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Abstract: Drivable road segmentation aims to sense the surrounding environment to keep vehicles
within safe road boundaries, which is fundamental in Advance Driver-Assistance Systems (ADASs).
Existing deep learning-based supervised methods are able to achieve good performance in this field
with large amounts of human-labeled training data. However, the process of collecting sufficient fine
human-labeled data is extremely time-consuming and expensive. To fill this gap, in this paper, we
innovatively propose a general yet effective semi-supervised method for drivable road segmentation
with lower labeled-data dependency, high accuracy, and high real-time performance. Specifically, a
main encoder and a main decoder are trained in the supervised mode with labeled data generating
pseudo labels for the unsupervised training. Then, we innovatively set up both auxiliary encoders
and auxiliary decoders in our model that yield feature representations and predictions based on the
unlabeled data subjected to different elaborated perturbations. Both auxiliary encoders and decoders
can leverage information in unlabeled data by enforcing consistency between predictions of the
main modules and those perturbed versions from auxiliary modules. Experimental results on two
public datasets (Cityspace and CamVid) verify that our proposed algorithm can almost reach the
same performance with high FPS as a fully supervised method with 100% labeled data with only
utilizing 40% labeled data in the field of drivable road segmentation. In addition, our semi-supervised
algorithm has a good potential to be generalized to all models with an encoder–decoder structure.

Keywords: drivable area segmentation; semi-supervised; semantic segmentation; deep learning;
convolutional neural networks; feature cross-consistency

1. Introduction

Autonomous driving is a future-oriented technology with broad markets and devel-
opment prospects. With the development of artificial intelligence and automation, in the
automotive field, active safety systems in vehicles make transportation more efficient and
safe [1]. Nowadays, more and more vehicles are equipped with Advance Driver-Assistance
Systems (ADASs). And among the subtasks of ADASs, drivable area segmentation is one of
the important issues in all situations. The goal of drivable road segmentation is to sense the
surrounding environment, keeping vehicles within safe road boundaries and preventing
potential accidents, such as collisions with pedestrians or other vehicles in the driver’s
blind spot [2]. Therefore, it is fundamental to perceive complex scenarios and discern the
drivable areas while driving.

In the past, most studies focused on the inaccurate road segmentation caused by the
obstruction of other pedestrians or vehicles, or camera imaging distortion due to underexpo-
sure or halo effects. In the beginning, traditional image processing methods including edge-
based, texture-classification-based, illuminant-invariance-based, and geometric-vanish-
point-based methods were proposed [3]. In the subsequent years, machine learning classi-
fiers were applied to the field of drivable area segmentation, such as the SVM method [4].
However, both image processing and machine learning methods are based on experiential
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hand-crafted feature extractions, which lead to vulnerable robustness in complex scenes.
With the development of Convolutional Neural Network (CNN)-based models becoming
mainstream in segmentation, there is no need for hand-crafted feature extractions and
more advanced solutions have been designed for drivable area segmentation. In order to
make the model performance as accurate as possible, it requires a massive collection of fine
annotated data for training, which is time-consuming and expensive. Methods such as deep
transfer learning and self-supervision can effectively reduce the dependence on labeled
data [5–7], but they can not fully balance real-time results and accuracy in drivable area seg-
mentation tasks. However, feature-perturbation-based semi-supervised methods have been
proven to be effective in segmentation tasks [8]. Therefore, we propose a semi-supervised
method to leverage unlabeled data for drivable area segmentation by expanding the scope
of features and enforcing the consistency between the perturbed expanding features and
pseudo labels, which better overcomes the insufficiency of labeled data.

The model we designed consists of a main-encoder, a main-decoder, auxiliary encoders
(aux-encoders), and auxiliary decoders (aux-decoders). In the following, the main-encoder
and main-decoder together will be referred to as the main modules. Aux-encoders and
aux-decoders together will be referred to as the auxiliary modules. Different kinds of per-
turbation are combined with the auxiliary modules and used in semi-supervised training.

As for training, fully-supervised training is performed first, where the main modules
are trained on labeled data. Semi-supervised training follows closely, as shown in Figure 1.
Predictions on original unlabeled data are first made by the main modules, generating
pseudo labels corresponding to the predictions made by auxiliary modules on perturbed
data. Then, unsupervised loss is designed to ensure the expanded feature cross-consistency
between the perturbed and pseudo labels so that the model can leverage information in
unlabeled data and improve the accuracy of the main modules.

Figure 1. The overall flow of semi-supervised training: Main modules first generate pseudo labels on
original unlabeled data, which is shown in black arrows. Then, auxiliary modules make predictions
on perturbed data, and unsupervised loss is designed to measure the discrepancy between pseudo
labels and perturbed prediction, which are shown in light blue arrows (predictions perturbed by
auxiliary encoders) and orange arrows (predictions perturbed by auxiliary decoders).

