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Abstract: The prevalence of Internet of Things (IoT) technologies is on the rise, making the identifica-
tion of anomalies in IoT systems crucial for ensuring their security and reliability. However, many
existing approaches rely on static classifiers and immutable datasets, limiting their effectiveness. In
this paper, we have utilized the UNSW-NB15 dataset, which contains 45 variables including multi-
and binary-target variables, to determine the most relevant properties for detecting abnormalities
in IoT systems. To address this issue, our research has investigated the use of active learning-based
algorithms for anomaly detection in IoT systems. Active learning is a powerful technique that im-
proves precision and productivity by eliminating the need for labeling and adapting to dynamic IoT
environments. Additionally, our study has combined feature engineering methods, active learning
approaches, and a random forest classifier to construct a resilient anomaly detection model for IoT
devices. The proposed model has outperformed several state-of-the-art techniques, achieving an
impressive accuracy rate of 99.7%. By implementing a rigorous sampling procedure and leveraging
the collaborative nature of the random forest technique, our model has demonstrated a notable level
of precision with a weighted average accuracy of 0.995. The findings of the study offered empirical
evidence, supporting the efficacy of our active learning methodology in identifying abnormalities in
IoT systems. Moreover, our study provides valuable insights and recommendations for future re-
search and development activities in this field. Overall, this research contributes to the advancement
of anomaly detection techniques in IoT systems, further enhancing their security and reliability.

Keywords: anomaly detection; intrusion detection system (IDS); Internet of Things (IoT); active
learning; network security

1. Introduction

Since the Internet of Things (IoT) is growing rapidly and connecting more devices,
security is becoming a major concern. By 2023, IoT devices will exceed 30 billion [1,2].
Thus, efficient anomaly detection solutions are essential for IoT network integrity and
reliability [3]. Anomaly detection is critical to IoT security systems’ identification and
mitigation of network threats and abnormalities [4,5]. Conventional anomaly detection
uses established rules or criteria [6]. However, the above methods often fail to account for
IoT networks’ complexity and ever-changing properties, incorrectly identifying positive or
negative results. In recent years, much emphasis has been given to active learning strategies
to tackle these issues. For example, an algorithm selects samples to maximize information
for expert labeling in active learning [7,8]. The algorithm can learn from smaller, tagged
models using an iterative strategy, reducing the requirement for significant labeling and
improving the anomaly detection system. The main goal of this work is to examine active
learning methods for IoT anomaly detection.

IoT networks’ flexibility and active learning algorithms can improve anomaly detection
and reduce false positives and negatives [9]. A publicly accessible benchmark dataset is
used by the authors in [10] to assess ‘ensemble anomaly’ detection techniques. Records of
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both regular and malicious network traffic from different network segments are included in
the collection. The testing of intrusion detection systems is considered appropriate due to
its realistic portrayal of network activities [11]. The intrusion detection system (IDS) model
was developed by researchers using bagging, boosting, and random forest (RF) [12]. These
techniques combine algorithms with decision-making mechanisms to increase the accuracy
and robustness of the system.

To reduce the dimensionality of the dataset and to improve detection efficacy, they
employed feature selection [13]. Although the utility of ensemble approaches in IDS has
been studied previously, it is still unknown whether or not these techniques can enhance
IDS security. Ensemble models were shown to have improved accuracy, precision, recall,
and F1-score in detecting unknown attacks [14]. According to the researchers, the feature
selection enhanced the performance of the ensembled model. The selection qualities are
necessary for intrusion detection to function. The results demonstrated that the significance
of feature selection in IDS is that it outperforms single-algorithm models [15].

Additionally, a fog-based anomaly detection system created especially for IoT net-
works was introduced by the authors in [16]. By developing an anomaly detection system,
the researchers were able to locate fog nodes [17]. This solution has the potential to decen-
tralize an Internet of Things network with cloud architecture. The UNSW-NB15 dataset
served as the foundation for the transformer model that was built for this investigation.
The architecture of the model was created to identify unusual network activity in Internet
of Things networks [18]. The model was trained using a variety of approaches, including
supervised and unsupervised ones. Additionally, several metrics, including accuracy, pre-
cision, and recall, were used to evaluate the model’s performance. Their research revealed
that this approach was remarkably accurate in identifying anomalies.

