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Abstract: Convolutional neural networks (CNN) are widely used for structural damage identification.
However, the presence of environmental disturbances introduces noise into the acquired acceleration
response data, impairing the performance of CNN models. In this study, we apply empirical mode
decomposition (EMD) and variational mode decomposition (VMD) to denoise the data from a steel
truss bridge. By comparing the smoothness and convergence of the obtained modal functions (IMFs)
using EMD and VMD, we confirm the effectiveness of VMD in smoothing and denoising the bridge
structure signals. Additionally, we propose a convolutional self-attention neural network (CSANN)
model to extract features and identify damage in the denoised data using VMD. Comparative analysis
of the CNN, LSTM, and GRU models reveals that the VMD-CSANN model outperforms the others in
terms of damage localization and identification accuracy. It also exhibits excellent performance when
handling noise-contaminated data with a noise level of 10%. These findings demonstrate the efficacy
of the proposed method for identifying internal damage in steel truss structures, while maintaining
smoothness and robustness during processing.

Keywords: modal signal decomposition; variational mode decomposition (VMD); self-attention
mechanism; convolutional neural network; structural damage identification

1. Introduction

In recent years, the establishment of an efficient health monitoring system capable
of accurately detecting internal signals from civil structures has emerged as a prominent
concern in the field of civil engineering [1–4]. In the structural health monitoring system
(SHMS), classical on-site measurement methods such as ambient vibration testing [5],
forced vibration testing [6], and impact vibration testing [7], which are direct methods,
often require the installation of numerous sensors directly on the bridge structure [8,9],
and the selection of a vibration parameter that is sensitive to structural damage (e.g.,
frequency [10], mode shape [11], strain energy [12], etc.), the parameter is then extracted
using sensors and analyzed using a specific method [13,14]. It is necessary to overcome
uncertainties associated with the structural model and the model parameters themselves,
including measurement errors, temperature and humidity variations, and other external
environmental influences on the structural vibration characteristics. Characteristic signal
feedback is utilized to determine the presence of damage in civil structures, enabling the
assessment of its location, extent, as well as the current state, functionality, and trend of
structural damage [15–18].

Currently, structural damage identification can be categorized into two main ap-
proaches: (a) Local detection of structural damage using techniques such as gamma-ray,
ultrasonic, and electromagnetic testing [19]. (b) Global detection of structural damage
through frequency response functions (e.g., acceleration response) and modal parameters
(e.g., damping, natural frequency, mode shapes), enabling non-destructive detection of
existing damage in structures under undamaged or minimally damaged conditions [20,21].
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Existing research has demonstrated that methods based on dynamic response signal
data yield significantly improved results in structural damage identification compared to
traditional non-destructive techniques [22].

Many cutting-edge techniques in computer vision today rely on deep neural net-
works [23]. The seamless integration of deep learning technology into the realm of civil en-
gineering has prompted both domestic and international researchers to explore the potential
of deep learning models like convolutional neural networks (CNN) [24–26] and recurrent
neural networks (RNN) in addressing challenges within the field of structural damage iden-
tification. Sheng [27] employed wavelet transformation on one-dimensional data, subse-
quently fed into a CNN model as images. This validated the reliability of two-dimensional
convolutional neural networks for fault diagnosis. Khodabandehlou et al. [28] utilized
acceleration data from a scaled model of a reinforced concrete bridge as experimental
data and employed a two-dimensional CNN for damage identification, demonstrating
the network’s effectiveness in recognizing minor damage. Lin et al. [29] applied CNN
to extract acceleration data generated by a simply supported beam finite element model,
achieving robust recognition results under various damage conditions and amidst varying
noise levels. Liu et al. [30] combined 1D-CNN with the transfer function, utilizing the
transfer function of the structural dynamic response of the ASCE benchmark as input
data. Comparative analysis with time series and fast Fourier transform (FFT) data re-
vealed that features derived from the transfer function data were more sensitive to damage.
Yang Jianxi et al. [31] introduced a structural damage identification method that integrates
CNN and long short-term memory (LSTM). The CNN model was employed to extract
topological correlation features from vibration acceleration input data across multiple event
windows, while LSTM further captured temporal dimension features. Experimental data
from a scale model of a bridge construction were tested and yielding favorable results.