We conduct experiments on the CamVid and Cityscapes datasets. Our semi-supervised
methods, by only utilizing 40% labeled data, almost reach the same Intersection-over-Union
(IoU) values as fully supervised methods achieve with 100% labeled data. Compared with
other semi-supervised methods, ours significantly outperforms other methods on IoU
values and FPS values. The major contributions of our work can be summarized as follows:

• To the best of our knowledge, our work is the first to introduce semi-supervised deep
learning methods for drivable area segmentation. We propose a semi-supervised
drivable area segmentation method based on expanded feature cross-consistency. The
method is able to effectively utilize the information hidden in unlabeled data, which
achieves a performance close to that of a fully supervised model with all labeled data
by using only parts of labeled data.

• We innovatively design a series of encoder-level feature perturbations and verify
their effectiveness in our semi-supervised methods through a series of ablation study
experiments.
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• We conducted a wide range of experiments on changing proto-segmentation models
and comparing our semi-supervised method with others on road segmentation. Re-
sults show that our method has good generalizability and robustness in the field of
drivable road segmentation.

The rest of this paper is organized as follows: Previous work related to drivable road
area segmentation and semi-supervised methods is reviewed in Section 2. Our proposed
semi-supervised segmentation methods are elaborated on in Section 3. The experimental
settings are provided in Section 4. The experimental results including those of ablation ex-
periments and comparisons with other semi-supervised methods are specified in Section 5.
The discussion on the generalizability and extensibility of our semi-supervised method is
illustrated in Section 6. We conclude this work and delineate the potential future directions
for improvement in Section 7.

2. Related Work

In this section, works related to traditional and deep learning-based methods for
drivable road area segmentation will be presented, as well as advanced semi-supervised
methods that are able to compensate for the insufficient amount of training data in practi-
cal scenarios.

2.1. Traditional Drivable Road Area Segmentation

Drivable road areas usually differ from surrounding pixels and have unique local
visual features. Therefore, based on image features, traditional image processing drivable
road area segmentation methods can be divided into edge-based, texture-classification-
based, illuminant-invariance-based, and geometric-vanish-point-based methods [3]. First,
edges are a commonly used visual feature for drivable road area segmentation. For exam-
ple, He et al. [9] proposed a color-feature- and edge-image-based algorithm, by obtaining
road boundaries and delimiting the area complying with Gaussian distribution, improving
accuracy and reducing the computational complexity. Second, texture-classification-based
methods are employed for drivable road area segmentation. Graovac et al. [10] innovatively
divided one road picture into distinguishable regions and subsequently calculated their tex-
ture differences based on statistical numerical features. Third, illuminant-invariance-based
methods have also been designed for drivable road area segmentation. Alvarez et al. [11]
proposed a novel method based on shadow-invariant features, which took full advantage
of RGB-distributed information and camera direction information for road segmentation,
achieving more robust and efficient results. Furthermore, geometric-vanish-point-based
methods are also applied in this field. In [12], texture directions were extracted using
confidence-weighted Gabor filters and clustered for estimating the vanish point, and then
road boundaries were obtained through calculation.

Moreover, machine learning methods based on hand-crafted visual features have also
been leveraged for drivable road area segmentation. These methods usually consist of
three steps: feature extraction, image classification, and post-processing. For example,
Zhou et al. [13] extracted both color features and texture features, and then an SVM
classifier was employed for classification. In [4], structured SVMs were utilized for learning
geometric features based on edges, color, and homography. In [14], Foedisch et al. used a
simple neural network to achieve real-time road area segmentation. Some researchers use a
composite of multiple machine learning models [15,16]. Both of them achieved promising
segmentation results.

However, though both the aforementioned traditional-image-processing-based meth-
ods and machine learning methods may work in some simple scenarios, they are vulnerable
to various environmental factors, such as lightning and blocking. They tend to fail in knotty
but more common real-life scenarios where road shadows, vehicle obscuration, and picture
defects exist.
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2.2. Fully Supervised Drivable Road Area Segmentation

With the development of deep learning, Convolutional Neural Networks (CNNs)
have been feasible solutions for semantic segmentation [17–21]. Some of them have been
adapted and applied for drivable road area segmentation. For example, Holder et al. used
a deep CNN to segment drivable road areas and the experimental results showed that it
outperformed those conventional SVM-classifier-based techniques [22]. Also, a fully convo-
lutional residual network was further implemented for drivable road area segmentation,
illustrating that deeper networks can achieve better results. Subsequent researchers made
structural improvements based on prototype models. For example, an up-convolutional
network was proposed in [23], all-layer and stage-layer modules were designed in [24],
a siamesed fully convolutional network (s-FCN-loc) was proposed in [25], and a reverse
attention network was designed in [26]. Furthermore, instead of improving the structure of
a single model, in [27], a CNN was combined with Long Short-Term Memory (LSTM) for
better drivable road area segmentation performance. In addition, for some special tasks
such as segmentation with fisheye lens, Ref. [28] used ResNet101 v2 as a feature extraction
module to achieve accurate segmentation results for road surfaces. To improve the real-
time performance of CNNs, Ref. [29] used an uncertainty-aware symmetric network based
on asymmetric dilated convolution and validated it on embedded devices. Yolo-based
models [30] also performed well in this field. YoloP [31] and YoloPv2 [32] are capable of
achieving segmentation accurately and efficiently, and are able to complete the perception
of lanes and traffic objects at the same time. Other methods that allow for the segmentation
of the drivable area in multiple-task scenarios include DLT-Net [33], HybridNets [34], and
GBIP-Net [35]. ULODNet achieved the segmentation of drivable areas by detecting lanes
and obstacles on roads [36].