Furthermore, intrusion detection technologies can be hybrid, misuse-based, or anomaly-
based [19,20]. The misuse-based approach builds signatures utilizing expert skills and
domain knowledge. Then, it looks for a network data pattern matching one or more
database signatures. The misuse-based approach has a low false-positive rate since it can
identify intrusions that fit a database signature [21]. Suppose it cannot recognize unknown
incursions that may not include any database patterns, especially if the attacker knows
the database contains signatures. In that case, it may have a high false-negative rate. The
misuse-based IDS must update database signatures and rules often to fix it.

However, the anomaly-based strategy first learns normal network behaviors and then
finds anomalies that deviate from them [21]. The anomaly-based technique can detect
new assaults [22]. Likewise, the machine teaches most network behaviors, with no explicit
rules. If IDS rules are supplied, attackers are less likely to learn them and make their
attacks invisible [23]. As any previously unforeseen activity can be considered an anomaly,
however, the anomaly-based strategy can create many false alarms.

In a scholarly publication, the author [24] reported a study that demonstrated the
application of a supervised machine learning (ML) approach for an IDS in the IoT domain.
These authors utilized the application and transport layer features of the UNSW-NB15
dataset. The technique being suggested involved the categorization of network traffic
into two distinct groups: dangerous and benign. This categorization is achieved through
the utilization of a decision tree (DT) classifier. To assess the efficacy of the proposed
methodology, a 10-fold cross-validation approach was employed. The findings indicated
that the suggested methodology achieved a 98.58% level of accuracy. The machine learning
subfield, active learning, emphasizes learning from a few training examples [25]. Since IDS
labels take time, it is ideal for IDS design, but may be difficult to label invasions that have
never occurred before. Active learning combines machine learning and domain experts. It
can reduce labeling efforts and quickly develop a machine learning model for intrusion
detection. Accordingly, the active learning architecture can quickly update the machine
learning model for new network assaults [26–29].

The diagram in Figure 1 illustrates a comprehensive framework utilized for anomaly
detection in Internet of Things (IoT) systems, employing the active learning technique. The
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framework encompasses a series of fundamental stages, commencing with the first dataset
phase, wherein the widely used UNSW-NB15 Network Intrusion Dataset is utilized. The
initial data preparation phase includes crucial procedures such as data cleansing, selecting
relevant features, normalizing features, and partitioning data into training and testing sets.
The methodology section presents an architectural framework for a smart city based on
the IoT, emphasizing the interconnection of nodes through smart traffic, buildings, and
grids. The paper presents the technique for the active learning algorithm and the evaluation
matrix used to assess its effectiveness. The evaluation matrix includes accuracy, precision,
F1-score, a confusion matrix, and ROC curve. Ultimately, the final step of the process
involves determining whether or not an anomaly has been found.
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Moreover, the study presented in this paper makes several significant contributions:

• It proposes an active learning technique that is specifically tailored for anomaly de-
tection. This technique considers the unique characteristics of anomaly detection and
aims to improve the performance of anomaly detection models.

• Our model is evaluated on the UNSW-NB15 dataset, a publicly available dataset
containing accurate network traffic data from an IoT device.

• It introduces a novel sampling strategy that is based on the concept of uncertainty. This
strategy aims to select the most informative instances for labeling, thereby enhancing
the learning process.

• We assess the efficacy of our active learning model by employing diverse feature selec-
tion methodologies, including mutual information-based feature selection, principal
component analysis, and correlation-based feature selection.

• It develops a comprehensive framework, integrating active learning with random
forest ensemble classifiers. This framework provides a systematic approach for incor-
porating active learning into the training of ensemble classifiers, which can lead to
improved anomaly detection performance.

• The analysis of accuracy and other performance metrics is conducted on diverse bench-
mark IoT datasets to evaluate the effectiveness of the anomaly detection techniques.
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The subsequent sections of the paper are organized in the following manner: Section 2
provides an overview of the background research conducted and highlights the pertinent
studies conducted in this field. The process of data collecting is explicated in Section 3,
the study technique is delineated in Section 4, and the findings and interpretations of the
inquiry are examined in Section 5. Section 6 of the paper encompasses the discussion
around our model, while Section 7 serves as a comprehensive summary and conclusion to
the paper.

2. Literature Review

The proliferation of IoT devices has experienced a significant upswing in recent
years [30], resulting in a substantial upsurge in the volume of data produced by these
networked devices. The analysis of this extensive dataset is of the utmost importance for
anomaly detection [31,32], as it facilitates the identification of atypical patterns or behaviors.
Therefore, this literature review provides an overview of existing research that primarily
focuses on active learning-based algorithms for anomaly detection in IoT systems. Various
methodologies have also been investigated in this area.

