondary pasteurization phase at
72 ◦C for 15 s. Thermal pasteurization was performed using a batch system, wherein the
sample was placed in a conical flask fitted with a reflux condenser. These flasks were
then heated on a magnetic hotplate stirrer (smartSence, Gate Scientific, Inc., Milpitas, CA,
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USA) until the target temperatures were achieved. An essential preliminary step to each
experimental iteration was the assessment of milk sample conductivity at a neutral pH of
7, which consistently yielded an approximate value of 4.4 mS/cm, setting the baseline for
subsequent analysis.

2.2. Whey Preparation

A quantity of 10 mL calf liquid rennet was introduced to 1 L of raw milk to facilitate
the separation of whey from curds. The resulting whey samples were subjected to a range
of pasteurization methods, including low-temperature, long-time (LTLT) pasteurization at
63 ◦C for 30 min, high-temperature, short-time (HTST) pasteurization at 72 ◦C for 25 s, and
microfiltration (MF) employing a 1.4 µm pore filter, followed by pasteurization at 72 ◦C for
15 s. An additional pasteurization method, involving high temperature (HT) at 95 ◦C for 4 s,
was employed in comparison to raw milk experiments. This modification was necessitated
by the inability to replicate ultrahigh-temperature (UHT) pasteurization at 140 ◦C for 4 s
within a laboratory setting, and the fact that the production of whey protein powder via
spray-drying at elevated temperatures leads to further denaturation of whey protein.

2.3. Determination of Bacterial Load in Samples

During the course of the experiment, three key parameters pertaining to microbial
load, namelym coliforms, mesophilic lactic acid bacteria, and the total bacterial count, were
evaluated in whey samples. In the food industry, assessment of milk quality primarily
entails monitoring coliforms and total bacterial count during the production phase in order
to verify suitability for consumption. The total bacterial count was enumerated on PCA
agar, following incubation (BD 400 model incubator, Binder GmbH, Tuttlingen, Germany)
for 72 h at 30 ◦C. The coliform count was determined on VRBL agar and confirmed in BGLB
broth, following incubation (BD 400 model incubator, Binder GmbH, Germany) for 24 h at
30 ◦C. Determination of total bacterial count and coliforms was carried out by means of a
pour plate technique, involving dispensation of 1000 µL of the sample, in accordance with
ISO 4833-1:2013. The mesophilic lactic acid bacteria load in the samples was determined ac-
cording to ISO 15214:1998: “Microbiology of Food and Animal Feeding Stuffs—Horizontal
Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-count Technique
at 30 ◦C”. Two petri dishes were prepared using MRS agar (de Man, Ragosa and Sharpe)
(Biolife Italiana Srl., Milan, Italy) set at a pH of 5.7. Decimal dilutions of the sample or
the initial suspension were used for plating. The dishes were subsequently incubated (BD
400 model incubator, Binder GmbH, Germany) at 30 ◦C for 72 h under aerobic conditions.
Mesophilic lactic acid bacteria were calculated as the weighted mean from two successive
dilutions using Equation (1):

N =
∑ C

V(n1 + 0.1n2)d
(1)

where ∑C is the sum of the colonies counted on all dishes from two successive dilutions,
V is volume of inoculum applied to each dish, in milliliters, n1 is the number of dishes
retained at the first dilution, n2 is the number of dishes retained at the second dilution, and
d is the dilution factor corresponding to the first dilution retained.

Experimental procedures were performed as depicted in Figure 1. The whey samples
were transferred to an electroporation cuvette, electroporated, and the resultant suspension
was subsequently transferred to petri dishes, wherein colony-forming units were counted.
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Figure 1. Schematic representation of the experimental setup employed to assess the impact of PEF
treatment on bacterial viability in liquid whey samples.

2.4. PEF Treatment

The pulsed electric field (PEF) system employed in this study comprised an electrical
pulse generator (BTX T 820, Holliston, MA, USA), a digital oscilloscope (Rigol DS2072A,
Rigol Technologies Inc., Bedford, OH, USA), and a treatment chamber containing two
parallel electrodes. The electrodes were made of polished stainless steel (AISI 304) plates
of equal size, and a polymethylmethacrylate (PMMA) cube was utilized to isolate them,
creating a treatment chamber with a 0.1 cm gap. In the course of the experiment, the samples
underwent treatment with monopolar rectangular pulses at an electric field strength of
24 kV/cm, employing a total of 20 pulses. The electric field strength (E, V/cm) was
calculated using Equation (2) [22]:

E = U/d (2)

where U represents the voltage (V) and d denotes the distance between the electrodes (cm).
In all experiments, the single pulse duration was 10 µs and the pulse repetition rate was
maintained at 1 Hz.

2.5. Determination of Vitamins A, D, E

For saponification, 2 g of sample was weighed into a flask. In total, 50 mL methanol,
0.25 g ascorbic acid, 5 mL KOH solution (50 g KOH dissolved in 100 mL H2O) and 1 mL
vitamin D2 standard working solution (0.2 µg/mL) were added to the flask and mixed.
The flask was placed in a water condenser at 80–100 ◦C for 30 min with occasional stirring.
The saponified mass was cooled in a water bath, filter through a Whatman filter paper to
avoid emulsions. An amount of water must be added to the saponified sample solution
so that the ratio of methanol to water in the resulting solution is 1:1. N-hexane (40 mL)
was used as solvent to extract the vitamins (D3, A, E) from the solution. The collected
hexane was washed three times with water (50 mL) to remove any salts. The extract was
evaporated with a rotary evaporator. The residue was dissolved in 1 mL (99% methanol).
Prior to injection, samples were filtered through a 0.45 µm filter.