These studies have demonstrated that CNN-based models can achieve remarkable
accuracy in drivable road area segmentation. However, a prerequisite for fully supervised
algorithms to achieve good results is that the amount of data needs to be large enough and
of a high-enough quality. By presenting the related works in Table 1, it is seen that even
if a large number of images can be obtained relatively easily, fine labels must be a time-
consuming and expensive task, especially in drivable road area segmentation. Therefore,
to overcome this limitation, we propose a semi-supervised drivable road area method,
which can achieve satisfactory performance with few annotations.

Table 1. Literature review: related works on road area segmentation.

Reference Type Method/Model

He et al. [9] Image processing a color-feature- and edge-image-based method.
Graovac et al. [10] Image processing a texture-classification-based method.
Alvarez et al. [11] Image processing an illuminant-invariance-based method.
Alvarez et al. [12] Image processing a Gabor-filter- and clustering-based vanish point method

Zhou et al. [13] Machine learning a color-feature- and texture-feature-based SVM method.

Yao et al. [4] Machine learning a geometric-feature (including edges, color and homography)-based structured
SVM method.

Foedisch et al. [14] Machine learning a color-features-based neural network.
Crisman et al. [15] Machine learning a edge-based modified clustering method.

Yun et al. [16] Machine learning a boosting-, SVM-, and random forest-classifier-based complex method
Holder et al. [22] Deep learning a deep CNN-based model
Oliveira et al. [23] Deep learning an up-convolutional network-based model.

Reis et al. [24] Deep learning an all-layer- and stage-layer-module-based model.
Wang et al. [25] Deep learning a siamese fully convolutional network-based model.
Sun et al. [26] Deep learning an improved SegNet with reverse attention-based model.
Lyu et al. [27] Deep learning a CNN- combined with LSTM-based model.

Scheck et al. [28] Deep learning a ResNet101 v2-based model for fisheye lens.
Gong et al. [29] Deep learning an asymmetric dilated CNN-based model.
Wu et al. [31] Deep learning: multi-tasking learning YoloP: a CSPDarkNet-backbone-based multi-task model.
Han et al. [32] Deep learning: multi-tasking learning YoloPv2: a improved model based on YoloP with an E-ELAN-based shared encoder.
Qian et al. [33] Deep learning: multi-tasking learning DLT-Net: a model with the improved VGG16-based encoder.
Vu et al. [34] Deep learning: multi-tasking learning HybridNets: a model with a backbone of EfficientNet-B3.

Shao et al. [35] Deep learning: multi-tasking learning GBIP-Net: a method focused on interest points whose model is based on
SAMT framework.

Zhang et al. [36] Deep learning: multi-tasking learning ULODNet: a ResNet- or DarkNet-backbone-based network.
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2.3. Semi-Supervised Semantic Segmentation

As deep learning becomes mainstream, methods that can balance low data annotation
and higher accuracy are deserving of our attention, such as deep transfer learning [5],
domain adaptation [37], self-supervised learning [6,7], and semi-supervised learning [8].
However, the most suitable scenarios for deep transfer learning tend to be large models with
fine-tuning, which may conflict with arithmetic-poor on-board edge computing devices
in drivable area segmentation tasks. Although self-supervised learning guarantees low-
inference computation consumption and does not even require labeled data, it means that
larger data volumes and training are required to ensure model accuracy. In the field of
autonomous driving, safety, in this case accuracy, is prioritized. Thus semi-supervised
methods are considered to be balanced.

Further, semi-supervised methods in semantic segmentation models can be divided
into five categories: adversarial methods, consistency regularization, pseudo-labeling,
contrastive learning, and hybrid [8]. Among them, the idea behind consistency regular-
ization methods is that the same input model should be given the same output. Based
on this, CCT [38] and CPS [39] perform perturbations on intermediate feature maps and
model weight parameters respectively, expecting the outputs of the models to be consis-
tent with no perturbation. CutMix [40] ClassMix [41], and VAT [42] perturb the input
data, and have been incorporated into data augmentation in a wide range of fields and
achieved favorable results. Inspired by CCT, CPS, and input perturbation methods, we
propose a semi-supervised drivable road segmentation method with expanded feature
cross-consistency, which combines input perturbations and feature perturbations.

3. Methodology

We consider that, for similar inputs, the model should achieve the same output,
which is the theoretical basis for extracting hidden information from unlabeled data in our
methods. Different types of perturbations are approaches to artificially creating similar
inputs. Loss functions are used to restrain the consistency of the output.