According to [5], the utilization of an attack-specific characteristic, rather than an IoT-
specific feature, might enhance the effectiveness and feasibility of a machine learning-based
security system for attack detection and anomaly identification. The researchers employed
the UNSW-NB15 and NSL-KDD datasets in this study. The performance of a system is
evaluated by considering various metrics, including recall, precision, accuracy, F1-score,
training time, and testing time. The F1-score of RFs is 0.99, whereas the Support Vector
Machine (SVM) has an F1-score of 0.65. The primary aim of this study was to identify
different types of attacks. The results obtained demonstrated a high level of accuracy in
detecting various attacks, with a low occurrence of false alarms when utilizing the extracted
features for this purpose.

According to [10], an inquiry was carried out to explore a method for anomaly identi-
fication in the context of improving cybersecurity in a smart city. To eliminate potential
hazards and improve the overall security of the smart city infrastructure, the researchers
used diverse methodologies such as K-Nearest Neighbor (KNN), Logistic Regression (LR),
DT, artificial neural network (ANN), and RF. Their paper analyzes ensemble techniques,
such as bagging and boosting, to improve the detection the architecture’s security. Their
research is centered on using two datasets, namely UNSW-NB15 and CICIDS 2017. The
results showed that the SVM achieved an accuracy rate of 90.50%. The artificial neural
network had a classification accuracy of 79.5%, whereas the boosting approach had an
accuracy rate of 98.6%, and the stacking method had an approximate accuracy rate of 98.8%.
Therefore, the experimental results acquired using the dataset UNSW-NB15 can be used as
a primary lead for identifying infrequent attacks in a smart city’s IoT environment.

The authors of [14] proposed a comprehensive framework for implementing the
Variational Long Short-Term Memory (VLSTM) model, which involves the utilization of
both estimation and compression networks. The researchers developed a VLSTM learning
model for intelligent anomaly detection. This model utilizes rebuilt feature representations
to address the challenge of balancing dimensionality reduction and feature retention in
imbalanced Industrial Big Data (IBD) datasets. The experimental findings, encompassing
the VLSTM strategy, outperformed six alternative approaches on the testing dataset, as
evidenced by an F1-score of 0.907, a False Alarm Rate (FAR) value of 0.117, and an Area
Under Curve (AUC) metric of 0.895. The findings demonstrate that, in comparison to
baseline methods, their approach can successfully identify true abnormalities from data on
typical network traffic and dramatically lower the false anomaly detection rate.

In addition, [16] described a new intrusion detection model that could be applied
to fog nodes. This model used UNSW-NB15 properties to find superfluous IoT device
traffic. This paper presents the tab transformer model, which surpasses machine learning.
Said model distinguishes normal from irregular traffic at 98.35% accuracy. However, their
approach predicts attacks with 97.22% accuracy across many classes. The model opened up
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new fog node anomaly study avenues, according to the review [19]. Furthermore, Kocher
and Kumar [20] presented a variety of intrusion detection techniques. Their work trained
ML classifiers using the UNSW-NB15 dataset. The study tested Naive Bayes (NB), LR,
KNN, and RF to detect intrusion. Classifier accuracy, precision, recall, F1-score, Mean
Squared Error (MSE), False Positive Rate (FPR), and True Positive Rate (TPR) were tested
with and without feature selection procedures. These machine learning classifiers were
also compared and according to the findings, the RF algorithm uses all of the information
that is accessible to it to obtain an accuracy of 99.5%; when only certain features are used,
the accuracy rises to 99.6%.

To build accurate IDSs, [22] developed the XGBoost method as a form of feature selec-
tion in conjunction with several ML approaches, including DT, LR, ANN, KNN, and SVM.
To compare methods, the researchers used the UNSW-NB15 dataset. The experimental
results demonstrate that by adopting the XGBoost-based feature selection strategy, methods
like DT may increase their test accuracy in binary classification from 88.13% to 90.85%.