A Shimadzu Prominence analytical HPLC system with diode array detector set at
265 nm (vitamin D3), 325 nm (vitamin A) and fluorescence detector with an excitation
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wavelength set at 288 nm and an emission wavelength set at 332 nm (α-tocopherol, vitamin
E), an autosampler and LC LabSolutions® Version 5.30 SP1were used (Shimadzu Corp.,
Kyoto, Japan). The YMC-Pack ODS-A column (YMC Europe GmbH, Dinslaken, Germany)
(5 µm, 150 × 4 mm, silica) with YMC-Pack ODS guard column (5 µm, 10 × 4 mm) was used,
and the column temperature was 40 ◦C. The mobile phase consisted of 96% acetonitrile and
4% water, the flow rate was 1 mL/min, and the injection volume was 50 µL. The vitamin
D3 was quantified using a vitamin D2 internal standard according to ISO 14892:2002. The
vitamin A was quantified according to EN 12823:2000. The α-tocopherol (vitamin E) was
quantified according to EN 12822:2014.

2.6. Determination of Amino Acid Content

In our study, we modified the method outlined in the Shimadzu technical note titled
“Auto-precolumn Derivatization for Amino Acid UHPLC Analysis by Using SIL-30AC”.
Amino acid (AA) content in food samples was analyzed by ultrafast liquid chromatogra-
phy (UFLC) with automated o-phthalaldehyde (OPA)/9-fluorenylmethyl chloroformate
(FMOC). Standard solutions of the amino acids alanine (ALA), aspartic acid (ASP), arginine
(ARG), cystine (CYS), glycine (GLY), valine (VAL), leucine (LEU), isoleucine (ILE), threonine
(THR), serine (SER), proline (PRO), methionine (MET), glutamic acid (GLU), phenylalanine
(PHE), lysine (LYS), histidine (HIS), tyrosine (TYR), and tryptophan (TRP) were analyzed
(A9781 Sigma-Aldrich, Taufkirchen, Germany). For the analysis, the sample (0, 1 g) was
hydrolyzed with 25 mL of 6 M HCl for 24 h at 37 ◦C. Prior to injection, all samples were
filtered through 0.45 µm filters. The AAs were separated with UHPLC column YMC-Triart
C18 (1.9 pm, YMC Co., Ltd.) using a UFLC instrument Shimadzu Prominence LC20AD
(Shimadzu, Japan) equipped with a fluorescence detector RF-20 Axs and pretreatment func-
tion equipped with automatic injector SIL-30AC (Shimadzu, Japan). Analytical conditions
were as follows: mobile phase—solvent A (20 mmol/L potassium phosphate buffer (pH
6.5), solvent B (45/40/15 acetonitrile/methanol/water); flow rate—0.8 mL/min, column
temperature 35 ◦C; detection—RF-20Axs Ex. at 350 nm, Em. at 450 nm to Ex. at 266 nm,
Em. at 305 nm (9.0 min) [23]. A five-level calibration set was used, covering a concentration
range of 9.375–150.00 µmol/L.

2.7. Determination of Fatty Acids Content

Identification and quantification of fatty acids (FAs) were performed by gas chro-
matography using a capillary column and a flame ionization detector. Samples for the
analysis of fatty acids were prepared in accordance with ISO 12966-2:2011. Prior to FA
analysis by gas chromatography, FAs are converted to low-molecular-weight non-polar
compounds—methyl esters. For this purpose, fatty acids were extracted from a 2 g analyti-
cal sample using 15 mL of n-hexane (Chempur, Piekary Śląskie, Poland), then methylated
with 250 µL of anhydrous KOH in methanol (11.2 g of KOH and 100 mL of methanol) to
give methyl esters. FA methyl esters were analyzed with a Shimadzu GC-2010-PLUS gas
chromatograph (Shimadzu, Kyoto, Japan) using a 100 m Restek (Bellefonte, PA, USA) Rt-
2560 column, internal diameter: 0.25 µm; thickness: 0.20 µm, according to ISO 15304:2003.2.
The analytical conditions were as follows: injection volume 1 µL, split ratio 1:20, column
temperature 100 ◦C for 4 min, then increased to 240 ◦C at 13 ◦C/min and maintained at
80 min at the end of the analysis, injector temperature 250 ◦C, and detector temperature
300 ◦C. Nitrogen was used as the carrier gas. The fatty acid content is determined from the
linear regression equation of the calibration plots of the identified fatty acid methyl ester
standards Supelco 37 Component FAME Mix (Supelco Analytical, Bellefonte, PA, USA).
The percentage of fatty acids was calculated from the calibration equations for each methyl
ester determined.

2.8. Determination of Biogenic Amine Content

Identification and quantification of biogenic amines were carried out by high-performance
liquid chromatography (HPLC). For the extraction, 5 g of sample was homogenized with 20 mL
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of (0.4 mol/L) perchloric acid solution (HClO4, Chempur, Karlsruhe, Germany) into a 50 mL
screw-cap tube and 250 µL internal standard (1,7-diaminoheptane, C7H18N2, Sigma-Aldrich®)
stock solution (1 mg/mL) added to achieve 1 µg/mL concentration level in injection volume.
After that, the mixture was centrifuged (Hermle Z 306, Gosheim, Germany) at 4000 rpm and
supernatant rinsed into a 25 mL bottle through Whatman no. 1 filter paper (180 µm thickness
and 11 µm particle retention rating at 98% efficiency). Filtrate was adjusted to 25 mL with
perchloric acid solution (0.4 mol/L).