We innovatively set up a set of auxiliary encoders and a set of auxiliary decoders,
and by cross-connecting the main encoders and decoders through them, we ensure that all
the main modules are involved in the gradient update during unsupervised training. If only
one set of auxiliary modules is employed (for example, using only auxiliary decoders), then
only the main module to which it is cross-linked (the main encoder, in this case) achieves
gradient updating, while the main module (the main decoder, in this case) corresponding to
this auxiliary module does not leverage the information in the unlabeled data. Perturbations
are artificially designed for generating similar inputs and they are introduced into different
nodes of the model: the encoder and the decoder. Such dual auxiliary module structure
allows our semi-supervised methods to be applied to nearly all models based on an encoder–
decoder structure. Furthermore, the fact that only the main modules are involved during
inference makes our method less computationally dependent than others, making it suitable
for drivable area segmentation.

More details on the overall algorithm, generation of perturbations, model structure,
and loss will be elaborated on in this section.

3.1. Overall Algorithm

Figure 2 shows the panorama of our proposed algorithm, which consists of the main-
encoder, the main-decoder, auxiliary encoders (aux-encoders), and auxiliary decoders (aux-
decoders). In the training stage, fully supervised training is performed first. Limited labeled
data xl with corresponding annotations yi are fed into the main-encoder and main-decoder
to learn how to predict semantic segmentation results in a traditional supervised manner.
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Figure 2. The overall algorithm can be divided into four stages. Stage 1: supervised training is
illustrated as black lines. Stage 2: the predictions on unlabeled data ŷul are used to ensure consistency
between the perturbed prediction yielded from stages 3 and 4 by MSE loss, shown as gray lines.
Stage 3: unlabeled data are reconstructed by aux-encoders generating perturbed tensors, and then
those tensor are transferred to main decoder for prediction, shown as light blue lines. Stage 4: main
encoder transforms the unlabeled data into feature maps and then distributes them to aux-decoders
with different perturbations to make the prediction.

Then, the remaining unlabeled data xul are used to train the main-encoder, main-
decoder, aux-encoders, and aux-decoders by enforcing consistency between pseudo labels
ŷul and the predictions of auxiliary modules, which include ŷul

e and ŷul
d . Each auxiliary

encoder takes as input a perturbed version of the input data and each auxiliary decoder
takes as input a perturbed version of the encoder’s output. This way, the representation
learning of the main-encoder and main-decoder is further enhanced using the unlabeled
data, and, subsequently, that of the segmentation network. In the inference stage, only the
main-encoder and main-decoder are used to predict segmentation results, which means
the model is not bloated during the inference stage.

3.2. Perturbations

As mentioned in Section 3.1, in the training stage, perturbations are used both on
the input unlabeled data and the encoder’s output. In our implementation, nine types of
perturbations are used:

VAT Perturbations: They are used to push data distribution to be isotropically smooth
around each data point based on virtual adversarial training, the process of which can be
regarded as a kind of noise nadv with the greatest impact against the gradient. We apply
them in both aux-encoders and aux-decoders, formulated as t̃ = t + nadv. t represents the
input tensor, t̃ represents the perturbed tensor, and nadv represents the VAT perturbations.

Dropout Perturbations: They randomly choose some positions with probability p and
zero the elements in them.

Feature Noise Perturbations: They first generate a noise tensor N ∼ U (−0.3, 0.3)
and add on the input tensor, formulated as t̃ = (t� N) + t, where � represents element-
wise multiplication.

Feature Drop Perturbations: They first generate a threshold γ ∼ U (0.7, 0.9) and
create a mask M = {t̄ < γ}1, where t̄ is the batch-level maximum of the mean value
of each dimension. Finally, we obtains perturbed tensors by performing element-wise
multiplication, formulated as t̃ = M� t.

Cutout Perturbations: They are used to reduce the feature dependency on certain
continuous elements of the input tensor, by randomly setting values of a cropped area as
zero based on the predictions of the main modules ŷul .
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Masking Perturbations: Masking perturbations contain two null-one mask matrices,
a none-road mask Mnr to confine background relationships and a road mask Mr to limit
road area [43], where Mnr = 1−Mr. Each of the masks performs preliminary screening by
utilizing the predictions of the main-modules ŷul .

Salt Noise Perturbations: They aim at simulating the effect of black and white noise in
low-res pictures. Some positions are randomly set to the maximum value of t, and some are
set to the minimum with random sampling rate 0.3, which is achieved through element-wise
multiplication of mask Ms with t. This process is formulated as t̃ = Ms � t.

Color Jittering Perturbations: They consist of three types of transformation: brightness
B, contrast C, and saturation S. In our implementation, they are used sequentially to
perturb the input tensor, formulated as t̃ = fB,M,C(t).

Lighting Perturbations: After transforming images to tensors, the eigenvalues and
eigenvectors of all channels are concatenated together. Then, a matrix L of the same size as
t is generated based on them. Finally, we obtain perturbed tensors by adding two matrices
in an element-wise manner: t̃ = L⊕ t.

