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Abstract: To address the contradiction between the convergence error and convergence rate in the
LMS algorithm, this study proposes a variable-step-size adaptive filter algorithm with a momentum
term based on the logistic function. First, the normalization LMS algorithm is obtained by seeking
the extremum under the Lagrange function constraint. Second, to reduce the convergence error of the
algorithm, the logistic model is used as a function model of step size variation with error, resulting
in a variable-step normalization LMS algorithm. Our experimental results demonstrate that this
algorithm achieves smaller convergence errors compared to those of the traditional LMS algorithm.
Finally, to further improve the convergence rate of the algorithm, a momentum term is introduced
into the weight coefficient update process of the LMS algorithm. This leads to the development of a
variable-step adaptive filter algorithm with a momentum term based on the logistic function. The
impact of different parameters on the algorithm performance is also investigated. In order to verify
the rationality of the proposed algorithm, a dynamic system mathematical model was identified
using the proposed algorithm. The results showed that the proposed algorithm had an identification
accuracy of over 97% for the mathematical model parameters and a suppression of over 99% for noise.
In order to verify the engineering application value of the proposed algorithm, real-time vibration
data fitting experiments were conducted in the Aeroelasticity Laboratory of the China Aerodynamics
Research and Development Center, and their results were compared with three algorithms: ARMAX,
N4SID, and LMS. The results showed that the proposed algorithm had a higher fitting accuracy than
the three others. Through simulations and experiments, it is demonstrated that this study has value
both theoretically and in engineering applications, promoting engineering applications of adaptive
filtering algorithms and providing strong support for the research of adaptive control.

Keywords: momentum term; variable-step-size LMS algorithm; convergence error; convergence
precision; system identification

1. Introduction

Adaptive filtering algorithms play a crucial role in modern information science and
control theory. They are widely applied in fields such as system identification, holographic
projection, and engineering control [1,2]. Among them, the adaptive LMS (Least Mean
Square) algorithm, introduced by the American mathematicians Widrow and Hoff in the
1960s and based on the principles of Wiener and Kalman filters, has been extensively
studied and utilized [3–6]. One distinguishing feature of this algorithm is that it overcomes
the drawback of requiring prior knowledge of the input signal to obtain optimal filter
coefficients, as observed in the Wiener and Kalman filter principles. Moreover, it has such
advantages as simple algorithm principles and structures as well as ease of implementation.
Researchers have proposed numerous improvements to address its limitations [7–12]. For
example, Wang et al. [8] introduced a variable-step-size LMS algorithm with the Tanh
function as a model. In the early 20th century, researchers recognized the potential of
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kernel methods in extending linear algorithms to the nonlinear field, which led to in-
creased focus on their application in the field of nonlinear adaptive filtering. For example,
Principe J C et al. [13] combined the LMS algorithm with kernel knowledge to propose the
Kernel Least Mean Square (KLMS) algorithm. In the complex domain, Widrow B et al. [7]
introduced the Complex Least Mean Square (CLMS) algorithm in 1975. Different from
neural network black-box models, adaptive filtering algorithms take full advantages of neu-
ral network algorithms and establish white-box data models, providing strong theoretical
support for characteristic analyses and the control algorithm design of complex systems.