Variational modal decomposition (VMD) stands out as a cutting-edge technique for de-
composing nonlinear signals into multiple frequency bands, distinguishing itself from con-
ventional spatial frequency and subspace signal processing methods. Notably, it eliminates
the need for computationally intensive calculations for both recursive and non-recursive
signals. This breakthrough allows for the comprehensive construction and resolution of
variational problems, achieving the separation of signal frequency bands [32,33]. This
innovative time–frequency analysis method accomplishes signal decomposition by con-
structing and solving constrained variational problems. It transforms the original signal
into a specified number of intrinsic mode functions (IMFs), a capability that is highly
effective in handling nonlinear and non-smooth signals. In the realm of structural damage
identification, highly sensitive time series sample parameters are found at critical structural
points, categorizable into the time domain, frequency domain, and time–frequency domain
based on signal types [34]. Utilizing VMD to preprocess vibration signals from structural
damage points, followed by smoothing and noise reduction, proves to be a viable approach.
Currently, numerous scholars have delved into the efficacy of VMD in processing vibration
signals related to structural damage. Zhang Jian et al. [35] introduced a structural damage
identification method leveraging VMD and Chirplet transform, successfully achieving
precise location and quantification of structural damage, both in single and multi-point
damage scenarios.

Wang Qiuxiao [36] furthered the exploration of VMD’s capabilities by integrating it
with deep learning models like CNN, LSTM, and BiLSTM. This integration was tested
using the IASC-ASCE SHM benchmark model, yielding impressive accuracy in damage
identification. This underscores the promising potential of VMD in the field of structural
damage identification.

Self-attention mechanisms represent a variant of attention mechanisms, adept at cap-
turing internal correlations within data or features themselves [37]. The self-attention
mechanism facilitates the model in capturing long-range dependencies between different
positions within an input sequence. These mechanisms enable the model to comprehend
data representation across various locations and subspaces, facilitating the learning of
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relevant information in different representation subspaces. Consequently, this empowers
the model to discern correlations between distinct parts of the entire input information [38].
In time series data, there are correlations between data sequences from the same mea-
surement point at different time steps. However, the efficacy of signal decomposition
or feature extraction techniques is often constrained in capturing these correlations. By
incorporating the self-attention mechanism, the model can be trained on extensive data to
learn the inherent dependencies and assign weighted importance to different values. This
application enhances the model’s capability to discern similar response waveform patterns
to a certain degree, thereby improving its overall discriminative power.

At the heart of the convolutional self-attention neural network (CSANN) lies the self-
attention mechanism layer and the convolutional layer. The self-attention layer is crucial
for correlating features at different nodes of the time series data with the model output,
thereby determining the representation of the time series. Meanwhile, the convolutional
layer focuses on extracting local feature information within the temporal neighborhood,
performing essential feature transformations [39].

Drawing inspiration from multivariate decomposition and smoothing processes ap-
plied to time series signals through variational mode decomposition in various fields [40,41],
this paper introduces a damage identification model that combines VMD and CSANN. This
model is then applied to structural damage identification using the acceleration response
data from multi-sensor measurement points on a steel truss structure as an example.

In different operating conditions, multiple sets of raw acceleration vibration response
signal data were acquired from sensors installed on a steel truss bridge structure. The
acquired data was subjected to noise contamination and then decomposed using empirical
mode decomposition (EMD) and variational mode decomposition (VMD). Comparative
evaluation of the obtained sets of intrinsic mode functions (IMFs) based on time–frequency
representations confirmed the data value of the IMF components derived from VMD
decomposition. Subsequently, the selected IMFs were concatenated and augmented with
the original data. The resulting dataset was then fed into a convolutional neural network
(CNN) model with the integration of a self-attention mechanism for feature extraction
and damage identification. The model was capable of assessing the extent of damage and
performing damage localization.

By conducting a comparative analysis between variational mode decomposition
(VMD) and empirical mode decomposition (EMD), we employed the VMD-CSANN model
to process signal data containing typical levels of background noise, and subsequent com-
parison with CNN, LSTM, and GRU models. The study confirms the effectiveness and fea-
sibility of the VMD-CSANN model in the identification of engineering structural damage.

2. Methodology
2.1. Variational Mode Decomposition

Introduced in 2014, variational mode decomposition (VMD) is a non-recursive signal
decomposition method [42]. VMD operates by seeking a set of modes and their respective
center frequencies from the input signal. Through Hilbert transform, the original signal
is decomposed into K modal components of limited bandwidth, denoted as vk(t). Each
IMF possesses a center frequency represented as ωt. The modal decomposition is subject to
two constraints: modal superposition and equivalence to the input signal.

