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Featured Application: The featured application of this paper focuses on the impact of climate
change on ecosystem services provided by the Phyllognathus excavatus beetle, specifically its role
in recycling organic matter. The study highlights that dung beetles, including Phyllognathus ex-
cavatus, play a crucial ecological role in nutrient cycling, waste decomposition, and soil improve-
ment. These beetles facilitate the breakdown of organic matter, such as dung, and contribute to
the recycling of nutrients back into the ecosystem. However, climate change can disrupt the life
cycles and habitat suitability of these beetles, affecting their ability to perform their recycling
function effectively. Changes in temperature and precipitation patterns can alter the availability
of fresh dung, which is essential for successful reproduction and larval development. Shifts in
rainfall patterns and increased temperatures can also impact the timing of dung decomposition
and alter the composition of microbial communities associated with dung, indirectly affecting
the survival and fitness of dung beetles. Determining the resilience of ecosystem services, such
as recycling, and creating effective conservation strategies to mitigate the negative effects of cli-
mate change on these significant ecological processes depend on our ability to understand the
potential effects of climate change on Phyllognathus excavatus and other dung beetles.

Abstract: Climate change poses a significant threat to ecosystems, food security, and human well-
being. This study focuses on the Phyllognathus excavatus beetle, an important insect species in the
Mediterranean region with ecological importance in nature recycling of organic wastes. The aim of
this study is to assess its current habitat suitability and predict its distribution under future climate
scenarios. The beetle’s occurrence records were gathered and climate information, including 19 biocli-
matic variables, was retrieved from the Global Biodiversity Informatic Facility (GBIF) and WorldClim
depository, respectively. The MaxEnt algorithm was used to calculate habitat appropriateness using
geographic information systems (GISs) and species distribution modeling (SDM) with an accuracy of
0.907 using the AUC test. The findings show that the annual mean temperature is the most important
factor, with the beetle flourishing in temperatures between 13.9 and 19.1 ◦C. The distribution is
greatly impacted by the mean temperature of the warmest quarter. Future projections using different
climate scenarios suggest potential changes in the beetle’s distribution. By integrating climate data
and occurrence records, this study provides insights into the vulnerability of Phyllognathus excavatus
to climate change and identifies regions where its habitat may be at risk as 81% of its current habitat
will be lost. The research helps to prioritize efforts to reduce the harmful effects of climate change on
insect biodiversity and to design effective conservation strategies. Overall, this study advances our
knowledge of the Phyllognathus excavatus beetle’s present and projected distribution patterns in the
Mediterranean region under the influence of climate change. It illustrates the significance of taking
into account how climate change would affect insect populations and the use of SDM and GIS tools
for researching and protecting insect biodiversity.
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1. Introduction

Due to the potential hazard climate change poses to mankind, food security, and
ecosystem balance, global warming is becoming an urgent issue for communities all over
the world. By absorbing heat emitted from the Earth’s surface, greenhouse gases like
carbon dioxide (CO2) have increased in the atmosphere, raising global temperatures [1].
With a rise of more than 40% since the beginning of the industrial revolution and more than
half of this increase occurring since 1970, human activities, notably the burning of fossil
fuels, have considerably contributed to the increase in atmospheric CO2 concentrations [2].
Different facets of our globe are showing the effects of climate change. The average surface
temperature of the planet has risen by around 1 ◦C since 1900, along with other climate-
related effects such as warming oceans, rising sea levels, a considerable loss of Arctic sea
ice, and an increase in the frequency and severity of heatwaves [3]. One area that has been
significantly impacted by climate change is insect biodiversity [2].

The Phyllognathus excavatus, also referred to as the dung beetle, is one of the insects
that is particularly susceptible to the effects of climate change. Dung beetles are essential for
seed distribution, ecological function, nutrient cycling, and environment preservation [4].
They contribute to waste decomposition, boost pasture production by returning nutrients
to the soil, and improve soil structure by aerating it, allowing for improved moisture
penetration [5]. They also interfere with the breeding cycles of flies and other parasites.