Similarly, [24] used features from the UNSW-NB15 dataset to discover sets of features
based on flow, Message Queuing Telemetry Transport (MQTT), and Transmission Control
Protocol (TCP). Overfitting, the curse of dimensionality, and dataset imbalances were all
eliminated. To train the clusters, they used supervised machine learning techniques like
ANN, SVM, and RF. The authors’ RF-based binary classification accuracy was 98.67%,
while their multi-class classification accuracy was 97.37%. Using RF on Flow and MQTT
features, TCP characteristics, and the best features from both clusters, they achieved
classification accuracies of 96.74%, 91.96%, and 96.56%, respectively, using cluster-based
approaches. They also show that the suggested feature clusters outperform other state-of-
the-art supervised ML algorithms in terms of accuracy and training time.

The implementation of distributed deep learning approaches for the detection of IoT
threats has highlighted recent developments in the field of IoT security (Parra et al., 2020) [25].
In addition, artificial intelligence has become a crucial tool for spotting irregularities in energy
use in buildings, according to a thorough analysis of the latest developments and prospects by
Himeur et al. [26]. A hierarchical hybrid intrusion detection system developed specifically for
IoT applications was also suggested by Bovenzi et al., demonstrating the expanding variety
of IoT security measures [27]. The use of semi-supervised hierarchical stacking temporal
convolutional networks has also shown promise in anomaly detection for IoT connectivity,
as Cheng et al. have shown [28]. Additionally, Pajouh et al. created a two-layer dimension
reduction and two-tier classification model for anomaly-based intrusion detection in IoT
backbone networks, highlighting the significance of strong security measures in the IoT
ecosystem [29].

This literature review section has examined and evaluated different methodologies that
have been proposed to tackle anomaly detection in IoT systems. Furthermore, traditional
approaches are frequently needed to help in accommodating IoT environments’ ever-
changing and dynamic nature, where anomalies may exhibit varying appearances over
time. In summary, this literature analysis has underscored the importance of the various
methodologies employed in identifying anomalies within IoT systems. Our proposed
active learning methods can potentially improve the accuracy and efficiency of anomaly
detection by eliminating the need for labeling and allowing for flexibility in dynamic
IoT environments. The primary objective of this research article is to make a valuable
contribution to the existing pool of knowledge in this particular field. Doing so will establish
a solid groundwork for potential future developments in the domain of IoT anomaly
detection, explicitly focusing on the utilization of active learning techniques. Table 1
presents a comprehensive compilation of previous references, encompassing datasets,
parameters, techniques, and corresponding outcomes.
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Table 1. List of past references, including datasets/parameters, methodology, limitations, and results.

Ref. Dataset/Parameters Methodology Limitations Results

[5]

- Datasets like UNSW-NB15 and
NSL-KDD were used.

- In this way, 71,537,674 Denial of
Service (DoS) incidents yield
25,000 random samples. From 75
Comma-Separated Values (CSV)
files containing 1,821,639
information-gathering incidents,
25,000 are randomly extracted,
and 1587 of those are theft
occurrences. In total, 6430 are
retrieved from 75 files containing
9543 normal instances.

- Machine learning
algorithms include
KNN, RF, SVM,
and LR.

- A relatively small sample size
was used for evaluating the
proposed active learning
approach for wireless IoT
intrusion detection.

- Does not provide information on
the number of instances or the
diversity of the dataset used.

- Lacks of evidence of a
real-world implementation of
the proposed approach

- SVM: Precision of
92.6%. F1-score
of 0.65.

- KNN: Precision of
97.8%, F1-score
of 0.99.

[10]

- The study evolves around two
datasets, UNSW-NB15 and
CICIDS2017.

- The first dataset consists of
approximately 2 million entries.

- A total of 25,070 samples were
used for testing and 13,961
samples for training.

- The second dataset has 2,720,634
records in its sample space and
77 features.

- Machine learning
techniques used in
this model include
RF, KNN, ANN,
and SVM.

- Limited dataset for evaluating
the effectiveness of ensemble
techniques for anomaly
detection.

- Absence of a comparative
analysis with other existing
methods for intrusion detection.

- Accuracy for SVM
is around 90.5%.

- Accuracy for DT is
70.4%, RF is 91%,
and 79.5% for ANN.

[14]

- To investigate the proposed
VLSTM model, the UNSW-NB15
dataset is used.

- Approximately 42 features are
included in the dataset.

- Machine learning
models like LSTM,
NB, RF, AdaBoost,
and Convolutional
Neural Network
(CNN) are used.

- Lacks practical implementation
and validation in real-world
industrial scenarios.

- Does not provide a
comprehensive comparison with
existing anomaly detection
algorithms or alternative
techniques.