At present, the PID control algorithm is the most widely used and mature control algo-
rithm in the field of engineering technology. However, modern industrial process control is
becoming increasingly complex, and traditional mathematical model identification algo-
rithms and PID control algorithms already face difficulties in meeting these ever-changing
needs [14–17]. Moreover, the demand for intelligent control is increasing. With the rapid
development of intelligent learning algorithms based on BP neural networks, a large num-
ber of intelligent control algorithms have been proposed, which have achieved good results
in many studies. However, in practical engineering applications, it is difficult to achieve
stable and reliable results. For example, in wind tunnel tests simulating aircraft flight, in
order to suppress the vibration of the aircraft in high-speed fluids, PID-algorithm-based
control methods were adopted and achieved favorable results. However, for some aircraft
with special configurations, their vibration is very severe during wind tunnel testing, and
due to the obvious fluid structure coupling effect, the controlled system modal frequency
undergoes “drift”, resulting in poor PID control [18–21]. The data-driven adaptive control
algorithm is an important way to solve the above problems. Although neural networks
have performed well in simulation calculations, their stability in engineering is not high,
and a large amount of data is required for training in the early stages. These shortcomings
make it difficult for neural network algorithms to be applied in wind tunnel tests with high
safety requirements. The adaptive filtering algorithm has data fitting capabilities compara-
ble to those of neural networks and does not require a large amount of data for training,
saving a great amount of experimental costs. Therefore, the system identification technol-
ogy based on the adaptive filtering algorithm has been studied in depth, and identifying the
controlled object mathematical model more accurately is a key step in achieving adaptive
control. The adaptive filtering algorithm shares a core principle with the backpropagation
(BP) neural network, in which a cost function is constructed using the error, and the optimal
weight coefficient that minimizes the error is obtained through iterative solutions [22]. One
specific algorithm proposed in this paper is the variable-step-size adaptive filter algorithm,
which incorporates the logistic function and a momentum term. This algorithm builds
upon the standard LMS algorithm and derives a new weight update formula under the
Lagrange function constraint, i.e., the normalization LMS algorithm (NLMS). Due to the
inherent contradiction between the convergence rate and convergence error in the LMS
algorithm, the logistic function model is introduced into the NLMS algorithm as a function
of the step size varying with the error, leading to the variable-step normalization LMS
algorithm (VSNLMS). Numerical examples demonstrate that the VSNLMS effectively re-
duces the convergence error. Furthermore, a momentum term is introduced during the
weight iteration process of the VSNLMS algorithm, which consists of a forgetting factor
and historical weight. This enhancement enables the algorithm to converge faster, resulting
in the momentum-variable step normalization LMS algorithm (M-VSNLMS). Through
numerical examples, it is demonstrated that this algorithm achieves a smaller convergence
error and shorter steady-state convergence compared to those of the LMS algorithm. To
verify the applicability of the proposed algorithm in practical applications, system identifi-
cation is performed on a dynamic system mathematical model that incorporates noise. The
results show that the proposed algorithm exhibits a higher convergence rate and smaller
convergence error than those of the traditional LMS algorithm. A system identification was
conducted on a dynamic system in the Aeroelasticity Laboratory of the China Aerodynam-
ics Research and Development Center (CARDC). The results showed that the data fitting
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accuracy of the algorithm was higher than that of the LMS algorithm and traditional N4SID
and ARMAX algorithms; thus, it has value in engineering applications and provides strong
support for the subsequent implementation of active control.

2. Algorithm Principle
2.1. Principle of LMS Algorithm

The adaptive LMS algorithm is based on the Wiener filter and incorporates the gradient
descent method. It minimizes the error between the filter output y(n) and the desired output
d(n) by adjusting the weight vector. The cost function used is obtained as follows:

J(n) =
1
2

e2(n) (1)

By taking the gradient of J(n) with respect to w(n), the weight update formula for the
standard LMS algorithm can be obtained as follows:

w(n + 1) = w(n) + µ(−∇J(n))
= w(n) + µe(n)X(n)

(2)

The schematic diagram of system identification based on the LMS algorithm is shown
in Figure 1.
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Figure 1. Schematic diagram of system identification based on LMS algorithm. 

   

Figure 1. Schematic diagram of system identification based on LMS algorithm.

The detailed model of the adaptive LMS algorithm is depicted in Figure 2.
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Figure 2. Schematic diagram of LMS algorithm model.

In summary, the LMS algorithm consists of two main processes: filtering and adaptive
adjustment. The specific steps are as follows:
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(1) Determine the parameters: the global step size parameter β and the number of taps in
the filter.

(2) Initialize the initial value of the filter.
(3) Algorithm operation process:

Filter output: y(n) = wT(n− 1)X(N)
Error signal: e(n) = d(n)− y(n)
Weight coefficient update: w(n) = w(n− 1) + µe(n)X(N)

Here, X(N) = [x(n), x(n− 1) · · · , x(n− k + 1)]T represents the input of each tap of
the k-th order filter.