The Phyllognathus excavatus beetle has a wide distribution spanning from the Canary
Islands across North Africa, the Mediterranean region, central Europe, the Middle East,
and the Arabian Peninsula [6]. Its larval stage primarily resides in compost-rich soil,
where it feeds on organic matter. The larva is often observed during the summer months,
characterized by its slow-moving, relatively large, and white-bluish curved “C” shape [7].
The adult beetle exhibits a red-brown coloration and is easily distinguishable by the small
horn on the male’s head. It is predominantly nocturnal, and females lay their eggs in
organic matter and fresh dung [8,9]. Although specific life cycles and dung preferences may
vary among dung beetle species, they all reproduce through sexual reproduction, where
males transfer sperm to females. Subsequently, the females lay eggs in dung, and upon
hatching, the larvae emerge and feed on the surrounding feces. Eventually, the larvae enter
the pupa stage, undergo complete metamorphosis, and emerge as adult beetles, actively
searching for dung to feed on and other adults to mate with [10].

Climate change can directly and indirectly influence the distribution and abundance
of Phyllognathus excavatus beetles. Changes in temperature and precipitation patterns can
disrupt their life cycles, alter resource availability, and impact their reproductive success.
For example, shifts in rainfall patterns may affect the availability of fresh dung, which
is essential for successful reproduction and larval development. Increased temperatures
can also affect the timing of dung decomposition and alter the composition of microbial
communities associated with dung, which can indirectly impact the survival and fitness of
dung beetles [11]. Furthermore, climate change can alter the phenology and geographic
range of both the Phyllognathus excavatus beetles and their food resources. As temperatures
warm, the timing of life cycle events, such as emergence, mating, and egg-laying, may shift,
which can disrupt synchrony with their host resources. If the timing of dung availability
does not match with the life cycle stages of the beetles, it can lead to reduced reproductive
success and population declines [12]. In addition to direct effects on the beetles themselves,
climate change can also influence their interactions with other species. For instance, changes
in temperature and precipitation can affect the abundance and distribution of mammalian
herbivores that produce dung, potentially altering the availability and quality of dung
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resources for the beetles. Disruptions in these intricate ecological interactions can have
cascading effects on ecosystem processes, such as nutrient cycling and plant dynamics [13].

Geographical information systems (GISs) are one of the many cutting-edge scientific
methods that researchers employ to assess the effects of global warming on a beetle species
across its range [14]. By connecting climate change to bug dispersal, GISs offer useful
insights. One such method is species distribution modeling (SDM), which forecasts the
potential distribution of a species over a geographic area using environmental variables
and species occurrence data [15]. Researchers can better understand how changes in
temperature, precipitation, and other climatic conditions may affect insect populations
and their distribution patterns by investigating the impacts of climate change on insects
through SDM [16]. Scientists can determine which insect species are most vulnerable to
climate change and pinpoint areas where their habitats may be in danger by combining
temperature data with records of insect occurrence [15]. SDM can also be used to locate
prospective refugia, or locations that may continue to be suitable for insect species in the
face of a changing environment. To minimize the detrimental effects of climate change on
insect biodiversity, it is essential to prioritize conservation efforts and establish effective
conservation methods [17].

Therefore, the goal of this study is to evaluate the appropriateness of Phyllognathus
excavatus’s existing habitat across the Mediterranean region and to identify any potential
effects of climate change on its spread. This study seeks to offer important insights into
the vulnerability of this beetle species and contribute to the development of well-informed
conservation plans by the analysis of climate data, occurrence records, and using GIS
techniques. For the Mediterranean region’s ecosystems to continue functioning properly
and to preserve insect biodiversity, it is crucial to understand the current and projected
distribution patterns of Phyllognathus excavatus.

2. Materials and Methods
2.1. Occurrence Records

Almost all available records of Phyllognathus excavatus were collected from the litera-
ture and previous research [6,8], and the records of Phyllognathus excavatus in the digital
database www.GBIF.com accessed on 18 June 2022. A total of 620 occurrence records were
converted into a comma delimited format (CSV) and used to assess habitat suitability for
Phyllognathus excavatus in the Middle East and Mediterranean region [18] (Figure 1).
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Figure 1. Distribution of Phyllognathus excavatus in the Mediterranean region [18]; the records are
distributed throughout the whole range of the species.