- For VLSTM, the
validation dataset
precision is 96.7%,
and for the testing
dataset the
precision is 86%.

[16]

- The authors have employed the
UNSW-NB15 dataset.

- There are 45 network attributes
in the dataset overall, including
properties based on networks
and flow. Other classifications
include flow, fundamentals,
substance, time, and other
generated features.

- With 175,341 training and 82,331
testing records in CSV format,
the dataset has almost 2.5
million records in total.

- Binary classification
via Machine
Learning models
like RF, LR, KNN,
DT, and 1D-CNN.

- The research paper lacks details
on testing scenarios,
comparisons with existing
anomaly detection techniques in
fog computing architectures,
and comprehensive evaluation
metrics for the custom tab
transformer’s performance,
hindering understanding of its
strengths and weaknesses.

- The evaluation metrics utilized
in the research paper to assess
the performance of the custom
tab transformer for anomaly
detection in fog computing
architectures are not fully
comprehensive.

- RF accuracy of 96%,
DT accuracy of
96.5%. A 1D-CNN
accuracy of 96.8%.



Appl. Sci. 2023, 13, 12029 7 of 31

Table 1. Cont.

Ref. Dataset/Parameters Methodology Limitations Results

[20]

- The UNSW-NB15 dataset is
used.

- This dataset contains
approximately 49 attributes.

- Classifiers like NB,
RF, LR, and KNN
are used.

- Performance
metrics include
precision,
Mean-square error,
F1-score, and
accuracy.

- The research paper does not
compare the performance of
the machine learning
algorithms with feature
selection using the
UNSW-NB15 dataset against
other well-known intrusion
detection datasets.

- The paper focuses on the
evaluation of the machine
learning algorithms’
performance with feature
selection but does not provide
an in-depth analysis of the
interpretability of the selected
features.

- Accuracy of
KNN: 98.28%.

- Accuracy of
NB: 76.59%.

- Accuracy of
LR: 98.4%.

- Accuracy of
RF: 99.5%.

[22]

- The UNSW-NB15 dataset is
used.

- It contains 42 features with
39 numeric and 3 non-numeric
instances.

- Machine learning
techniques like LR,
ANN, DT, SVM,
KNN, and XGBoost
are used.

- The research paper does not
provide a comprehensive
comparison of the
performance analysis of the
IDS using different feature
selection methods or other
datasets.

- The lack of practical
implications restricts the
usefulness of the research
paper for practitioners looking
for actionable insights to
improve the efficiency and
effectiveness of their IDS
systems in real-world
scenarios.

- With 42 features,
SVM precision is
94.3%. DT has a
precision of 96.5%.

- LR has a precision
of 98.9%.

[24]

- The UNSW-NB15 dataset is
used.

- It contains approximately
27 features instead of 47, with
24,596 packets for the training
set and 68,264 packets of
internet traffic.

- Machine learning
uses techniques like
RF, NB, ANN, DT,
KNN, SVM, and
ANN.

- Their dataset may have
limitations in terms of
representing a diverse and
comprehensive collection of
real-world IoT network traffic
data.

- Chosen ML algorithms might
not be suitable for detecting
emerging or previously
unseen intrusion patterns.

- Reliance on these specific
layers may overlook potential
attacks at other layers, leading
to potential vulnerabilities in
the IoT system.

- RF has an accuracy
of 98.7%.

- SVM has an
accuracy of 97.7%.

- ANN has an
accuracy of 94.7%.

3. Data Collection

The UNSW-NB15 dataset, used in the research papers [7,8] was curated by the Network
Security Research Lab (NSRL) of the University of New South Wales (UNSW) in Sydney,
Australia [33,34]. The dataset was created by simulating a real-world network environment,
complete with numerous IoT devices, threats, and network traffic. The dataset comprises
2.5 million network flows containing both legitimate and criminal activities. The data was
collected by monitoring a testbed network comprising three physical computers hosting
diverse network services alongside twelve virtual machines running different operating
systems. Virtual machines utilized various services and protocols, including the Hypertext
Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), Domain Name System
(DNS), File Transfer Protocol (FTP), Secure Shell (SSH), Telecommunication Network
(Telnet), Internet Control Message Protocol (ICMP), and TCP.
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The Wireshark packet capture tool was employed to record the network traffic [35].
Subsequently, the data was pre-processed to eliminate relevant information for anomaly
identification.