2.2. Principle of Variable-Step LMS Algorithm

By using the Lagrange multiplier method to find the extreme value under the con-
straint, the following equations are derived:

∆w(n + 1) = w(n + 1)− w(n) (3)

d(n) = wT(n + 1)X(N) (4)

where Equation (3) is the formula for the incremental weight, and Equation (4) is the
expected value (the constraint). Therefore, the cost function obtained using the Lagrange
multiplier algorithm is as follows:

J(n) = ‖∆w(n + 1)‖2 + λ
[
d(n)− w(n + 1)TX(N)

]
(5)

where λ is the Lagrange multiplier coefficient. If we take the partial derivative of J(n)
about w(n + 1) and obtain 0, then we have the following:

∂J(n)
∂w(n + 1)

= 2[w(n + 1)− w(n)]− λX(N) −−→= 0

w(n + 1) = w(n) +
1
2

λX(N) (6)

Based on the above formula, there is the following expression:

e(n) = d(n)− y(n) = wT(n + 1)X(N)− wT(n)X(N)

= 1
2 λ‖X(N)‖2 (7)

The Lagrange coefficient λ can be obtained as follows:

λ =
2e(n)

‖X(N)‖2 (8)

The new normalized weight update algorithm obtained from the above formula is
as follows:

w(n + 1) = w(n) +
µ

γ + ‖X(N)‖2 e(n)X(N) (9)

where µ is the iterative step size. To prevent the divergence of the algorithm when x(n) is
small, a parameter γ (0 < γ < 1) is introduced. It is evident that the iterative step size of
the algorithm remains constant. The logistic function is a widely used nonlinear mapping
S-shaped function in deep learning. Its general form is as follows:

f (x) =
1

1 + ex (10)
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Therefore, the functional model with the step size varying with the error is as follows:

µ(n) =
1

1 + exp(−|e(n)|) − 0.5 (11)

Considering Equations (9)–(11) comprehensively, the improved model of the step size
varying with the error is obtained as follows:

µ(n)1 =
α
[
1− exp(−β|e(n)|2)

]
γ + ‖X(N)‖2 (12)

2.3. Principle of Variable-Step LMS Algorithm Based on Incidental Momentum Term

The momentum “accumulates” historical gradients. Therefore, when the weight
iteration algorithm includes a momentum term, the weight increment at previous moments
will affect the weight change at the current moment. A larger forgetting factor indicates
that the weight increment at previous moments has a greater impact on the weight change
at the current moment. This discussion only focuses on the impact of the weight increment
at the previous moment on the weight increment at the current moment. The new weight
algorithm proposed is obtained as follows:

∆w(n)′ = ∆w(n) + θ∆w(n− 1)
= µe(n)X(N) + θ∆w(n− 1)

w(n) = w(n− 1) + ∆w(n)′
(13)

where θ is the forgetting factor. Obviously, if the weight increment ∆w(n) at the current
moment is in the same direction as the weight increment ∆w(n− 1) at the previous moment,
the magnitude of the weight increment will increase. If they are in the opposite direction,
the magnitude of the weight increment will decline. Based on the above discussions,
the process of the variable-step LMS algorithm with a momentum term can be obtained
as follows:

(1) Determine the parameter: the number of taps for the filter.
(2) Initialize the initial value of the filter.
(3) Algorithm operation process:

Filter output: y(n) = wT(n− 1)X(N)
Error signal: e(n) = d(n)− y(n)

Step size adjustment: µ(n)1 =
α
[
1−exp(−β|e(n)|2)

]
γ+‖X(N)‖2

Weight coefficient update:
∆w(n) = µe(n)X(N) + θ∆w(n− 1)
w(n) = w(n− 1) + ∆w(n)

3. Numerical Simulation and Verification
3.1. Determine the Optimal Algorithm Parameters

The standard wideband signal x(t) is obtained as follows:

x(t) = exp(i× 2π × ( f0t +
1
2

kt2)) (14)

where f0 is the starting frequency and k is the rate of frequency change over time. Setting f0
to 10 Hz, k to 500, and the sampling period to 0.001 s, the standard LMS algorithm and the
variable-step normalization LMS (VSNLMS) algorithm are used to filter the noisy signal
s(t). The filtered signals s′(t) and x(t) are compared for their errors. Figure 3a shows the
time domain of the original signal x(t) and the noisy signal s(t) with white noise, and
Figure 3b shows the Hilbert time-frequency energy.
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Figure 3. Time domain and Hilbert time-frequency energy of original signal and noisy signal.