3.3. Network Structure

• Main Encoder The main-encoder is based on ResNet-50 [44], with dilated convolu-
tions, followed by one PSP module [45] for additional enhancements in extracting
features. It is a widely used general backbone that has been proven to have good
performance in different segmentation tasks. The input of the main-encoder is un-
perturbed images and it outputs feature maps as the input for the main-decoder.
The feature maps concatenate both high-dimensional and low-dimensional features,
extracted by residual layers composed of a series of bottleneck blocks, shown in
Figure 3.

Figure 3. The detailed structures of the main-encoder.

• Main Decoder: Feature maps generated from the main-encoder are fed into the main-
decoder to predict the semantic segmentation results of the drivable road area. To max-
imize the robustness of decoding both original and perturbed features from different
encoders, after one Conv2d layer, we only employ the simple 1 × 1 2d-convolution
and three pixel shuffle modules as the main-decoder, where a pixel shuffle module
consists of three layers: Conv2d, ReLU, and PixelShuffle, shown in Figure 4.



Appl. Sci. 2023, 13, 12036 8 of 19

Figure 4. The detailed structures of the main decoder.

• Auxiliary Encoders: Auxiliary encoders consist of several aux-encoders with different
perturbations, including VAT, dropout, feature noise, salt noise, color jittering, and
lighting perturbations. And there is more than one aux-encoder for each kind of
perturbation. It is denoted as Enaux = {En1

aux, . . . , Eni
aux, . . . , EnK

aux}, where K is the
total number.

• Auxiliary Decoders: Auxiliary Decoders Deaux are composed of aux-decoders with
perturbations including VAT, dropout, feature noise, feature drop, cutout, and mask-
ing, which are not exactly consistent with those used in the aux-encoder because of
differences in properties during training in different modules. In the same way as
aux-encoders, it can be formulated as follows: Deaux = {De1

aux, . . . , Dei
aux, . . . , DeK

aux}.

3.4. Loss Functions

The loss function consists of two parts: a supervised part and an unsupervised part,
which are computed using cross-entropy and MSE, respectively. The specific calculation of
each part is as follows.

3.4.1. Supervised Loss

The input data are in the form of ((xl , yi),(xul)), where xl is labeled data, y is the
corresponding label of xl , and xul is indicated as unlabeled data.

Supervised loss is the first stage calculated. It is consistent with normal fully super-
vised training, where only main modules, namely the main-encoder Enm and main-decoder
Dem, participate in the prediction ŷl , shown as (1).

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

ŷl = Dem(Enm(xl)) (1)

Cross-entropy (CE) loss is used for this part, which measures the similarity between ŷl

and labels y, shown as (2).

Lsup = CE(ŷl , y) (2)

3.4.2. Unsupervised Loss

The design idea of unsupervised loss is to enable the model to utilize the information
of unlabeled data during inference. For the above purposes, unsupervised loss Lunsup is
designed to consist of two items: loss of aux-encoders Le

unsup and loss of aux-decoders
Ld

unsup.

Lunsup = Le
unsup + Ld

unsup (3)

We first need to generate pseudo labels ŷul corresponding to the input xul , shown
as (4).

ŷul = Dem(Enm(xul)) (4)
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On completion of that, a copy of xul is sent to each aux-encoder Eni
aux, where one

certain perturbation is applied on it, and then transferred to the main-decoder Dem to make
predictions ŷul

e,i. This progress can be formulated as below:

ŷul
e,i = Dem(Eni

aux(xul)) (5)

As for the unsupervised loss of aux-decoders ŷul
d,i, it is processed through the main-

encoder Enm and each aux-decoder Dei
aux, which is mathematically expressed as follows:

ŷul
d,i = Dei

aux(Enm(xul)) (6)

Following obtaining the predictions ŷul
d,i for aux-decoders, MSE loss is calculated

as follows:

Ld
unsup =

1
K

K

∑
i=1

MSE(ŷul
d,i, ŷul) (7)

The loss Le
unsup is back-propagated through aux-encoders and the main-decoder,

and Ld
unsup is back-propagated through aux-decoders and the main-encoder. Thus, both

the main-encoder and main-decoder are able to exploit information of unlabeled data
during inference.

3.4.3. Total Loss

At the beginning of training, the model, in a fully supervised way, has learned only a
very small amount of information from the labeled data, on the basis of which noisy pseudo
labels are generated for unsupervised training. Therefore, the weights of the unsupervised
loss computed at the initial training are set small and increase with continued training.

The unsupervised weighting parameter ωu is used to implement the idea above, and
increases from 0 to 1 as training progresses. We denote batchid as i, the proportion of
labeled data as p, and the total number of images in the training set as D. Then, ωu can be
expressed as follows:

ωu =

{
1, if i > L

e−5(1− i
L )

2
, else

(8)

L = 0.2× p× D (9)

Total loss L is formulated as follows:

L = Lsup + ωuLunsup (10)

4. Experiment Settings

The experiment settings contain the detailed configuration of implementation, the set-
tings of the datasets, and the calculations of performance metrics.