• UNSW-NB15_1.csv, UNSW-NB15_2.csv, UNSW-NB15_3.csv, and UNSW-NB15_4.csv
are the four CSV files that make up the dataset. These files include 2,540,044 records
overall.

• UNSW-NB15_LIST_EVENTS.csv is the file name for the list of events, and UNSW-
NB15_GT.csv is the table name for the ground truth data.

• The UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv portions of the
dataset were utilized as the training and testing sets, respectively. A total of 175,341
records make up the training set, while 82,332 records from the attack and normal
categories make up the testing set.

3.1. Data Description

Network intrusion detection often uses the UNSW-NB15 dataset as a labeled dataset [36].
It is frequently used to assess how well intrusion detection systems are performing. On the
other hand, the data on network traffic is produced in the simulated network environment
that makes up the dataset. This dataset contains both common operational tasks and a
range of network assaults. The dataset is made up of both raw and processed data that has
been given various network traffic indicators. As shown in Table 2, these metrics consist of
protocol, source, and destination IP addresses, port numbers, and packet and byte counts.

Table 2. UNSW testing data frame.

ct_flw_http_mthd ct_src_1tm ct_srv_dst is_sm_ips_ports attack_cat Label

0 1 2 0 Normal 0
0 1 2 0 Normal 0
0 1 3 0 Normal 0
0 2 3 0 Normal 0
0 2 3 0 Normal 0

A total of 2,540,044 occurrences have been recorded and categorized into ten distinct
classifications of network traffic, encompassing both routine traffic and nine distinct forms
of attacks. The subsequent classifications represent a selection of attacks:

• Fuzzers;
• Exploits;
• Generic;
• Reconnaissance;
• Shellcode;
• Worms;
• Analysis;
• Backdoors;
• DoS.

The dataset comprises 45 variables, with the last two categorized as multi- and binary
target variables. The initial 43 elements encompass a diverse range of characteristics, with
the potential for certain ones to be omitted while others have significant importance.

The subsequent section provides a comprehensive account of each variable in the
training dataset. The variables of the UNSW-NB15 dataset are delineated in the following
list:

• id: a unique label for each flow.
• Dur: the flow’s time frame, measured in seconds.
• Proto: the flow’s protocol (such as Transmission Control Protocol (TCP), User Data-

gram Protocol (UDP), or ICMP).
• Service: the flow’s associated service (if any), such as HTTP, SSH, or FTP.



Appl. Sci. 2023, 13, 12029 9 of 31

• State: the flow’s current condition, such as FIN-WAIT-1 or ESTABLISHED.
• spkts: the total number of packets the source host transmitted throughout the flow.
• dpkts: the total number of packets the destination host transmitted throughout the flow.
• sbytes: the total amount of data the source host transmits throughout the flow.
• dbytes: the total amount of data the destination host transmits throughout the flow.
• Rate: the flow’s average packet sending speed, expressed in packets per second.
• sttl: the value of the flow’s initial packet’s source Time to Live (TTL).
• dttl: the first packet in the flow’s destination TTL value.
• Sload: the rate in bytes per second at which the source host sends data during a flow.
• Dload: the rate in bytes per second at which the destination host sends data during

the flow.
• Sloss: the total number of packets the source host lost along the flow.
• Dloss: the number of packets the destination host dropped along the flow.
• sinpkt: the number of seconds that pass on average during the flow between each

packet that the source host sends.
• dinpkt: the number of seconds that pass on average during the flow between each

packet that the destination host sends.
• Sjit: the standard deviation of the flow’s source host’s packet transmission interval,

expressed in seconds.
• Djit: the standard deviation of the flow’s destination host’s packet transmission inter-

vals, expressed in seconds.
• SWIN: the largest window size that the source host will advertise during the flow.
• stcpb: the total amount of bytes transmitted by the source host in TCP packets during

the flow.
• dtcpb: total bytes transmitted by the destination host in TCP packets during the flow.
• DWIN: the largest window size that the destination host will advertise while the flow

is in progress.
• tcprtt: the TCP packets in the flow’s round-trip time, expressed in seconds.
• Synack: the interval in seconds between Synchronize (SYN) and Acknowledgment