To convert the center band of vk(t) to its corresponding baseband, the single-sided
spectrum of vk(t) is computed and multiplied by e−jωkt:[(

δ(t) +
j

πt

)
∗ vk(t)

]
e−jωkt (1)
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Then, to calculate the square norm of the demodulation gradient:
{ min{vk},{ωk}{∑

k
‖∂t[(δ(t) +

j
πt ) ∗ vk(t)]e−jωkt}‖2

2}

s.t. ∑
k

vk (t) = f (t)
(2)

In Formula (2), {vk} = {v1, · · · , vk} represent the decomposed intrinsic mode function
(IMF) components, {ωk} = {ω1, · · · , ωk} represent the central frequency of each compo-
nent, δ(t) represents the Dirac delta function, j is the imaginary unit, and f (t) is the original
signal. The unconstrained optimization is achieved by extending the Lagrange expression:

L({vk}, {ωk}, λ) = α∑
k
||∂i[(δ(t) +

j
πt ) ∗ vk(t)]e−jωkt‖2

2 + | f (t)

−∑
k

uk(t)‖2
2 + λ((t), f (t)−∑

k
uk(t))

(3)

By employing the alternating direction multiplication operator for the intrinsic modal

parameters and IMF central frequency, Equation (4) is utilized to iteratively update ˆ
u
(n+1)

k

until the optimal solution of the function is attained:

ˆ
u
(n+1)

k (ω) =

ˆ
f (ω)− ∑ i 6=k

ˆ
ui(ω) +

ˆ
λ(ω)

2
1 + 2α(ω−ωk)

(4)

In Equation (4),ω(n+1)
k is iteratively updated by Equation (5):

ω
(n+1)
k (ω) =

∫ ∞
0 ω| ˆuk (ω)|2dw∫ ∞

0 |
ˆ
uk (ω)|2du

(5)

λn+1 is updated iteratively according to Equation (6):

λn+1 = λn + τ( f −∑ un+1
k ) (6)

By iteratively applying the cyclic Equations (2)–(5) until the convergence condition
expressed in Equation (7) is met, the optimal decomposition of the original signal f (t)
is accomplished:

∑
k
‖un+1

k − un
k ||

2
2/‖un

k ‖ < 2 (7)

2.2. Convolutional Self-Attention Neural Network (CSANN) Model Construction

The CNN model used for target-specific damage identification requires the collection
of structural vibration data from the target in order to construct a comprehensive deep
learning dataset. In practical engineering applications, a combination of finite element
analysis and field testing allows us to acquire the original acceleration responses from each
measurement point under different damage states, forming the initial dataset. Furthermore,
there exists a correlation between data points at key nodes within the structure, occurring
simultaneously. Therefore, segments of acceleration signals within the same time interval
are continuously concatenated to enhance the model’s ability to distinguish signals under
diverse operating conditions.

During the acquisition process, each signal sample in the dataset is labeled and
differentiated using serial number labels based on the state of the structure. Once the
dataset is appropriately labeled, it serves as the training set to be fed into the CNN network.
The core structure of the CNN model comprises an input layer, a hidden layer, and an
output layer. Typically, the hidden layer is composed of several convolution layers, pooling
layers, and fully connected layers, as illustrated in Figure 1.
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In this paper, we employ a one-dimensional convolutional neural network to construct
our model. When compared to two-dimensional convolutional neural networks, the
one-dimensional variant offers the advantages of being lighter in weight and easier to
train due to having fewer parameters. Moreover, it demonstrates superior performance
when processing time series data. Importantly, 1D-CNN typically does not require altering
the dimension of the input signal, allowing it to preserve the signal characteristics to the
fullest extent.

Drawing inspiration from the earlier work of scholar Krizhevsky [43], we adopt the
rectified linear unit (ReLU) as the activation function for the convolutional layer. This
choice effectively enhances the performance of the deep convolutional neural network
when compared to alternative functions like sigmoid and tanh. In our paper, ReLU is
specifically chosen as the activation function for constructing the convolutional neural
network model for function K, expressed as follows:

K = FReLU(x) = max(0, x) (8)

In Equation (8), FReLU(x) represents the activation function and x is the element value
of the input function. The convolutional layer calculation is shown in Figure 2.