For the derivatization, 500 µL sample extract alkaline by adding 100 µL sodium
hydroxide (NaOH, Eurochemicals, Kuprioniškės, Lithuania) solution (2 mol/L) and buffer
sample by adding 150 µL saturated sodium bicarbonate (NaHCO3, Lachema, Brno, Czech
Republic). Add 1 mL dansyl chloride (5-dimethylaminonaphtalene-1-sulfonyl chloride,
Sigma-Aldrich®) solution (10 mg/mL), mix thoroughly with shaker mixer (Reax Top,
Heidolph Instruments GmbH & Co. KG, Schwabach, Germany), and transfer reaction
mixture to 40 ◦C incubator for 45 min. After incubation, cool to room temperature for 10 min
and remove residual dansyl chloride by adding 50 µL ammonia (25%, NH3, Chempur,
Germany). Mix with shaker mixer. After 30 min, adjust to 5 mL with ammonium acetate
(0.1 mol/L, CH3COONH4, Reachem, Petržalka, Slovakia):acetonitrile (Carlo Erba, Val-de-
Reuil, France) mixture (1:1, v/v) and mix well with shaker mixer. Filter through 0.20 µm
nylon filter (UptiDisc, Interchim, Montluçon, France) and inject the solution into the
analytical column.

A Shimadzu Prominence LC20AD (Shimadzu, Japan) coupled with a UV detector
SPD/20 A chromatographic system was used with a LabSolution (Shimadzu, Japan) in-
tegrator using a Hydrosphere C18 (5 µm, 12 nm), 150 × 4.6 I.D. (YMC Co., Ltd., Kyoto,
Japan) column and YMC precolumn (YMC Co., Ltd.) ProC18 (10 × 3.0 mm L.D., S-3 µm,
12 nm). LC mobile phase A: ammonium acetate (0.1 mol/L), phase B: acetonitrile. Operat-
ing conditions: flow rate 0.9 mL/min; injection volume 20 µL; column temperature 40 ◦C;
peaks detected at 254 nm; gradient 50% B to 90% B in 19 min; run time 20 min; post-run
before next run, 50% B, 8 min.

Histamine (C5H9N3) biogenic amine standard was purchased from Sigma-Aldrich®.
Stock solutions (1 mg/mL) of amine were prepared in 0.1 N HCl (Stanlab, Lublin, Poland)
and stored at 4 ± 1 ◦C. For amine identification, the standard solution of individual biogenic
amine was chromatographed separately and mixed to determine the retention times and the
response. Standard curves with correlation coefficients for stock solutions were obtained by
the external standard method. All the results were expressed in milligrams per kilogram.
Histamine was quantified using the HPLC method outlined in ISO 19343:2017.

2.9. Determination of Antioxidant Activity

The extracts were prepared by weighing 0.100 g of sample and adding 10 mL of a
70% (v/v) aqueous solution of methanol (1:100). The extract was placed in an ultrasonic
bath for 15 min at 40 ◦C. The extract was filtered through paper filters into a 10 mL
graduated tube. The extract was filled with 70% (v/v) methanol to 10 mL. The DPPH
(2.2-diphenyl-1-picrylhydrazyl) method evaluates the ability of test extracts to bind DPPH
free radicals. A DPPH standard solution was obtained by dissolving 0.0024 g (exact weight)
of DPPH radical powder in 100 mL of 70%. (v/v) methanol. An ultrasonic bath was used to
improve solubility. The reconstituted standard solution was kept in the dark until constant
absorption was observed. The absorbance of the prepared solution was measured at a
wavelength of 515 nm. As a reference solution, 70% (v/v) methanol was used.

The test solution was prepared by taking 50 µL of the test extract and adding and
mixing it with 2 mL of DPPH standard solution; 50 µL 70% (v/v) methanol and 2 mL of
DPPH standard solution were used to prepare the blank solution. The resulting mixtures
were kept in complete darkness for half an hour. The spectrophotometer measured the
decreases in the absorbance of the samples at 515 nm until absorbance equilibrium was
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reached (after 30 min) [24]. The antiradical activity of the extracts was expressed as a
percentage of bound DPPH:

DPPH = [(Ab − Aa)/Ab] × 100%

Aa is the absorbance of the sample with the test extract (t = 30 min).
Ab is the absorbance of the blank (t = 30 min).

2.10. Determination of Cholesterol Content

For saponification, 0.25 g of sample was weighted into a 50 mL glass tube. In total,
5 mL 2% KOH in ethanol solution and 5 mL DI water were added to the glass tube and
mixed. The saponification process was performed for 120 min at 50 ◦C in a water bath,
stirring the tube every 15 min. The extraction process was performed with the n-hexane
extraction solvent. Total volume of solvent used for single extraction was 10 mL. Two
extractions with n-hexane were performed. Then, the combined extracts were evaporated
using a rotary vacuum evaporator until dry and the residue was dissolved in 4 mL of
acetonitrile methanol solution (70:30, v/v). Prior to injection, samples were filtered through
a 0.45 µm filter.

A Shimadzu Prominence LC20AD (Shimadzu, Japan), coupled with a UV detector
SPD/20 A chromatographic system was used with a LabSolution (Shimadzu, Japan) in-
tegrator using a Hydrosphere C18 (5 µm, 12 nm) 150 × 4.6 I.D. (YMC Co., Ltd.) column
and YMC precolumn (YMC Co., Ltd.) ProC18 (10 × 3.0 mm ID, S-3 µm, 12 nm). The LC
mobile phase acetonitrile:methanol ratio was 70:30 v/v. Operating conditions: flow rate
1.2 mL/min; injection volume 20 µL; column temperature, 40 ◦C; peaks detected at 205 nm;
analysis time 10 min.