2.2. Current and Future Climatic Data

With a spatial resolution of about 5 km2, the known 19 bioclimatic variables were
obtained from www.worldclim.org (accessed on 12 December 2022). The 19 bioclimatic
variables were clipped using the shapefile of the study area as a template, and the final set
was then converted to (ASCII) format using (ArcGIS v10.3, Special analyst tool, Extract by
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Mask), Table S1. The generated climatological data were used to make a primary screening
model to illustrate the most effective variables in the distribution of Phyllognathus excavatus.
Six bioclimatic variables were found to contribute more to the model with less correlation
effect: (Bio 1) Annual mean temperature, (Bio 2) mean diurnal range, (Bio 4) temperature
seasonality, (Bio 5) maximum temperature of warmest month (Bio 10) mean temperature
of warmest quarter, (Bio 17) precipitation of driest quarter. The final set of bioclimatic
variables was used to generate the final current model of the insect. For future data, parallel
datasets of temperature variables were used from www.worldclim.org (accessed on 18 June
2022) covering four GCMs scenarios (BCC-CSM1-1 (BC), CCSM4 (CC), MRI-CGCM3 (MG)
and NorESM1-M (NO)) for two representative concentration pathways (RCPs) 26 and 85
representing 2050 and 2070. These data have been developed by climate centers to predict
future temperatures by considering two levels of carbon concentration [19].

2.3. Species Distribution Modeling

The habitat appropriateness of Phyllognathus excavatus was estimated using the maxi-
mum entropy approach implemented in maxent v3.3.3e. This technique produces a superb
prediction model that simply depends on the availability of data [20]. Additionally, the
link between habitat appropriateness for a species that varies from low to high suitability
and bioclimatic variables was estimated using the response curve for each bioclimatic
variable [19]. 25% of the occurrence records in our model were utilized for testing, and 75%
were used for training. The model performance was improved by repeating this procedure
five times [21]. First, all 19 bioclimatic factors were included in this process. Then, using
the jackknife test of Maxent, the most significant collection of variables was determined
by excluding the variables that contributed less than 70% [9]. Also, for the 19 bioclimatic
data, a Pearson correlation function with a value of (|r| 0.8) was employed to reduce
multicollinearity. Finally, six biologically significant bioclimatic variables were selected to
create the final model based on numerous statistical analyses [20]. The raster calculator of a
special analyst tool in ARC-GIS was used to generate the calibration maps and calculate
the percentage loss [21].

2.4. Two-Dimensional Niche Methodology

The enveloped test of two-dimensional niche analysis was carried out using DIVA-GIS
software v7.5 using the annual mean temperature (Bio 1) and annual perception (Bio 12).
The test used recorded points to draw the niche range of the species throughout the study
range [22].

2.5. Model Evaluation

The model performance was estimated using the area under the curve (AUC) of the
receiver operating characteristics (ROCs), and its value ranged from (0) random discrimi-
nation to (1) perfect discrimination higher. AUC values more than (0.75) indicated strong
fitting of the models, whereas AUC values less than (0.5) indicated poor fitting of the
models for the ecology of the species under consideration [23,24].

3. Results
3.1. Model Evaluation and Bioclimatic Factor Contributions

A high value of the area under the curve, equal to 0.907, was obtained from the AUC
test of the maximum model for Phyllognathus excavatus. This demonstrates the excellent
validity of the distribution maps and models that were developed. The bioclimatic variable
(Bio 1) in the created model was the most effective one. Table 1 and Figure 2a show that
the annual mean temperature (Bio_1) with the percentage contribution is 40.4 degrees.
The study of the Bio_1 data shows that the best mean range was (13.9–19.1 ◦C), which is
a reasonably high temperature that is beneficial to some limits, Figure 2b. The Jackknife
test of the chosen variable demonstrates that the variables related to temperature have a
greater impact than the variables related to humidity Bio 17, Figure 2c. With a contribution

www.worldclim.org
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of 25.8%, the mean diurnal range (Bio 2) is the second most important bioclimatic element,
followed by the precipitation of the driest quarter (Bio 17), with contributions of 22.5% and
7.9%, respectively. With just a 2.1% and 1.2% impact, respectively, the remaining variables
of temperature seasonality (Bio 4) and maximum temperature of warmest month (Bio 5)
were insignificant.