Building upon the foundation of the CNN model, we incorporate a self-attention
layer. The attention mechanism can be elucidated through the mapping relationships
between the query vector, a series of key-value vector pairs, and the resulting output
vectors. The core formula of the self-attention mechanism is presented in Equation (9). In
this context, the output vector is derived from a weighted summation of the value vectors.
Each value vector’s weighting coefficient is determined by assessing the compatibility
between the query vector and its corresponding key vector. The proportion between the
query vector and the main vector is then calculated using these weighting coefficients.
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When the query vector, key vector, and value vector pertain to the same sequence, this is
referred to as self-attention.
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In the process of computing a series of query vectors, it is customary to combine the
query vector, key vector, and value vector. This is achieved by utilizing query matrices,
key matrices, and value matrices to enhance computational efficiency. The underlying
principle of the self-attention mechanism is depicted in Figure 3. The dot product method
involves multiplying two vectors with different matrices, denoted as w, to obtain q and k.
The dot product of q and k yields α. In Figure 3, the green portion represents input vectors
a1 and a2, while the gray matrices Wq and Wk represent weight matrices that need to be
learned and updated by the model. By multiplying a1 with Wq, a vector q is obtained, and
by multiplying a2 with Wk, a scalar value k is obtained. Finally, the dot product of q and k
yields α, which represents the degree of correlation between the two vectors. On the right
side of Figure 3, the additive model mechanism involves multiplying the input vector with
the weight matrix, adding them together, projecting the result onto a new function space
using tanh, and then multiplying it with another weight matrix to obtain the final result.
Each α can be calculated, where q is referred to as the query and k as the key.

2.3. VMD-CSANN Joint Model Construction

The N segments of raw acceleration signal time series obtained from different mea-
surement points by sensor devices can be represented as an N ∗ T dimensional matrix M.
The length of this time series is determined by the sampling time and frequency. Each
segment of the time series Si is variational mode decomposition into K intrinsic mode
function (IMF) components vk(t) using the measurement point as a reference. Based on the
decomposed central frequency ωt, the IMF components are recombined to form new local
signal sequences St. These new signal sequences are concatenated with the original signal
sequences, using time as a reference, to create feature signals Si,t. The combination of all
feature signal sequences forms a new feature matrix Mt.
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After each vector matrix data is preprocessed as input data, it is input into CSANN.
The convolution layer extracts the signal features of the data through the convolution
operation of the input data, as shown in Figure 4.
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The convolution layer begins by initializing N 1-dimensional convolution kernels
of length x, employing Gaussian functions for random mobilization. These convolu-
tion kernels then slide horizontally along the input one-dimensional data matrix with a
defined sliding interval. At each position, a product operation and summation is per-
formed on the element values, resulting in a value. Ultimately, the m × 1-dimensional
one-dimensional data matrix is transformed into a [(m− x)/k + 1]× n-dimensional output
matrix, denoted as S.
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During the linear operation of data replication, it is customary to perform activation
calculations on the output matrix S. This entails coupling each element with an active
element in the matrix S, thereby introducing nonlinear factors. The resulting matrix is then
transferred to the next convolution layer for further processing, as follows:

f (i) = s(i)× K (9)

In Equation (9), f (i) represents each data value in the output matrix S after the addition
of factors, s(i) represents each data value in matrix S, and K represents the activation
function utilized by the convolutional layer.

In the construction of the convolutional neural network model, it is customary to insert
pooling layers between adjacent convolutional layers to mitigate overfitting. These pooling
layers typically include MaxPooling and AveragePooling. For this study, we employed
one-dimensional maximum pooling to process the time series data from the convolution
operation, denoted as time series A. A was segmented into several informational fragments
Ai, from which the maximum element value was extracted to form a new input matrix,
denoted as B:

ai,max = max{a1, a2, · · · , ai} (10)

In Formula (10), ai,max are the data obtained after maximum pooling of ai from the
original sequence A.

3. Case Study
3.1. Numerical Modeling Construction

Taking the damage identification of a steel truss structure as an example, the real
picture of the steel truss structure is shown in Figure 5 and the basic structure is shown
in Figure 6.
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Figure 6. Schematic diagram of steel truss structure.

In this study, we examine how various forms of damage affect the truss structure under
different operational conditions. The structural elements are connected using a coupling
method, with one end featuring a fixed hinge and the other a sliding hinge connection. The
total length of the structure is 8.4 m, with an inner steel pipe diameter of 12 mm and an
outer diameter of 18 mm. To simulate real-world conditions in numerical simulations, the
four endpoints at the two ends of the steel truss are anchored on four 150 kg pillars. The
properties of the steel pipes are detailed in Table 1.

Table 1. Steel pipe material properties.