2.11. Determination of β-Lactoglobulin Content

The content of β-lactoglobulin was determined through high-performance liquid
chromatography (HPLC). Calibration curves were prepared by dissolving β-lactoglobulin
in deionized water at concentrations of 10, 7.5, 5, and 2.5 mg/g. Milk samples were
treated with HCl solution to achieve a pH of 4.6 (the isoelectric point for proteins) and
then filtered through S&S filter paper followed by a 0.45 µm syringe filter. Separation
and quantification of β-lactoglobulin was performed using a Shimadzu Prominence series
(Shimadzu corp., Kyoto, Japan) HPLC system equipped with a TSKgel G2000 SWXL column
(Tosoh Bioscience, Griesheim, Germany) (30 cm length and 0.78 cm internal diameter) and a
TSKgel SWXL guard column (4 cm length and 0.6 cm internal diameter). The mobile phase
consisted of a buffer prepared by dissolving 1.74 g K2HPO4, 12.37 g KH2PO4, and 21.41 g
Na2SO4 in 1 L of deionized water to achieve a pH of 6.0, followed by heating for 15 min
in a water bath at 85 ◦C. The flow rate was set to 1 mL/min, and the column temperature
was maintained at 30 ◦C. Detection was carried out using a UV detector at a wavelength of
280 nm and an injection volume of 20 µL [25,26].

2.12. Temperature Measurements

The temperature of the milk sample was assessed using a UTi260B infrared ther-
mal imaging system (Unit-Trend Technology Co., Ltd., Dongguan, China), which has an
accuracy of ±2 ◦C and can measure temperatures within a range of −15 to 550 ◦C.

2.13. Statistics

The experiments were performed in three independent replicates (n = 3). One-way
analysis of variance (ANOVA) and two-way ANOVA with Bonferroni analysis were per-
formed using SigmaPlot 11 (Systat Software, Inc., San Jose, CA, USA). Statistical significance
was determined by Bonferroni test (p < 0.05).
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3. Results
3.1. Amino Acid Composition Analysis after Pasteurization

To assess the impact of various pasteurization techniques on milk samples, we con-
ducted an extensive analysis of key parameters indicative of milk quality and nutritional
attributes. Results in Figure 2 delineate the influence of these methods on the amino acid
composition of the milk samples. A comparison between thermal pasteurization and pulsed
electric field (PEF) treatment revealed no significant differences in amino acid content. The
content of the various amino acids averaged as follows: aspartic acid 0.3 g/100 g, glutamic
acid 0.8 g/100 g, serine 0.2 g/100 g, histidine 0.07 g/100 g, glycine 0.05 g/100 g, threonine
0.15 g/100 g, arginine 0.10 g/100 g, alanine 0.11 g/100 g, tyrosine 0.16 g/100 g, cystine
0.13 g/100 g, valine 0.22 g/100 g, methionine 0.09 g/100 g, tryptophan 0.21 g/100 g, pheny-
lalanine 0.22 g/100 g, isoleucine 0.35 g/100 g, leucine 0.27 g/100 g, lysine 0.35 g/100 g, and
proline 0.36 g/100 g.
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Figure 2. Amino acid content in milk samples treated with different pasteurization techniques: con-
trol (raw milk); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long time; 
HTST—high temperature, short time. 

3.2. β-Lactoglobulin Concentration Analysis after Pasteurization 
We quantified the β-lactoglobulin content in samples subjected to various pasteuri-

zation techniques, with the results displayed in Figure 3. No significant differences in β-
lactoglobulin content were observed between PEF treatment and traditional pasteuriza-
tion methods. PEF-treated milk samples exhibited a β-lactoglobulin concentration of 2.97 
mg/mL, identical to that found in raw milk control samples. Milk samples treated with 
MF displayed a β-lactoglobulin content of 2.81 mg/mL, while LTLT-treated samples had 
a concentration of 2.84 mg/mL. HTST-treated samples revealed a β-lactoglobulin content 
of 2.89 mg/mL. However, we were unable to replicate the ultrahigh-temperature (UHT; 

Figure 2. Amino acid content in milk samples treated with different pasteurization techniques:
control (raw milk); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long
time; HTST—high temperature, short time.

3.2. β-Lactoglobulin Concentration Analysis after Pasteurization

We quantified the β-lactoglobulin content in samples subjected to various pasteur-
ization techniques, with the results displayed in Figure 3. No significant differences in
β-lactoglobulin content were observed between PEF treatment and traditional pasteur-
ization methods. PEF-treated milk samples exhibited a β-lactoglobulin concentration of
2.97 mg/mL, identical to that found in raw milk control samples. Milk samples treated with
MF displayed a β-lactoglobulin content of 2.81 mg/mL, while LTLT-treated samples had a
concentration of 2.84 mg/mL. HTST-treated samples revealed a β-lactoglobulin content
of 2.89 mg/mL. However, we were unable to replicate the ultrahigh-temperature (UHT;
140 ◦C for 4 s) pasteurization technique, employed for extended shelf-life milk storage, in
our laboratory setting. The effects of UHT on milk samples were described in our previous
article [27].
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Figure 3. β-lactoglobulin content in milk samples subjected to various pasteurization methods:
C—raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long
time; HTST—high temperature, short time.

3.3. α-Casein, β-Casein, and κ-Casein Concentrations Analysis after Pasteurization

Figure 4 illustrates the quantification of α-casein, β-casein, and κ-casein concentra-
tions in milk samples subjected to various thermal pasteurization treatments: MF, LTLT
and HTST processes. The casein levels in these samples were compared to those in con-
trol and PEF-treated samples. The α-casein concentrations in control samples averaged
1197 mg/100 mL, comparable to the PEF treated samples at 1144 mg/100 mL. Thermal
pasteurization treatments resulted in α-casein content of 1386 mg/100 mL in MF-treated
samples, 1563 mg/100 mL in LTLT-treated samples, and 1410 mg/100 mL in HTST-treated
samples. β-casein levels in control samples exhibited an average of 774 mg/100 mL, akin
to PEF-treated samples at 747 mg/100 mL. The thermal pasteurization techniques led to in-
creased β-casein concentrations: 936 mg/100 mL in MF-treated samples, 1030 mg/100 mL
in LTLT-treated samples, and 911 mg/100 mL in HTST-treated samples. The κ-casein
concentrations in control samples were observed at an average of 401 mg/100 mL, with
PEF-treated samples displaying similar values at 402 mg/100 mL. The application of
thermal pasteurization methods resulted in a rise in κ-casein content: 456 mg/100 mL in
MF-treated samples, 552 mg/100 mL in LTLT-treated samples, and 444 mg/100 mL in
HTST-treated samples.