4.1. Implementation Details

Our code compilation environment for running all experiments is based on the Pytorch
1.13.0 version of Python 3.8 on one Nvidia RTX3090. All training is performed for 150 epochs
and the optimizer is SGD. The supervised and unsupervised learning rates are set to 0.01
and 0.001, respectively. In the parameter settings of SGD, weight decay is set to 0.0001,
momentum is set to 0.9, and other parameters are kept in their default settings. We use
Poly mode in the lr-scheduler with 1.2 of the parameter pow and other parameters are set
to default.
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4.2. Datasets

Cityscapes: Cityscapes is a large-scale dataset containing multiple cities that supports
different vision tasks such as semantic segmentation and instance segmentation. We
only use the semantic segmentation dataset part of Cityscapes, which contains a total of
2985 image materials from 18 cities for the training set and 500 images from 3 cities for the
validation set. Every image in Cityscapes has a native size of 2048 × 1024 pixels, which is
cropped to 513 × 513 pixels in experiments. There are 34 classes in the original semantic
segmentation dataset, which are redundant in road segmentation. Therefore, only the road
class is retained, and the remaining classes are merged into one non-road class.

CamVid: CamVid, short for The Cambridge-driving Labeled Video Database, is a
lightweight semantic segmentation dataset. Compared with the Cityscapes dataset, the
images in CamVid have more complex roads, more vehicles, and smaller dimensions,
making prediction relatively more difficult. The CamVid dataset contains 701 images,
of which 367 images are in the training set, 101 images belong to the validation set, and
223 images are used in the test set. Each image in CamVid is 480 × 360 pixels in size,
and it is cropped to 360 × 360 pixels as the input. The CamVid dataset provides 32 ground-
truth semantic labels, which are merged into 11 broad categories when used in a semantic
segmentation task. In our experiment, only the road class is preserved and the remaining
class are integrated to produce road and non-road class labels applicable to drivable
area segmentation.

Whether the Cityscapes dataset or the CamVid dataset is used, their data are all
labeled data. Thus, in unsupervised training, a certain percentage of images are randomly
selected from the original training set, considering them as unlabeled data by ignoring
their corresponding labels, and the rest of the data are kept intact for supervised training.
Figure 5 illustrates the above operations.

Figure 5. Randomly selecting some new labeled data and adding them into preceding selected data.

4.3. Performance Metrics

Given an image for drivable road segmentation, the output of the model will be
divided into two classes: “Road” and “Others”. We use five performance metrics to
measure the experimental results, which are accuracy, recall, precision, F1-Score, and
Intersection over Union (IoU), in all experiments.

4.3.1. Accuracy

Accuracy is used to measure the proportion of pixels with correct predictions in all
pixels, which is calculated with (11).

Acc =
TP + TN

TP + FP + TN + FN
(11)
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4.3.2. Recall

The value of recall is the proportion of road class pixels with correct predictions in all
road class pixels, which can be expressed as Equation (12).

Recall =
TP

TP + FN
(12)

4.3.3. Precision

Precision is the proportion of road class pixels with correct predictions in the pixels
that are predicted as road pixels, which is calculated with (13).

Precision =
TP

TP + FP
(13)

4.3.4. F1-Score

The F1-Score is used to measure the average performance of precision and recall,
which is calculated with (14).

F1 =
2× Precision× Recall

Precision + Recall
(14)

4.3.5. IoU

The IoU is used to measure the correlation between road class pixels and the pixels
that belong to or are predicted to belong to the road class, which is calculated with (15).

IoU =
TP

FN + TP + FP
(15)

4.3.6. FPS

FPS is the ratio of the number of images to the total inference time, which measures
the real-time performance of the model. The inference time for each batch of test image
is denoted as ti, and the number of the test dataloader is denoted as N. Then, the FPS
calculation formula is (16).

FPS =
N

∑N
i=0 ti

(16)

5. Experimental Results
5.1. Ablation Studies

The purpose of this experiment is to study the performance of different modules in
the models and prove the improvement in our methods. We conducted the following
experiments on arrangements with auxiliary modules:

• Only aux-encoders (Aux-En).
• Only aux-decoders (Aux-De).
• Add both aux-encoders and aux-decoders.
• Fully supervised model.

In consideration of the rigor of the experiment, we ensured that each semi-supervised
model had the same number of auxiliary modules. To be specific, the model with only
aux-encoders adds two aux-encoders of each type, comprising twelve in total. And two
aux-encoders of each type were appended to the model with only aux-decoders, keeping
the totals consistent with the former. As for the model using both aux-encoders and aux-
decoders, six aux-encoders and six aux-decoders of each perturbation were employed. In
the process of training, 40% images were selected as labeled data, and the results are shown
in Table 2.
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Table 2. Results on models with different auxiliary modules with 40% labeled data.