Steel Tube Type Density Modulus of
Elasticity Poisson’s Ratio Cross-Sectional Area Moment of Inertia

Φ18 × 3 7850 kg/m3 2.06 × 1011 Pa 0.3 0.93 cm2 0.414 cm4

Modal parameters of the structure are determined through hammering excitation,
allowing for an examination of how damage impacts these parameters. Additionally,
acceleration signals are collected at each node, and the structural damage response data
is derived through the application of transfer functions. This comprehensive approach
enables a thorough investigation into the effects of different types of damage on the entire
truss structure.

3.2. Preprocessing

The number of rods in the experimental model is divided into 160 units, and the
units are numbered. The sizes of chord, vertical, and belly rods are 0.4 m and 0.65 m, and
are divided into 11 working conditions. Damage was created in units 7, 10, and 35. In
this experiment, the cutting length is positively correlated with the damage degree. The
longer the cutting length is, the lower the stiffness of the rod, and the greater the degree of
damage. The cutting length is 10 cm and 20 cm, respectively, and the setting of experimental
conditions is shown in Table 2.
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Table 2. Setting table of experimental conditions. The meaning of the + signal indicating the location
where the damage occurs.

Working Condition
Damage Unit Cutting Length

No. 7 No. 7 Straight Belly Rod No. 10 No. 35 10 cm 20 cm

WC0 + +
WC1 + +
WC2 + +
WC3 + +
WC4 + +
WC5 + + + +
WC6 + + +
WC7 + + No. 10 No. 10
WC8 + + + No. 10 No. 7 straight belly rod
WC9 + + +
WC10 + + + No. 10 No. 7, No. 35

The steel truss structure model has a total of 56 nodes, as shown in the figure. Because
the two ends of the model adopt simple support constraints, no sensors are arranged at
the two ends of the model, and sensors are only arranged for the remaining 52 nodes, as
shown in Figure 7. Due to the limitation of the number of sensors, the modal test is divided
into four groups. The acceleration data of each measuring point under pulse excitation
were collected with a sampling frequency of 1000 Hz and sampling time of 5 s.
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For the single-signal data measured by sensor N at a fixed frequency, since there is
a strong correlation between signals at a certain measuring point on the same time scale,
the measured acceleration responses at the measuring point within the same time interval
are combined with continuous signals, and the signals are integrated into one-dimensional
time series data segments. By hammering the center of the bar between different nodes, the
damage is caused in different positions of the structure.

The multi-label classification method is used to label the measured data under different
damage backgrounds as the label of the working condition, so as to ensure the classification
effect of the model is more accurate. By combining the datasets from different operating con-
ditions for all sensor points and their corresponding labels, an original dataset is obtained.
The original dataset consists of 11 unprocessed data sets with dimensions of 12,288 × 56,
where the operating condition number serves as the label. The 11 original datasets are
concatenated, resulting in an intergrated dataset with dimensions of 12,288 × 616. The
intergrated dataset is labeled based on the operating condition number. The damaged
operating conditions and their corresponding labels are shown in Table 3.

3.3. Implementation Details

The platform configuration used in this experiment is as follows: platform
system—Windows11; hardware configuration—CPU is 11th Gen Intel(R) Core(TM)
i7-11800H, memory is 16 G; the graphics card is an NVIDIA GeForce RTX3050Ti 8G*2;
experimental framework—Tensorflow2.3.0.
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Table 3. Damage conditions and data labels.

Operating Condition Number Working Condition Damage Condition

0 WC0 No. 7 10 cm
1 WC1 No. 7 20 cm
2 WC2 No. 10 10 cm
3 WC3 No. 10 20 cm
4 WC4 No. 7 straight belly rod 20 cm
5 WC5 No. 7 10 cm + No. 10 10 cm
6 WC6 No. 7 20 cm + No. 10 20 cm
7 WC7 No. 7 20 cm + No. 10 10 cm

8 WC8 No. 7 20 cm + No. 7 straight
belly rod 20 cm + No. 10 10 cm

9 WC9 No. 7 20 cm + No. 7 straight
belly rod 20 cm

10 WC10 No. 7 20 cm + No. 10
10 cm + No. 35 20 cm

The intergrated dataset was processed using z-score standardization for the prelimi-
nary processing of one-dimensional sequence data of each measurement point:

z =
x− u

σ
(11)

In Formula (11), x is the single-signal data in the measuring point, u is the mean value
of all signal values at the measuring point, and σ is the variance of all signal values at the
measuring point. Basic attributes such as dimension, quantity and length of data segment
do not change after z-score processing, and standardized processing can avoid extreme
outliers in the data. The obtained new time series data is defined as a window by the sliding
average window, and the sliding window is updated by the fixed sliding window. The
sequential average of the window is calculated successively, and the obtained sequential
average is connected to generate a new equilong time interval to obtain the dimensionality
reduction dataset.