3.4. Cholesterol Concentrations Analysis after Pasteurization

Figure 5 illustrates the cholesterol concentrations in milk samples subjected to pulsed
electric field (PEF) treatment and thermal pasteurization techniques, including microfiltra-
tion (MF), low-temperature, long-time (LTLT), and high-temperature, short-time (HTST)
processes. The cholesterol content across these treatments showed no significant difference
when compared to the control value of 19.6 mg/100 g after accounting for variance. Choles-
terol concentrations in the samples exhibited the following averages: 17.3 mg/100 g in
PEF-treated samples, 16.6 mg/100 g in MF-treated samples, 16.6 mg/100 g in LTLT-treated
samples, and 15.6 mg/100 g in HTST-treated samples.
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Figure 5. Cholesterol content in milk samples subjected to various pasteurization methods: RM—
raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long 
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Figure 4. α-Casein, β-casein, and κ-casein content in milk samples subjected to various pasteur-
ization methods: Control (raw milk); PEF—pulsed electric field; MF—microfiltration; LTLT—low
temperature, long time; HTST—high temperature, short time. Statistically significant differences
between samples are denoted by distinct lowercase letters, with a significance level of p < 0.05.
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Figure 5. Cholesterol content in milk samples subjected to various pasteurization methods: RM—
raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long 
time; HTST—high temperature, short time. 

Figure 5. Cholesterol content in milk samples subjected to various pasteurization methods: RM—raw
milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low temperature, long time;
HTST—high temperature, short time.

3.5. DPPH Radical Scavenging Activity after Pasteurization

In Figure 6, we illustrate the results of our assessment of 2.2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging activity in milk samples subjected to various thermal pasteur-
ization methods and PEF treatment. No significant differences were observed in the DPPH
radical scavenging activity between the control group (32.4%), PEF-treated, and thermally
pasteurized samples. Specifically, the average DPPH radical scavenging activity in the
PEF-treated samples was 31.9%, while MF-treated samples exhibited an average of 41.9%.
Furthermore, samples treated with LTLT pasteurization showed an average DPPH radical
scavenging activity of 31.9%, and those subjected to HTST pasteurization displayed an
average of 34.4%.
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Figure 6. DPPH radical scavenging activity, expressed as a percentage, across various pasteurization
methods: RM—raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low
temperature, long time; HTST—high temperature, short time.

3.6. Fatty Acid Profile of Milk after Pasteurization

Figure 7 illustrates the results of our investigation into the fatty acid content in milk
samples subjected to pasteurization techniques of PEF, MF, LTLT, HTST. No significant
differences were observed between the control and treated samples. In control samples,
average omega-3 content was 0.51%, omega-6 content 1.81%, and omega-9 content 19.04%
of the total fatty acid content. In PEF-treated samples, omega-3 content was 0.50%, omega-6
1.85%, and omega-9 19.05%. For MF-treated samples omega-3 content was 0.47%, omega-6
1.82%, and omega-9 19.01%. LTLT-treated samples demonstrated similar results, with
omega-3 content of 0.47%, omega-6 1.82%, and omega-9 19.01%. In HTST-treated samples,
the average omega-3 content was 0.52%, omega-6 1.85%, and omega-9 19.02%.
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3.7. Glycomacropeptide (GMP) Concentrations after Pasteurization

Figure 8 illustrates the impact of various pasteurization methods and PEF treatment
on the glycomacropeptide (GMP) content in milk samples. No significant differences were
observed in GMP content between the control group and the samples subjected to PEF, MF,
LTLT, and HTST treatments. The control samples exhibited an average GMP content of
12.25 mg/100 mL. PEF-treated samples had an average GMP content of 13.32 mg/100 mL,
while MF-treated samples showed an average GMP content of 11.95 mg/100 mL. In addi-
tion, LTLT-treated samples exhibited an average GMP content of 11.68 mg/100 mL, and
HTST-treated samples had an average GMP content of 11.78 mg/100 mL.
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Figure 8. Glycomacropeptide (GMP) content in milk samples subjected to various pasteurization 
methods: C—raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low tem-
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Figure 8. Glycomacropeptide (GMP) content in milk samples subjected to various pasteurization
methods: C—raw milk (control); PEF—pulsed electric field; MF—microfiltration; LTLT—low temper-
ature, long time; HTST—high temperature, short time.

3.8. Histamine Concentrations after Pasteurization

In the next step, we evaluated the impact of PEF treatment and thermal pasteurization
methods on histamine concentration in milk samples (Figure 9). The analysis accounted for
dispersion and histamine amounts in milligrams per kilogram. No significant difference
was observed between the control and treated samples. The control group exhibited a his-
tamine concentration of 0.32 mg/kg. For PEF-treated samples, the histamine concentration
was 0.36 mg/kg. MF treatment resulted in a histamine concentration of 0.37 mg/kg. LTLT
pasteurization yielded a histamine concentration of 0.17 mg/kg, while HTST pasteurization
method a histamine concentration of 0.32 mg/kg.