Table 1. The permutation importance of the bioclimatic variables used to generate the final model of
Phyllognathus excavatus.

Variables Bio_2 Bio_1 Bio_17 Bio_10 Bio_4 Bio_5

Permutation
importance 22.5 40.4 7.9 25.8 2.1 1.2
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Figure 2. (a) Response curve of Bio_1 of the Phyllognathus excavates model. (b) represents the optimum
temperature for the species, and (c) represents the most effective bioclimatic variables on the habitat
suitability of the Phyllognathus excavates beetle.

3.2. Two-Dimensional Niche Analysis

The temperature and precipitation form the basic component of any species clima-
tological niche, so Bio 1 and Bio 12 were used to envelop the test to show the limitation
range of Phyllognathus excavates. The results indicated that this species has high adaptability
with all humidity conditions as it can be found in desert areas with very low rains and in
high humidity areas with high precipitations, while it has a somewhat narrow range of
temperature adaptability that ranges from 11 ◦C to 26 ◦C. In the generated graph in Figure 3,
the green points indicate the records that have all the 19 bioclimatic variables within the
enveloped niche of the species, while the red points are divided into two groups that occur
inside the enveloped niche; these occur under the limitation of the tested variables (Bio 1
and Bio 12), but have one or more other variables that occur outside the species range
limitation, while that occurs outside the enveloped already occurs out the limitation of the
tested variables.
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Figure 4. Phyllognathus excavates’ current predicted range. The species appears to have a very good
habitat suitability through the costal area of Mediterranean Sea through out North Africa, but it
dominate the lands in countries of south Europe such as Greece, Italy, Spain, and Portugal.

Our predictive model is consistent with the species’ actual geographic distribution;
it indicates a high likelihood of occurrence in southern Europe, particularly the Iberian
Peninsula (Portugal and Spain), as well as the Italian peninsula and the Greek Archipelago.
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Insects exhibit high to extremely high habitat suitability in the northern portions of Algeria,
Morocco, and Tunisia, as well as along the eastern coast of the Atlantic Ocean close to
Morocco and Mauretania on the western and southern beaches of the Mediterranean Sea.
In Sainai and the North Coast of Egypt, the environmental adaptability is quite good. Iran
and the Arabian Peninsula, on the other hand, are the low-suitability regions.

3.4. The Estimated Potential Future Distribution in 2050 and 2070

Four climatological change GCMs scenarios (BCC-CSM1-1 (BC), CCSM4 (CC), MRI-
CGCM3 (MG) and NorESM1-M (NO)) were used to generate mean predictive maps for
the future in 2050 and 2070. The generated maps for the future models of 2050 and 2070
under two (RCPs) 2.6 and 8.5 demonstrate significant habitat suitability loss across the
majority of their range. The extinction of regions like North Africa, Turkey, and Greece is
a serious concern. The Arabian Peninsula is obviously unfavorable for the species, and
some pocket habitats in the Gulf and Sudan will completely vanish. Northern France is the
only new location that will become better suited for Phyllognathus excavations, Figure 5. The
Calibration maps that were generated from comparing the current situation with the future
one ensures the extinction of this species on southern and eastern Mediterranean to Greece.
Italy, France, and part of Spain and Portugal will be the only range of this species through
the next 50 years, Figure 6. The percentage of complete loss of its habitat represented in the
worst scenario about 81% of its current range.
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Figure 5. Under two representative concentration pathways (RCPs 2.6, 8.5) of climate conditions
in 2050 and 2070, the mean estimated future distribution maps of the Phyllognathus excavatus beetle
was calculated. (a) RCP of 2.6 for 2050, (b) RCP of 8.5 for 2050, (c) RCP of 2.6 for 2070, and (d) RCP
of 8.5 for 2070 are all possible scenarios. The future maps show how the species habitat suitability
degradation through most of its range especially in the Mediterranean coasts of North Africa.
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4. Discussion