To verify whether the VMD preprocessing step provides positive value to the sub-
sequent neural network, this study first applies noise addition to the aforementioned
dimensionality reduction dataset. Gaussian noise with a noise rate of 0.10 fn(t), resulting
in the noisy dataset. The fn(t) as described in Equation (12).

fn(t) = cos(4πt) +
1
4

cos(48πt) +
1
16

cos(576πt) + n (12)

To simulate the interference effects of external environmental factors on the signal
data in real-world scenarios, noise is added to the data, and then both EMD and VMD
are applied for processing. Figure 8a displays the time-domain waveforms of the original
signal and the IMF components obtained after EMD decomposition, while Figure 8b shows
the FFT spectra of the IMF components. During the actual experiment, it was observed that
the waveforms of the modal components after IMF1 gradually disperse, and the FFT spectra
beyond IMF9 become too boundary-dominated, losing their reference value. Therefore,
only the FFT spectra of IMF1 to IMF9 are presented.

In the decomposition process of VMD, the Lagrangian multiplier and quadratic penalty
play crucial roles as smoothing mechanisms. The Lagrangian multiplier strengthens the
constraints, while the quadratic penalty enhances convergence. The Lagrangian multiplier
method transforms the constraints into penalty terms in the objective function and adjusts
the weight of the penalty term using Lagrangian multipliers. During the hyperparameter
tuning process, the regularization strength or weight of the regularization term can be
flexibly controlled by setting the penalty factor of VMD, allowing for better control over the
smoothness or sparsity of the decomposed mode functions. Additionally, the algorithm’s
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noise tolerance is set to 0. The mode functions are uniformly initialized, with their initial
values set as random numbers from a uniform distribution. The convergence of the
algorithm is controlled by setting the tolerance parameter. The decomposition scale is
shown in Table 4, with the center frequencies of f_1 to f_4 set as 2, 24, 128, and 288,
respectively. The core hyperparameters of VMD are listed in Table 4. Figure 9a shows
the time-domain waveforms of the original signal and the IMF components obtained after
VMD decomposition. Figure 9b displays all the IMF components, Figure 9c shows the FFT
spectra of each IMF component.
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Table 4. The important hyperparameters related to VMD decomposition.

VMD

Penalty Factor (alpha) 200
Noise Tolerance (tau) 0

Decomposition Scale (K) 4
Direct Current Part (DC) 0 (None)

Uniform Initialization 1
Tolerance 1 × 10−7

Noise Rate 0.10
Time Domain (T) 4096

f_1 Center Frequency 2
f_2 Central Frequency 24
f_3 Central Frequency 128
f_4 Central Frequency 288
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By comparing the signal representations of intrinsic mode functions (IMFs) obtained
through empirical mode decomposition (EMD) and variational mode decomposition
(VMD), it is evident that EMD, due to its inability to set the number of decomposed
IMFs as hyperparameters, produces multiple signal components that deviate significantly
from the original data. In contrast, VMD, with controllable parameters and decomposition
guided by the central frequency ωt, yields IMFs that are relatively uniformly dispersed
around the original signal.

Additionally, analyzing the FFT spectra of the IMF components obtained from EMD
and VMD reveals distinct differences. The FFT spectrum of EMD exhibits gradual marginal-
ization from IMF1 onwards, with IMF10 and IMF11 being severely marginalized, resulting
in poor visualization. Therefore, these components are not included in the analysis. In
contrast, the FFT spectra of the VMD-decomposed IMFs demonstrate distinct frequency
distributions for each IMF component, indicating their potential value for data analysis
and experimentation.

Furthermore, in accordance with the theoretical framework outlined in reference [10],
this study incorporates Gaussian noise with a 10% noise level into the data, under the
prior setting of Lagrangian multipliers and quadratic penalty factors. The purpose is to
simulate VMD’s ability to withstand external disturbances and achieve noise robustness
under generalized conditions, through its inherent central constraint and non-smooth band
decomposition. The resulting decomposition plots clearly indicate that the IMF components
generated by VMD do not exhibit sparsity.
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It is worth mentioning that in subsequent experimental sections, where VMD decom-
position is utilized as input for a neural network model, the final recognition performance
further confirms the robustness of VMD’s processing capabilities.