Method Cityscapes CamVid
Aux-En Aux-De Accuracy IoU Accuracy IoU

× × 0.931 0.825 0.915 0.822
X × 0.952 0.857 0.930 0.824
× X 0.951 0.845 0.934 0.836
X X 0.954 0.871 0.939 0.865

Table 2 presents that all semi-supervised methods outperformed the results of fully
supervised training. As for semi-supervised methods, the performances of the model with
only aux-encoders and the one with only aux-decoders (CCT-structure method) are similar,
but the model using both aux-encoders and aux-decoders has significant performance
improvement in terms of IoU on two datasets, reaching 0.871 and 0.865, respectively. This
illustrates that the synthetic multiple auxiliary modules can make more accurate predictions
in different datasets.

5.1.1. Perturbations

The purpose of this experiment is to assess the effectiveness of each kind of perturba-
tion used in aux-encoders. The structure of the aux-decoders remained unchanged during
the experiments. In each experiment, one set of aux-encoders consists of six aux-encoders
with the same perturbation. And each kind of perturbation was tested in turn on two
datasets, both with 40% labeled data. Moreover, we additionally conducted experiments
on the model that comprises all kinds of perturbations as comparisons, which is denoted as
“All” in Tables 3 and 4. The results are shown below.

Table 3. Results on different perturbations of aux-encoders in Camvid dataset with 40% labeled data.

Method Accuracy Recall Precision F1-Score IoU

VAT 0.919 0.907 0.975 0.938 0.832
Dropout 0.928 0.904 0.981 0.943 0.849

Feature noise 0.932 0.924 0.975 0.948 0.848
Salt noise 0.926 0.904 0.985 0.942 0.843

Color jittering 0.925 0.908 0.981 0.943 0.838
Lighting 0.932 0.933 0.975 0.953 0.862

All 0.939 0.931 0.977 0.953 0.865

Table 4. Results on different perturbations of aux-encoders in Cityscapes dataset with 40% la-
beled data.

Method Accuracy Recall Precision F1-Score IoU

VAT 0.948 0.953 0.966 0.960 0.865
Dropout 0.950 0.950 0.971 0.960 0.862

Feature noise 0.950 0.952 0.968 0.960 0.864
Salt noise 0.952 0.955 0.967 0.961 0.857

Color jittering 0.949 0.951 0.967 0.959 0.861
Lighting 0.953 0.956 0.968 0.963 0.868

All 0.954 0.957 0.969 0.963 0.871

It can be seen from the tables above that although the effect of each kind of perturbation
may fluctuate on different datasets, they all make improvements compared to the models
with only aux-decoders. Methods “All” outperform the rest of them on both datasets,
proving that all perturbations are effective and that using multiple perturbations at the
same time can improve performance.

5.1.2. Proportions of Labeled Data

This part of the experiment is designed to analyze the improvements caused by
increasing the proportion of labeled data and find a ratio that balances data volume and
accuracy. Specifically, the percentage of labeled data is gradually expanded, beginning with
5%, and increasing to 10%, 20%, and finally 40%, which guarantees an inclusion logic in
spite of expanding proportions of labeled data, and minimizes the impact of data diversity
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caused by appending new labeled data. Moreover, in order to investigate convergence
during training on two datasets, the loss curves with 40% labeled data are recorded in
Figure 6.

Figure 6. The loss curves obtained on Cityscapes and CamVid datasets show that the models have
approximated convergence after 110th epoch.

After setting the proportion of labeled data in the semi-supervised datasets, the fol-
lowing two experiments were conducted: fully supervised training on the labeled subset
of the semi-supervised datasets and semi-supervised training on the whole of the semi-
supervised datasets. All models use the same number of aux-encoders and aux-decoders,
and the baseline is the result of fully supervised training on the original datasets with 100%
of the data labeled.

Figure 7 displays the line charts of the relationship between proportions of labeled
data and IoU on two datasets and Figure 8 shows the corresponding visualization of the
predictions by semi-supervised models on a certain input. It can be seen from Figure 7
that there is a significant gap between the IoU of fully supervised and semi-supervised
methods when the proportions of labeled data are lower than 20%. With over 40% labeled
data, no significant reduction in IoU in semi-supervised training is found compared with
the baseline. For example, on the CamVid dataset, the IoU difference between 40% labeled
semi-supervised models and fully supervised ones is only 0.022.

Figure 7. With the increment in the labeled data, the IoU values become closer to the baseline.
With over 40% labeled data, no significant reduction in IoU in semi-supervised training is found
compared with baseline.

In Figure 6, it can be observed that on both datasets the models have approximate con-
vergence after the 110th epoch. Loss has more fluctuations on CamVid than on Cityscapes
because that the latter has a larger numbers and sizes of images than the former.



Appl. Sci. 2023, 13, 12036 14 of 19

And in Figure 8, it is apparent that using 40% labeled data can obtain the same
performance as the fully-supervised method on two datasets, and both of them are quite
close to the ground truth, especially in the yellow dotted boxes.

In general, therefore, our models with only 40% labeled data can be used as an
alternative to fully supervised models when the amount of labeled data is not sufficient.

Figure 8. Prediction of semi-supervised methods on two datasets with different labeled-data percentages.