Global warming and climate change, driven by escalating greenhouse gas emissions,
are critical concerns due to their profound implications for biodiversity, ecosystems, and
human well-being [25]. The rising concentrations of CO2 result in heat absorption and
consequent warming of the Earth’s surface. Since 1900, the average global surface tem-
perature has risen by 1 ◦C as a result of human activity, primarily the use of fossil fuels,
which has increased atmospheric CO2 levels by almost 40%. These changes have induced
ocean warming, sea level rise, and intensified heat waves, signifying far-reaching climate
consequences [26]. Amidst these shifts, the Phyllognathus excavatus beetle, renowned for
its role in nutrient cycling, ecosystem function, and soil improvement, is vulnerable to
climate-induced alterations [5].

We created maps of the possible global distribution of the Phyllognathus excavatus
using MaxEnt modeling. The model’s prediction accuracy is quite very good, as shown
by the AUC of 0.907, which is a very good indicator. This shows that the measurement
of Phyllognathus excavatus’s global spread is accurate and can offer helpful direction for
decision-makers and mitigation efforts, particularly in areas where it has not yet emerged.
We also created forecasted global distribution maps for it using a geographic information
system (GIS). Other insect species, including Spodoptera frugiperda (J.E. Smith) (Lepidoptera:
Noctuidae) in central Asia, Bactrocera dorsalis Hendel (Diptera: Tephrididae) in China,
and Episimus utilis Zimmerman (Lepidoptera: Tortricidae) in Brazil, have also had their
geographic distributions mapped using this tool [27–29].

The current study addresses the significant impact of climate change on the distribu-
tion and habitat suitability of the Phyllognathus excavatus beetle through the Mediterranean
region and the Middle East. The research employs SDM to assess the beetle’s current
and potential future distribution in response to changing climatic conditions. The results
provide insights into the species’ habitat preferences and vulnerability to climate change,
contributing to our understanding of how climate-induced shifts may affect ecosystems
and agriculture in the Mediterranean area. The research reveals bioclimatic variables that
influence the spread of the Phyllognathus excavatus beetle. The annual mean temperature
(Bio 1) emerges as the most important element, considerably contributing to the habitat ap-
propriateness model. This emphasizes the beetle’s affinity for specific temperature ranges,
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with 13.9 ◦C to 19.1 ◦C being the ideal range. The study also emphasizes the significance
of other variables such as mean diurnal range (Bio 2), mean temperature of the warmest
quarter (Bio 10), and precipitation of the driest quarter (Bio 17), all of which contribute to the
spread of this beetle. These findings are consistent with previous research indicating that
temperature and moisture availability are crucial in determining species distributions [4,5].
The higher temperature limits Phyllognathus excavatus in contrast to its tropical cousin
Oryctes rhinoceros, whose annual temperature ranges were 27 ◦C to 29 ◦C [30]. The study’s
focus on specific bioclimatic variables allows for a deeper understanding of the ecological
niche of Phyllognathus excavatus and how it may respond to changing climatic conditions.

The predicted current distribution map aligns well with observed occurrence records,
with regions of high habitat suitability predominantly concentrated along the Mediter-
ranean coastlines. When projecting into the future, the study’s results indicate potential
shifts in the distribution of Phyllognathus excavatus under different climate scenarios (RCP
2.6 and 8.5) for 2050 and 2070. Particularly, areas in North Africa, Turkey, and Greece
face potential habitat loss, suggesting increased vulnerability to extinction. The Arabian
Peninsula appears to become unsuitable for the species, indicating a considerable reduction
in suitable habitats. These projected changes align with broader ecological predictions
of climate-driven shifts in species distributions, emphasizing the urgent need for con-
servation efforts at risk regions [31,32]. The envelope (two-dimensional niche) analysis
further supports the adaptability of Phyllognathus excavatus to varying humidity condi-
tions, while its temperature range appears relatively narrow (11–26 ◦C). This highlights the
species’ sensitivity to temperature fluctuations, which is consistent with the well-known
temperature-dependent nature of insect physiology and behavior [33].