Then, the data set was decomposed by variational mode to obtain the modal compo-
nent IMF of the data, and the IMF data and noisy dataset were horizontally expanded to
obtain the dataset to be trained with dimension 4096 × 1232.

To investigate the impact of acceleration response signal selection criteria on the
effectiveness of structural damage identification in this experiment, three experimental
schemes were adopted under impact excitation. These schemes involved the selection of
three different operating conditions (i.e., extracting data from the dataset with matching
labels of the corresponding operating condition number):

(1) Working conditions WC1, WC3, WC5, WC7, and WC9 are selected;
(2) Working conditions WC2, 4, 6, 8, and 10 are selected;
(3) All working conditions are selected.

In different experimental schemes, the quantity of IMF components is determined by
the decomposition scale parameter, k, in VMD. Leveraging the inherent mode superposition
property of VMD, the IMF components can be combined and averaged to accentuate the
representation of crucial information, as demonstrated in Equation (13).

X(t) =
K

∑
k=1

Ck(t) (13)

In Equation (13), X(t) represents the original signal, and Ck(t) represents the k
mode component.

Through a trial-and-error approach, an evaluation is conducted on each segment
obtained by directly concatenating IMF components with the original signal and on the new
signal segment obtained by averaging several IMF components and concatenating it with
the original signal. Evaluation criteria include assessing whether the IMF signals deviate
significantly from the structural resonance characteristics, whether nonlinear breakpoints
occur at the concatenation points of the new signal segments, and whether the overall
smoothness of the new signal is reduced. After selecting effective components [44] suitable
for horizontal concatenation with the original signal, the selected effective components
and the new signal data obtained from the original dataset replace the original data. The
final selection of effective IMF components related to structural characteristics and the
total number of IMF components obtained after VMD decomposition for each of the three
schemes are presented in Table 5.

Table 5. Screening of effective components and the total number of effective components after VMD
decomposition of time series signals under the three schemes. The \ symbol indicates that the data
has not been applied in this Option.

Working Condition

Option

Option 1 Option 2 Option 3

WC0 \ \ 1/4
WC1 2/4 \ 1/4
WC2 \ 1/4 2/4
WC3 2/4 \ 1/4
WC4 \ 2/4 1/4
WC5 2/4 \ 2/4
WC6 1/4 2/4 1/4
WC7 2/4 \ 2/4
WC8 \ 1/4 1/4
WC9 1/4 \ 1/4

WC10 \ 2/4 2/4
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The VMD-CSANN model in this paper consists of two sets of hyperparameters. The
first set pertains to the parameters that need to be adjusted for VMD decomposition,
as described in Table 4. The second set pertains to the hyperparameters that need to
be adjusted for the CSANN model, such as the convolution layer size, dropout layer
ratio, learning rate, etc. The hyperparameters of the two parts have influence on the
final recognition effect of the experiment. There are many methods available for network
parameter optimization. In this paper, grid search is used to combine key parameters in
the model, take the average accuracy of the final verification set as the objective function,
and make multiple comparison adjustments to optimize parameters. Finally, the CSANN
model is established by parameter combination as shown in Table 6.

Table 6. The important hyperparameters related to the CASNN model.

CSANN

Input Shape 4096 × 1

Number of Convolutional Layers 2
Convolution Layer Shape (16,16) × 1; (64,4) × 1
Number of Pooling Layer 2

Pooling Layer Shape (2,2) × 2
Learning Rate 0.0002

Batch Size 64
Epoch 50

Number of Cross Verification Folds 5
Number of Self-Attention Layer 1

Self-Attention Layer Count Times 3

Through comparison experiments between VMD-CSANN and the iconic CNN, LSTM,
and GRU models, the effect of the VMD-CSANN model is verified. The comparison neural
network models are shown in Figure 10.
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3.4. Results

In this paper, the structural damage identification experiment can be regarded as a
multi-label classification of multivariate time series. The reference criteria for evaluating
the model effect are accuracy of validation set, loss value, F1 score, precision and recall.
The accuracy rate is the average of the K validation sets obtained by K-fold cross-validation
value and variance, F1 score, accuracy rate, and recall rate are the mean of the K validation
sets obtained by K-fold cross-validation, The loss function adopts the cross entropy loss
function. For the three experimental schemes, the comprehensive recognition accuracy
and loss values of each comparison model were compared horizontally, as shown in
Table 7. F-1 value, accuracy rate and recall rate are shown in Table 8. The running time
of each comparison model is shown in Table 9. The confusion matrix generated by the
three experimental schemes is shown in Figure 11.