As shown in Figure 4, the output error diagram of a filter pair based on the LMS
algorithm and VSNLMS algorithm is shown.
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Figure 4. Schematic diagram of filtering error based on LMS and VSNLMS algorithms.

Obviously, the output error of the VSNLMS algorithm is significantly smaller than
that of the LMS algorithm, indicating that the VSNLMS outperforms the LMS in filtering.
The Pearson correlation coefficient R between s′(t) and x(t) is calculated to evaluate
the filtering performance of different algorithms. Moreover, to quantify the impact of
parameter changes on the filtering performance of the VSNLMS algorithm, the control
variable method is used to obtain the R value between s′(t) and x(t) when the parameters
α, β, and γ range from 0.1 to 0.9. Finally, the optimal filtering parameters for the VSNLMS
algorithm are determined. The formula for calculating the Pearson correlation coefficient is
obtained as follows:

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(15)

where xi, yi, x, and y represent the sample points and the corresponding means for the two
datasets. Table 1 shows the R values obtained based on the LMS and VSNLMS algorithms.
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Table 1. Changes in correlation coefficient R values of LMS and VSNLMS algorithms under different
parameter conditions.

Based on LMS Algorithm

R1 0.8822

VSNLMS algorithm, β, γ take 0.5, α take 0.1~0.9
R2 0.9505 0.9656 0.9718 0.9752 0.9774 0.9789 0.9801 0.9810 0.9817

VSNLMS algorithm, α, γ take 0.5, β take 0.1~0.9
R3 0.9507 0.9655 0.9716 0.9750 0.9772 0.9787 0.9799 0.9808 0.9815

VSNLMS algorithm, α, β take 0.5, γ take 0.1~0.9
R4 0.9779 0.9778 0.9777 0.9776 0.9775 0.9774 0.9773 0.9772 0.9771

According to the above quantitative analysis, the optimal parameters for the VSNLMS
algorithm are as follows: α = 0.9, β = 0.9, and γ = 0.1. On this basis, the impact of θ on
the M-VSNLMS algorithm is further analyzed. Table 2 reports the R values obtained by the
LMS and M-VSNLMS algorithms. By adjusting the value of θ, the variation trend of R with
θ is investigated based on the conclusions in Table 1.

Table 2. Changes in correlation coefficient R values of LMS and M-VSNLMS algorithms under
different parameter conditions.

LMS Algorithm

R1 0.8822

M-VSNLMS algorithm, α, β take 0.9, γ take 0.1, θ take 0.1~0.9
R5 0.9778 0.9792 0.9796 0.9811 0.9821 0.9831 0.9835 NaN NaN

It can be observed from Tables 1 and 2 that as the parameters α, β, and θ increase, the
correlation coefficient R between the filter output sequence and the original sequence also
increases, and the algorithm diverges when θ is set to 0.8 or 0.9. Nevertheless, the correlation
coefficient R declines as the parameter γ increases. Figure 5 shows the relationship between
the Pearson correlation coefficient R and values of the parameters α, β, γ, and θ obtained
via the control variable method.
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From Figure 5, it can be observed that the correlation coefficient between the output
sequence of the M-VSNLMS algorithm and the original signal is much higher than the result
of the LMS algorithm. Additionally, parameters α and β have the most significant impact
on the algorithm, and the momentum term coefficient θ further improves the prediction
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accuracy of the algorithm. Although the increase in γ results in a decrease in prediction
accuracy, this impact is slight.

The above analysis shows that the optimal parameters for the M-VSNLMS algorithm
are as follows: α = 0.9, β = 0.9, γ = 0.1, and θ = 0.7. On the basis of the above conclusions,
the LMS and M-VSNLMS algorithms are used to filter the noisy signal s(t). Figure 6
illustrates the convergence process of the weight values for both algorithms. For the LMS
algorithm, since its weight increment is fixed-step, the weight convergence curve is smooth,
but the convergence rate is obviously slow. And at the sampling time of 15 s, the weights are
still in a slow iteration process. For the M-VSNLMS algorithm, since its weight increment
is variable-step, the weight convergence curve is erratic, but the convergence rate is fast. At
t1 = 1.5 s, the weight of each tap quickly converges, and at t1 = 4 s, the weight of each tap
roughly converges to a stable state. These demonstrate that the M-VSNLMS algorithm not
only has significantly smaller convergence errors compared to those of the LMS algorithm
but also has a distinct advantage in terms of the convergence rate.
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Figure 7 presents the performance of the LMS, VSNLMS, and M-VSNLMS algorithms
in filtering the signal s(t). The results demonstrate that the M-VSNLMS algorithm has the
best performance on original signal reconstruction and noise removal in the time domain,
frequency domain, and energy distribution. Figure 7 shows the Hilbert time-frequency of
the s(t) filtering results using different algorithms.
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3.2. Example Validation