3.9. Vitamin A Concentrations after Pasteurization

In Figure 10, we illustrate the effect of various treatment methods on vitamin A
concentration in milk samples, expressed in micrograms per 100 g of milk. No significant
differences were observed in the vitamin A concentrations among the control and treated
samples. The control samples exhibited a vitamin A concentration of 25 µg/100 g. PEF
treated samples displayed an average vitamin A concentration of 22 µg/100 g. MF-treated
samples yielded a vitamin A concentration of 17 µg/100 g. LTLT- and HTST-treated samples
demonstrated similar average vitamin A concentrations of 17 µg/100 g and 18 µg/100 g,
respectively.
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3.10. Vitamin D Concentrations after Pasteurization

In Figure 11, we illustrate the impact of various treatments on the vitamin D content
of milk samples. The vitamin D concentrations were measured in micrograms per 100 g
of milk. The control samples exhibited a vitamin D concentration of 26 µg/100 g. In
comparison, PEF-treated samples had an average vitamin D concentration of 22 µg/100 g.
MF-treated samples demonstrated a vitamin D concentration of 18 µg/100 g, while LTLT-
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treated samples showed a concentration of 21 µg/100 g. Lastly, HTS-treated samples
exhibited a vitamin D concentration of 21 µg/100 g. No statistically significant differences
in vitamin D concentrations were observed across the various treatment groups.
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3.11. Vitamin E Concentrations after Pasteurization

In Figure 12, we illustrate the impact of various treatments on the vitamin E content
of milk samples, with concentrations measured in micrograms per 100 g of milk. The
control samples exhibited a vitamin E concentration of 84 µg/100 g. In comparison, PEF-
treated samples had an average vitamin E concentration of 86 µg/100 g. MF-treated
samples demonstrated a vitamin E concentration of 82 µg/100 g, while LTLT-treated
samples showed a concentration of 76 µg/100 g. Lastly, HTST-treated samples exhibited a
vitamin E concentration of 68 µg/100 g. No statistically significant differences in vitamin E
concentrations were observed across the various treatment groups.

3.12. β-Lactoglobulin Content in Liquid Whey after Curd Removal and Pasteurization

Figure 13 presents an evaluation of the β-lactoglobulin content in milk samples. Raw
milk (RM) was used as control, with a β-lactoglobulin concentration of 3.71 mg/mL. This
way, we wanted to demonstrate that β-lactoglobulin content was not reduced after curd
removal in raw whey control (RWC) samples. No significant difference in β-lactoglobulin
content was observed among liquid whey samples treated with PEF, HTST, LTLT, or MF
concentrations, which were comparable to RWC at 3.81 mg/mL. PEF-treated samples
yielded 3.85 mg/mL, while HTST, LTLT, and MF-treated samples had β-lactoglobulin
content of 3.62 mg/mL, 3.63 mg/mL, and 3.62 mg/mL. However, liquid whey samples
subjected to HT pasteurization at 95 ◦C for 4 s exhibited a significant reduction in β-
lactoglobulin content. Compared to the RWC samples, the β-lactoglobulin content in
HT-treated samples was reduced 4.8-fold, with a concentration of 0.80 mg/mL.
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Figure 13. β-lactoglobulin content in whey samples subjected to various pasteurization methods:
RM—raw milk (control); RWC—raw whey control; PEF—pulsed electric field; HT—high tempera-
ture; HTST—high temperature, short-time; LTLT—low temperature, long time; MF—microfiltration.
Statistically significant differences between samples are denoted by distinct lowercase letters, with a
significance level of p < 0.05.
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3.13. Bacterial Load in Milk Samples: A Comparison between Raw, Curd-Reduced, and
Pasteurized Samples

The highest contamination levels were observed in RM samples, with total bacteria of
9.6 × 102 CFU/mL and coliforms of 160 CFU/mL (Table 1). Following curd reduction in raw
whey control (RWC) samples, the total bacteria decreased by 1.03 log to 8.3 × 103 CFU/mL
and coliforms decreased by 1.13 log to 12 CFU/mL. Subsequently, RWC samples were
pasteurized using various thermal pasteurization techniques and PEF treatment. In PEF-
treated samples, the total bacteria reduced by 0.13 log to 6.2 × 103 CFU/mL, and coliforms
decreased by 0.48 log to <4 CFU/mL compared to RWC. No bacterial activity was detected
in samples treated with HT. In HTST-treated samples, the total bacteria decreased by
1.54 log to 2.4 × 102 CFU/mL. In LTLT-treated samples, the total bacteria decreased by
1.07 log to 7 × 102 CFU/mL. In MF-treated samples, the total bacteria decreased by 2.36 log
to 36 CFU/mL. Coliform bacteria activity was not detected in samples subjected to thermal
pasteurization. Mesophilic lactic acid bacteria were not detected in RWC samples treated
with thermal pasteurization techniques. In PEF-treated samples, mesophilic lactic acid
bacteria activity was observed at 1.6 × 102 CFU/mL, with a bacterial reduction of 1.54 log
compared to RWC.

Table 1. Comparison of colony forming units (CFUs) of total bacteria and mesophilic lactic acid
bacteria in samples subjected to different pasteurization techniques.