5.2. Comparison for Other Semi-Supervised Methods

We compared our semi-supervised methods with others in the field of drivable road
area segmentation. The experiments were conducted with the same percentage of labeled
data (40%) on the Cityscapes and CamVid datasets, which are demonstrated in Table 5 and
Table 6, respectively. The results of two the datasets are visualized in Figures 9 and 10.

Table 5. Performance of different semi-supervised methods on Cityscapes.

Method Accuracy Recall Precision F1-Score Road IoU FPS

ours 0.957 0.968 0.970 0.969 0.871 106.1
CycleGAN 0.948 0.960 0.962 0.961 0.853 88.6

AdvNet 0.921 0.946 0.952 0.949 0.799 29.2
CCT 0.945 0.964 0.950 0.956 0.827 95.7

Table 6. Performance of different semi-supervised methods on CamVid.

Method Accuracy Recall Precision F1-Score Road IoU FPS

ours 0.961 0.962 0.985 0.974 0.865 114.2
CycleGAN 0.904 0.942 0.961 0.951 0.841 100.6

AdvNet 0.941 0.953 0.967 0.960 0.789 61.8
CCT 0.959 0.948 0.989 0.968 0.861 103
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Figure 9. Examples of making predictions on certain images from Cityscapes using our method and
others (CycleGAN, AdvNet, and CCT).

Figure 10. Examples of making predictions on certain images from CamVid using our method and
others (CycleGAN, AdvNet, and CCT).

As can be seen from the two tables, our methods outperform the others. On the
CamVid dataset, our method achieves the best results. Moreover, on the Cityscapes dataset,
the IoU values of our method are significantly better than the second-best method. This
is because our methods are based on feature consistency, and we expand the range of
feature consistency to cover both the input level and the feature level, which are larger
than the feature consistency used by CCT. Therefore, all modules in the inference backbone
network of our methods are able to utilize the information of unlabeled data, achieving
better performance.

It is also notable that our methods have the highest FPS, which means that our
methods are more suitable in real-world autonomous driving scenarios to meet real-time
requirements. Therefore, it is concluded that our proposed semi-supervised methods
have the best performance in both accuracy and real-time metrics in the field of drivable
area segmentation.

6. Discussion

To verify the generalizability and extensibility of our semi-supervised method, we
added auxiliary modules in the same way that our semi-supervised methods do on different
basic segmentation models and ensured that the perturbed predictions is consistent with the
originals. The classical semantic segmentation models that we selected included UNet [46],
ENet [47], ERFNet [48], and DeepLabV3+ [49]. And the experiments were conducted on
the CamVid dataset. During semi-supervised training, the proportion of labeled data was
set to 40%, indicated by “semi” in Table 7. Fully supervised experiments were performed
on both 40% and 100% of total data for comparison, which are represented by “full” below
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the different percentages of data in the header of Table 7. The results are shown in Table 7
and Figure 11.

Table 7. Performance of different base segmentation models on CamVid.

Model Semi (40% Labeled) Full (40% Labeled) Full (100% Labeled) FPS (40% Labeled)

UNet 0.724 0.683 0.779 82.1
ENet 0.855 0.819 0.892 71.0

ERFNet 0.829 0.797 0.903 104.5
DeepLabV3+ 0.803 0.772 0.815 97.7

Figure 11. Our method can achieve significant improvement when applied to different segmentation
models (ResNet, UNet, ENet, ERFNet, and DeepLabV3).

As we can see from Table 7, when only 40% of the labeled data are used for semi-
supervised and fully supervised training, the results of the semi-supervised methods are all
significantly improved over the fully supervised one for all basic models. Compared with
the results of supervised training using all the data, it can be seen that there is still a gap
between the semi-supervised methods and the fully supervised methods, but the gap is
marginal, especially on the DeepLabV3+ model. This indicates the generalizability and po-
tential of our methods. With more segmentation models being proposed, employing more
advanced networks in our semi-supervised methods could achieve better performance,
which is one of the focuses of future work.

7. Conclusions and Future Work

In summary, we proposed novel semi-supervised methods for drivable road segmenta-
tion. Our method reaches a good performance by enforcing cross-consistency between the
perturbed expanding features and pseudo labels so that they can leverage the information
of unlabeled data. Our methods can almost reach the same accuracy and IoU values by
only using 40% labeled data as fully supervised methods do with 100% labeled data. Fur-
thermore, the experimental results demonstrate that compared to other semi-supervised
methods, ours has better accuracy and real-time performance in the field of drivable area
segmentation. Moreover, our methods remain effective when employing other networks,
which illustrates the generalizability of our method.

In the future, we will improve our methods by investigating new encoder–decoder-
structured backbones that could reach the same IoU with fewer labeled data. If possible,
we will deploy the model to an edge computing device such as Nvdia TX2 and perform
experiments on real scenario and noisy data. In addition, experimentation regarding where
perturbations are placed will be an appealing idea in models with a non-encoder–decoder
structure, which can broaden the scope of applications of our semi-supervised method.
Moreover, the main module should be as brief as possible to ensure real-time prediction.
Finally, designing more efficient perturbations is also one of the focuses of future work.
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