To verify the convergence of the proposed algorithm and the optimization effect of
the above conclusions on the algorithm’s learning capability, the M-VSNLMS algorithm
with α = 0.9, β = 0.9, γ = 0.1, and θ = 0.7 is used to identify the parameters of a dynamic
system model.

y(k) + a1y(k− 1) + a2y(k− 2) = b1u(k− 1) + b2u(k− 2) + v(k) + d1v(k− 1)

Among them, when the model parameters are a1 = −0.5, a2 = −0.2, b1 = 1.0, b2 = 1.5,
d1 = −0.8, v(k) is Gaussian white noise with a mean value of 0 and variance of 0.01. The
input signal u(t) adopts the white noise sequence. In Figure 8, the predicted results of the
model are shown.
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As shown in Table 3, the true values of the estimated parameters are compared with
the estimated values.

Table 3. Comparison between system identification results and true values.

Estimated Parameters a1 a2 b2 b1 d1

True value −0.5 −0.2 1.0 1.5 −0.8
Estimated value −0.5158 −0.2059 0.9671 1.4673 0.0044
Estimation error 0.0158 0.0059 0.0329 0.0327 0.8044

As shown in Table 3, the identification accuracy of system model parameters is above
97%, while the identification accuracy of noise is only 0.55%, indicating a good ability
to suppress noise, demonstrating the excellent system identification performance of the
M-VSNLMS algorithm. In addition, the algorithm has poor performance in terms of noise
model identification, indicating its good noise suppression ability.

3.3. Experimental Steps and Results

In order to verify whether the proposed algorithm has good application effects in
engineering, instruments and equipment were built in the aerodynamic elasticity laboratory
of CARDC, as shown in Figure 9. By applying the driving voltage to the actuator, the
aircraft model is vibrated, and the vibration signals are collected in real-time. In Figure 9a,b,
the schematic diagram of the experimental device and the schematic diagram of the mea-
surement and control system are shown respectively.
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Figure 9. Schematic diagram of testing instruments.

In Table 4, information on the selected measurement and control instruments is shown.
The signal processing module uses a series of products from National Instruments (NI) in
the United States, the controller is a product from dSPACE in Germany, and the actuator
uses piezoelectric stacking materials from Physical Instruments (PI) in Germany.

Table 4. Measurement and control instrument information.

Components Brand Function

Computer operating system Windows 7 Program running environment
DC stabilized power supply DP832A Provide stable power supply for the balance
Balance ADAM-3016 Measuring force and torque signals
Strain signal acquisition module PXIe-4339 Signal amplification and filtering
Filter PFI- 28618-M102 Low pass
Controller dSPACE-Microlabox RTI1202 A/D conversion, calculation control signal, D/A conversion
Power amplifier E-481K023 Amplify control signal

As shown in Figure 10, the real-time data fitting results based on the traditional
ARMAX algorithm and N4SID algorithm are as follows:
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Figure 10. Real-time data fitting results of ARMAX and N4SID algorithms.

As shown in Figure 11, the real-time data fitting results of the data-driven self-learning
algorithms LMS and M-VSNLMS are as follows:
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Calculate the correlation coefficient δxy and mean square error MSE between the
output data of the above four algorithms and the expected data.

δxy =
Cov(X, Y)

DxDy
=

1
n

n

∑
i=1

Xi − X√
n
∑

i=1
(Xi−X)

2

n

Yi −Y√
n
∑

i=1
(Yi−Y)

2

n

(16)

MSE =
1
n

N

∑
i=1

(Xi −Yi)
2 (17)

Among them, the correlation coefficient δxy is the ratio of the covariance of the output
data and the expected data to the product of the expected values of the two. Xi, Yi, X, and Y
respectively represent the sampling and average values of the output data and the expected
data, and n represents the sample data capacity. In Table 5, the experimental results of the
four algorithms are compared.