No. Milk
Samples

Total Number of Bacteria
Found in Samples, CFU/mL Coliform Bacteria, CFU/mL Mesophilic Lactic Acid

Bacteria CFU/mL

Mean SD Mean SD Mean SD

1. RM 9 × 104 a 1.5 × 103 1.6 × 102 a 21 - -
2. RWC 8.3 × 103 b 3.6 × 102 12 b 2 5.5 × 103 a 1.5 × 10 2

3. PEF 6.2 × 103 c 1 × 102 <4 - 1.6 × 102 b 17
4. HT <1 - <1 - <1 -
5. HTST 2.4 × 102 d 34 <1 - <1 -
6. LTLT 7 × 102 d 92 <1 - <1 -
7. MF 36 d 8 <1 - <1 -

RM (raw milk, control), RWC (raw liquid whey, control), PEF (pulsed electric field), HT (high temperature), LTLT
(low temperature, long time), HTST (high temperature, short time), MF (microfiltration). Samples were incubated
on agar plates for 24 h at 37 ◦C. Data are presented as mean ± standard deviation (SD). The experiments were
performed in three independent replicates (n = 3). Statistically significant differences between samples are denoted
by distinct lowercase letters in the same column, with a significance level of p < 0.05.

4. Discussion
4.1. Nutritional Properties of Milk Subjected to Thermal Pasteurization Techniques and PEFs

In this investigation, unlike our previous study [27], we have placed a greater em-
phasis on assessing the nutritional properties of milk subjected to thermal pasteurization
techniques compared to PEF treatment. UHT pasteurization, however, was not included
within the scope of this research, as its impact on whey protein content was discussed
previously [27]. We applied HT pasteurization at 95 ◦C for 4 s on liquid whey samples for
comparative purposes.

In contrast to our initial hypotheses, we discerned no substantial difference in the
amino acid content amongst samples subjected to microfiltration (MF), low-temperature,
long-time (LTLT), high-temperature, short-time (HTST), and pulsed electric field (PEF)
treatments (Figure 2). This observation is congruent with extant literature that posits mild
heat treatment does not significantly modify the amino acid content of milk in relation
to raw milk [28], demonstrating the parity of PEF treatment with traditional thermal
pasteurization techniques. Nevertheless, it bears mentioning that ultrahigh-temperature
(UHT) pasteurization has been documented to markedly impact the amino acid content,
with an average decrement of 34% noted in the levels of cysteine, cystine, and methionine
in skim milk samples treated using the UHT steam injection technique [29].
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β-Lactoglobulin content in milk samples remained consistent across all thermal pas-
teurization techniques and PEF treatment relative to the control. Interestingly, a 75%
reduction in β-lactoglobulin content was observed in our previous study, where samples
were treated with an industrial-scale LTLT pasteurization line [27]. This variance may be
attributed to the multistage processing of raw milk, including creaming, pasteurization
and homogenization [30], which were not accounted for in the current study. We caution
against directly comparing the results from our previous research [27], as all thermal pas-
teurization, apart from PEF treatment, was conducted using industrial-scale pasteurization
lines. The thermal pasteurization in this research was performed on whole milk according
to industry-standard heat treatment procedures.

An intriguing observation from our study was the increased β-casein and κ-casein
content in samples treated with LTLT pasteurization relative to PEFs and control (Figure 4).
The level of casein content increased across all samples subjected to thermal pasteurization.
However, statistical significance was only observed in samples treated with LTLT. The
mechanisms underlying the thermal pasteurization-induced increase in casein content
are not fully understood. Potential explanations may include protein aggregation and
clumping due to denaturation during pasteurization, changes in casein micelle leading to
the release of casein molecules, and an increase in the solubility of casein in milk due to
thermal pasteurization [31–34]. Further research is warranted to elucidate the effects of
thermal pasteurization on casein content.

No significant difference was observed in the DPPH radical scavenging activity across
all the samples, which aligns with previous findings [35,36]. DPPH radical scavenging
activity is dependent on the milk composition and the concentration of antioxidants present
in milk.

Fatty acid content, specifically omega-3, omega-6, and omega-9, was unaffected by
thermal pasteurization and PEF methods relative to the control (Figure 7). These fatty acids
are relatively stable and resistant to heat [37,38] Likewise, the cholesterol content was not
affected by thermal pasteurization or PEF methods relative to the control. This can be
attributed to the relative stability of cholesterol under heat treatment [39,40].

Glycomacropeptide (GMP), recognized for its probiotic, anti-inflammatory, immunomod-
ulatory, and antimicrobial effects, as well as appetite regulation, is widely utilized in diverse
nutritional and therapeutic applications [41–56]. In this research, we observed no discernible
effects on GMP content in samples treated with thermal pasteurization and PEF relative to the
control group. GMP typically exhibits thermal stability under standard thermal pasteurization
conditions [57,58].

Histamine is typically found in trace amounts in raw milk, primarily due to the
release from mast cells. Additionally, certain bacteria can produce this biogenic amine.
Thermal pasteurization serves to eliminate histamine-producing bacteria, thus preventing
an elevation in histamine levels that could potentially trigger intoxication [59–63]. Our
research did not reveal a significant difference in histamine content (Figure 9) between
thermally pasteurized, PEF-treated, and control samples. Interestingly, PEF treatment was
found to maintain histamine levels on par with those in thermally treated milk.

We observed no significant differences in the content of fat-soluble vitamins A, D,
and E across all treated samples compared to the control group. These vitamins generally
exhibit stability under traditional pasteurization techniques. However, it is important to
note that levels of water-soluble vitamins such as B1, B2, B12, and C have been reported to
decrease following pasteurization [64–66].

In our previous article, we proposed the potential adoption of PEF in the manufacture
of whey protein powder. To further investigate this, we tested the effects of various
pasteurization techniques on raw liquid whey samples (Figure 13), including an additional
thermal pasteurization method at 95 ◦C for 4 s for comparative purposes. PEF, HTST, LTLT,
and MF treatments did not appear to affect β-lactoglobulin content compared to the control.
However, heating samples at 95 ◦C resulted in a 4.8-fold reduction in β-lactoglobulin
content. It has been shown that high temperatures used during spray-drying, a common
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method in whey protein powder production, reduce whey protein content including
β-lactoglobulin concentration and diminishes the quality of whey protein powder by
affecting its solubility, emulsification, and foaming properties. The temperatures employed
in the spray-drying process of liquid whey often exceed those of LTLT, HTST and MF
pasteurization, ranging from air inlet temperature of 150 ◦C to 260 ◦C and air outlet
temperature of 60 ◦C to 120 ◦C [67–70].