The decline in habitat suitability in North Africa could have broader implications for
ecosystem functioning and nutrient cycling, as Phyllognathus excavatus plays a crucial role
in these processes. Reduced dung beetle populations could disrupt dung decomposition
and nutrient recycling processes, impacting soil quality and ecosystem health. When
taking a large view some other species of dung beetles could replace Phyllognathus excavates
through this area. Recently, a modeling study of Oplostomus fuligineus indicated that this
species of dung beetle will shift its range from tropical Africa to north Africa and it is
already collected from Tunisia [34]. Furthermore, the study’s findings have implications
for agricultural systems. Changes in the distribution of dung beetles can influence dung
decomposition rates and fly population dynamics, which could affect livestock health and
disease transmission [35]. Moreover, alterations in the beetle’s distribution could impact
animal waste management practices, potentially leading to shifts in waste degradation
rates and nutrient recycling in agricultural landscapes [36].

This study’s findings are consistent with earlier research on the effects of climate
change on species ranges and ecological interactions. For example, Parmesan and Yohe [35]
highlight the significance of temperature in shaping species’ reactions to climate change,
whereas Thuiller and others [36] investigate the possibility for range changes under dif-
ferent climate scenarios, such as the one that exists here in northern France. The study’s
focus on a single insect species and its ecological activities gives useful insights into the
potential effects of distributional changes on nutrient cycling and agricultural systems,
complementing larger research on biodiversity shifts [37–41].

However, it is important to acknowledge the potential limitations of the study. The
model assumes that species’ distribution is solely determined by climatic factors, neglecting
other ecological, biological, and anthropogenic factors that can influence distribution
patterns. Additionally, the accuracy of the predictions heavily relies on the accuracy of
input occurrence data and climate projections. This limitation is due to the relay of the
future models on climate only and we cannot easily know how other factors will be in
the future.
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5. Conclusions

This study provides valuable insights into the distribution of the Phyllognathus exca-
vatus beetle in the Mediterranean region in relation to climate change. The researchers
employed species distribution modeling (SDM) and geographical information systems
(GISs) to assess the beetle’s habitat suitability and vulnerability to climate change. The
study highlights the significance of climate variables, particularly temperature, in under-
standing the distribution patterns of Phyllognathus excavatus. The annual mean temperature
was identified as the most relevant variable, with temperatures ranging from 13.9 ◦C to
19.1 ◦C being optimal for the beetle’s survival. By understanding the temperature pref-
erences of the beetle, conservation efforts can focus on preserving and restoring habitats
that are favorable for its survival. Future projections based on different climate scenarios
provide valuable information for predicting potential changes in the beetle’s distribution.
This enables targeted conservation actions to counteract the negative impacts of climate
change. Proactive interventions such as habitat restoration and the establishment of pro-
tected areas can be implemented in regions where the beetle is expected to become less
suitable. The study emphasizes the importance of SDM and GIS technologies in study-
ing and safeguarding insect biodiversity in the face of climate change. The researchers
developed a comprehensive model that integrates climate data and occurrence records
to assess the vulnerability of Phyllognathus excavatus. This approach can be extended to
other insect species, enhancing our understanding of their distribution patterns and aiding
the development of effective conservation strategies. While the study provides valuable
information, it acknowledges certain limitations. The accuracy of the model predictions
depends on the quality and quantity of the data used. Future studies should aim to im-
prove data collection and incorporate additional factors that may influence the beetle’s
dispersion. Additionally, the study’s findings are specific to the Mediterranean region, and
caution should be exercised when extrapolating them to other geographic areas. Overall,
this research enhances our understanding of the habitat preferences and vulnerability of
the Phyllognathus excavatus beetle to climate change in the Mediterranean region. The
findings underscore the importance of integrating climate change considerations into insect
conservation efforts and highlight the effectiveness of SDM and GIS techniques in address-
ing the threats posed by climate change to insect biodiversity. By focusing on protecting
suitable habitats and implementing targeted conservation measures, we can work towards
mitigating the potential adverse effects of climate change on this species and contribute to
the overall conservation of insect populations in a changing environment.
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