Table 5. Error analysis between model output value and expected value.

Mathematical Model δxy MSE Mathematical
Model Order

Complexity of
Mathematical Models

ARMAX 0.8787 0.0042 19 Complex
N4SID 0.8981 0.0021 11 Complex
LMS 0.9687 0.0011 - Simple

M-VSNLMS 0.9898 0.00039 - Simple

From Table 5, it can be seen that the data fitting effect of the data-driven self-learning
algorithm is superior to that of traditional algorithms, and the data fitting accuracy of the
M-VSNLMS algorithm is higher than that of the LMS algorithm. This is consistent with the
simulation results and also indicates that the M-VSNLMS algorithm has a stronger real-time
identification ability for physical systems than the LMS algorithm. The mathematical model
of traditional algorithms has a higher order, which makes the mathematical model more
complex, and the correlation between the algorithm output data and the expected data is
less than 0.9. The correlation between the output data based on self-learning algorithms
and the expected data is above 0.95. The algorithm output data are obtained through the
linear convolution operation, and the mathematical model structure of the algorithm is
simple. Through the above experiments, it is shown that the algorithm proposed in this
article has value for engineering applications.
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4. Conclusions

(1) Based on the LMS algorithm, a variable-step-size normalization adaptive filter algo-
rithm known as VSNLMS is developed to further minimize convergence errors in
adaptive filtering. This algorithm utilizes the logistic function to establish a function
model of step size varying with the error. The filtering results of the VSNLMS algo-
rithm are compared to those of the LMS algorithm for wideband signals with noise. It
is observed that the VSNLMS algorithm achieves significantly smaller convergence
errors. The effects of the VSNLMS algorithm parameters (α, β, and γ) on the filtering
results are investigated using the control variable method. On this basis, the optimal
parameter values are determined.

(2) To accelerate the convergence of the algorithm, a momentum term θ is introduced
into the VSNLMS algorithm, resulting in the modified VSNLMS (M-VSNLMS) al-
gorithm. This term consists of a forgetting factor and a momentum term of weight
increment from the previous moment. This modification enables the algorithm to
anticipate changes in the error trend, leading to faster convergence. The effects of the
M-VSNLMS algorithm parameter θ on the filtering results are investigated based on
the above conclusion, and the optimal parameter values are determined. Moreover,
the filtering results of the M-VSNLMS algorithm are compared to those of the LMS
algorithm for wideband signals containing noise. The results demonstrate that the
M-VSNLMS algorithm achieves signal reconstruction and effective noise suppression
in the time domain, frequency domain, and energy distribution. Furthermore, it
exhibits a significantly faster convergence rate compared to that of the LMS algorithm.

(3) The M-VSNLMS algorithm is utilized to perform system identification on a noisy
dynamic system mathematical model. The results show that the proposed algorithm
can accurately identify the mathematical model with an accuracy of over 97%, while
also suppressing the noise components in the logarithmic model by over 99%. Real-
time vibration data fitting experiments were conducted in the aeroelastic laboratory
of CARDC. The data fitting capabilities and mathematical model complexity of four
algorithms, ARMAX, N4SID, LMS, and M-VSNLMS, were compared, indicating
that M-VSNLMS has a higher real-time data fitting accuracy and lower-complexity
mathematical models.

The weight update of the algorithm relies on the error gradient and the magnitude
of the step size. However, for strongly nonlinear and intermittently active systems, the
algorithm may encounter the local optimum of the error gradient or large fluctuations
in the step size, leading to prolonged convergence or even divergence. To address this
issue, further analyses are necessary regarding the computation and processing of the
system input data in higher-dimensional spaces, so as to enable the identification and noise
reduction of more complex systems. Notably, recent research has proposed algorithms such
as Kernel Adaptive Filtering (KAF) and Convolutional Neural Network (CNN), which
offer valuable insights in this domain.
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Abbreviations

LMS Least Mean Square
ARMAX Auto-Regressive Moving Average with X input
N4-SID N4-Subspace identification algorithm
KLMS Kernel Least Mean Square
PID Proportional Integral Differential
BP Back Propagation
M-VSNLMS Momentum-Variable Step Normalization LMS
CARDC China Aerodynamics Research and Development Center
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