4.2. Differences in Bacterial Inactivation

Successful inactivation of total coliform bacteria was achieved in all samples subjected
to thermal pasteurization, with a recorded decrease in total bacteria colony forming units
from 1.54 log to 2.36 log. In the case of samples treated with pulsed electric fields (PEFs),
we observed a reduction in total bacteria by 0.13 log, with a more significant reduction of
coliforms by 0.48 log when compared to the control liquid whey. The removal of curds
from raw milk contributed significantly to the reduction in bacterial load, accounting
for a decrease of up to 1.03 log in total bacteria and 1.13 log in coliforms. This effect
can be linked to several processes that occur following the removal of curd from raw
milk with rennet. No additional lactic acid bacteria were introduced to the liquid whey.
Nevertheless, mesophilic lactic acid bacteria were detected in both the liquid whey samples
and those treated with PEFs. A notable reduction of 1.54 log in mesophilic lactic acid
bacteria was observed after treatment compared to the liquid whey control. Mesophilic
lactic acid bacteria, naturally present in raw milk, have been identified as beneficial to
human health due to their roles in nutrient absorption, immune function, and digestive
processes. They have also been associated with effects on mental health [71–76]. The
raw milk was not subjected to pasteurization prior to curd removal; only the liquid whey
protein underwent pasteurization using various techniques. The PEF treatment may
have effectively inactivated the majority of coliform bacteria, leading to the dominance
of mesophilic lactic acid bacteria, which further contributed to the acidity of the liquid
whey [77–80]. Given that coliforms tends to proliferate optimally at a pH range of 6 to
7.5 [81,82], the lower pH could potentially have inhibited bacterial growth [83,84]. Physical
separation of whey from curds might also contribute to the reduction of coliform bacteria,
as the curd, due to its retention of more moisture and nutrients compared to whey, is likely
to harbor more bacteria.

4.3. PEF in Production of Liquid Whey Foods

In the context of whey protein product manufacture, the conventional methodology
(Figure 14a) and a proposed method utilizing pulsed electric fields (PEFs) for liquid whey
production (Figure 14b) were juxtaposed. The incorporation of a dual-stage PEF pasteur-
ization process presents a potentially innovative and effective approach in the production
line of liquid whey protein products. The initial stage necessitates PEF pasteurization of
raw milk prior to the addition of rennet and inoculation. Given the non-thermal nature of
PEF technology, there exists no requirement to cool the pasteurized milk before inoculation,
as is custom in traditional whey protein powder production. This could feasibly facilitate
a reduction in energy expenditure due to the elimination of the cooling process for lactic
acid bacterial survivability. The secondary stage of PEF is suggested to be implemented
subsequently to the ultrafiltration and diafiltration processes, thereby providing an addi-
tional layer of pasteurization and enhancing both the shelf life and safety of the product. In
contrast, the traditional methodology involves several additional stages that are energy-
intensive, such as evaporation and spray-drying. In the proposed PEF-based production
of liquid whey, the principal energy-consuming stage post-ultrafiltration and diafiltration
would be refrigeration, hence potentially offering substantial energy savings.
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4.4. Potential Limitations of the Study

Several limitations are to be acknowledged in the present study. The content of whey
protein in milk samples may exhibit variability due to factors such as seasonality and the
nutritional composition of the cows’ feed. The BTX electroporator utilized in this study is
constrained to a maximum voltage of 3 kV. By using cuvettes with a 0.1 cm-gap treatment
chamber, we managed to increase the voltage to 24 kV/cm; however, this was the threshold
beyond which electrical discharges started to occur. Consequently, the impact of higher
voltages on bacterial inactivation was not investigated.

The bacterial load of the raw milk could also differ depending on the refrigeration
and storage conditions, introducing another potential source of variability. Furthermore,
the UHT pasteurization technique could not be reproduced in our laboratory setting. As a
result, we were unable to replicate all the pasteurization techniques commonly employed in
the dairy industry, limiting our capacity to assess their respective impacts on the nutritional
properties of raw milk.

Additionally, only the thermal pasteurization techniques used in this study were
based on parameters used in the dairy industry. We did not take into account the potential
effects of other processing stages such as creaming, homogenization, and refrigeration that
are typically part of an industrial-scale processing line. This could potentially limit the
generalizability of our findings to real-world industrial processes.
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5. Conclusions

This study has demonstrated that a significant reduction in coliforms, specifically by
1.6 log, can be achieved by employing curd reduction and PEF treatments compared to
raw milk. It was observed that thermal pasteurization completely inactivated all coliform
bacteria as well as mesophilic lactic acid bacteria. In contrast, PEF treatment resulted in a
significant decrease in coliform bacteria, while mesophilic lactic acid bacteria were affected
to a much less extent. Interestingly, β-lactoglobulin content in samples subjected to PEF,
LTLT, HTST, and MF treatments remained comparable to those found in raw milk and the
liquid whey control. However, heating to 95 ◦C for 4 s resulted in a substantial decrease
in β-lactoglobulin content in liquid whey samples. Notably, the content of amino acids,
cholesterol, omega 3, 6, and 9 fatty acids, glycomacropeptide (GMP), and vitamins A,
D, and E after PEF treatment remained consistent with control levels across all samples
treated with LTLT, HTST, and MF. Similarly, PEF treatment did not affect the DPPH radical
scavenging activity or histamine content, and these remained at similar levels as found in
thermally treated milk.
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