Table 7. Accuracy and loss of each model verification set.

Compared
Model

WC1, 3, 5, 7, 9 WC2, 4, 6, 8, 10 All

Accuracy
Rate

(Average)

Precision
Rate

(Variance)
Loss

Accuracy
Rate

(Average)

Precision
Rate

(Variance)
Loss

Accuracy
Rate

(Average)

Precision
Rate

(Variance)
Loss

CNN 91.87% 94.48% 0.1315 91.87% 94.48% 0.4865 87.80% 89.77% 0.4865
LSTM 77.24% 83.76% 0.7594 80.36% 87.32% 0.6194 88.62% 90.74% 0.3504
GRU 78.86% 79.87% 0.6716 84.82% 86.43% 0.5141 90.24% 91.88% 0.3157
VMD-

CSANN 95.12% 93.99% 0.1291 93.75% 94.46% 0.1993 93.90% 94.00% 0.3014

Table 8. F1 score, accuracy rate and recall rate of each model validation set.

Compared
Model

WC1, 3, 5, 7, 9 WC2, 4, 6, 8, 10 All

F1 Score
(Average)

Precision
Rate

(Average)

Recall
Rate

(Average)

F1 Score
(Average)

Precision
Rate

(Average)

Recall
Rate

(Average)

F1 Score
(Average)

Precision
Rate

(Average)

Recall
Rate

(Average)

CNN 0.9284 0.9321 0.9306 0.9310 0.9281 0.9218 0.8791 0.8842 0.8769
LSTM 0.7815 0.7865 0.7892 0.8231 0.8219 0.8291 0.8814 0.8852 0.8783
GRU 0.7882 0.7931 0.7872 0.8452 0.8523 0.8493 0.9051 0.9101 0.9089
VMD-

CSANN 0.9412 0.9459 0.9482 0.9381 0.9421 0.9401 0.9317 0.9391 0.9401

Table 9. Statistics of running time of each model.

Compared Model
WC1, 3, 5, 7, 9 WC2, 4, 6, 8, 10 All

Running Time Running Time Running Time

CNN 19.5 s 19.7 s 37.4 s
LSTM 16.4 s 16.2 s 32.3 s
GRU 15.8 s 15.1 s 33.1 s

VMD-CSANN 15.4 s 14.9 s 31.8 s

Under the condition of keeping the hyperparameters such as epoch and learning rate
consistent among all the compared models, the VMD-CSANN combined model demon-
strates superior performance in terms of accuracy, loss value, F1 score, precision, and
recall metrics compared to other models. This is attributed to the ability of variational
mode decomposition to decompose the original signal, including noisy and non-smooth
segments, into several relatively smooth segments. This substantiates that augmenting the
VMD-CSANN model with both VMD and self-attention mechanisms leads to improved
recognition capabilities, whether for specific working conditions or across the board.
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However, it is worth noting that the recognition effectiveness for all working condi-
tions, particularly those with larger datasets, is marginally less optimal compared to specific
working conditions. This nuanced difference underscores the importance of considering the
specific characteristics and complexities of the data when evaluating model performance.
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4. Conclusions

In this paper, we present a structural damage identification method that leverages
variational mode decomposition (VMD) in tandem with a convolutional neural network
(CSANN). Through numerical simulation experiments involving the acceleration response
of steel truss structures, we have observed that, even without employing GPU acceleration,
the combined VMD-CSANN model demonstrates superior performance compared to the
comparison model. The loss value is also generally lower compared to the comparison
models. The total time required for five cross-validations is 36.8 s, slightly faster than the
CNN model, yet slower than the LSTM and GRU models.

The correlation value of the VMD-CSANN model surpasses that of the comparison
model, indicating superior recognition accuracy and noise resistance. This suggests that
the model meets the demands of structural health monitoring system tasks for damage
identification. However, it is important to note that this paper primarily focuses on damage
pattern recognition within simulated structures. The challenge of recognizing damage in
complex engineering structures with real-world signal data warrants further investigation.
Additionally, given the more intricate data processing involved in the VMD-CSANN model
compared to traditional models, the combination and selection of model structures and
hyperparameters are currently constrained. Future research should explore more effective
methods for model optimization.
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