(ACK) packets in the flow.
• ackdat: the interval, in seconds, between the ACK and data packets in the flow.
• Smean: the average number of bytes in the payload transmitted by the source host

during the flow.
• Dmean: the average number of bytes in the payload the destination host supplied

throughout the flow.
• trans_depth: the total amount of HTTP requests sent over the TCP connection.
• response_body_len: the size of the HTTP response body in the flow.
• ct_srv_src: the total number of connections made in the last two seconds to the same

service and source IP address.
• ct_state_ttl: the quantity of connections with the same state and TTL values during

the last two seconds.
• ct_dst_ltm: the number of connections made in the last two seconds to the same

destination IP address.
• ct_src_dport_ltm: the number of connections with the same source port and destination

IP address during the last two seconds.
• ct_dst_sport_ltm: measurement of several connections made in the last two seconds

using the same source IP address and destination port.
• ct_dst_src_ltm: the number of connections with the same source and destination IP

addresses in the last two seconds.
• is_ftp_login: indicates whether or not a login was used to access the FTP session.
• ct_ftp_cmd: the flow’s total number of FTP commands.
• ct_flw_http_mthd: the number of HTTP methods used in the flow.
• ct_src_ltm: the number of connections with the same source IP address in the past two

seconds.
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• ct_srv_dst: the number of connections to the same service and destination IP address
in the past two seconds.

• is_sm_ips_ports: indicates if the source and destination IP addresses and ports belong
to the same subnet.

• attack_cat: the type of attack (e.g., DoS, Fuzzers, Shellcode) or normal traffic.
• Label: indicates whether the traffic is benign (0) or malicious (1).

The UNSW-NB15 dataset comprises network traffic traces that were collected within a
controlled laboratory environment. The traffic consists of non-malicious traffic and traffic
associated with different types of attack. The production of this traffic is facilitated by a
diverse range of hardware and operating systems. Moreover, the traffic has the potential
to originate from a wide range of network-connected devices, encompassing IoT devices,
laptops, servers, routers, and switches, among others. Thus, the scope of IoT devices is not
limited to any particular type.

Within the UNSW-NB15 dataset, the designations “source” and “destination” refer to
the specific Internet Protocol (IP) address and port number associated with the device that
initiated the network communication and the machine that received the communication,
respectively. For instance, when a computer possessing the IP address 192.168.1.2 transmits
a message to a server with the IP address 10.0.0.1, the source and destination IP addresses
would be 192.168.1.2 and 10.0.0.1, respectively. The source port refers to the computer’s
specific port for transmitting a message. In contrast, the destination port pertains to the
port employed by the server to receive the message.

3.2. Exploratory Data Analysis (EDA)

Before undertaking any data science research, it is imperative to conduct an Ex-
ploratory Data Analysis (EDA) [37]. It involves understanding the data and discerning
potential patterns, trends, or anomalies within it. The fundamental purpose of an EDA is
to ascertain if the data may be effectively employed to inform and guide further modelling
and data analysis methodologies. The EDA for this work encompasses the following stages:

• Data Pre-processing: data preparation encompasses several tasks, such as addressing
outliers, removing missing values, and transforming variables [38].

• Descriptive Statistics: measures of central tendency, such as the mean, median, and
mode, as well as measures of variability, such as the standard deviation, and the
examination of the relationship between variables, such as correlation, are illustra-
tive instances of descriptive statistics that can provide significant insights into the
characteristics of the data.

• Data Visualization: The utilization of various data visualization techniques, including
histograms, scatter plots, box plots, and heat maps, can facilitate the identification of
patterns, trends, and outliers within the data. Furthermore, these representations can
unveil the associations among the variables.

• Dimensionality Reduction: Visualizing and evaluating data with a high number of
dimensions poses significant challenges. Principal component analysis (PCA) is one
technique that works well for reducing the dimensionality of data while keeping key
features.

• Feature Selection: Feature selection involves identifying and selecting the most rel-
evant features within a dataset that are essential for anomaly detection. Feature
selection might enhance models’ accuracy and reduce the data’s complexity.

Since EDA is a cyclical process, its insights can inform subsequent phases of data
analysis and modeling.

• Attack Distribution by Category: The analysis of attack distribution by category
involves utilizing a bar plot to visually represent the prevalence of different attack
categories within the dataset, as shown in Figure 2. This approach allows for a better
understanding of the relative frequency of attacks across various categories. It may
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provide valuable understanding regarding the specific attacks that are more prone to
targeting IoT equipment.
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In the above figure, the distribution of each attack type within the entire dataset is
presented. The distribution of attack types in IOT systems follows a normal distribution,
with most traffic falling within the normal class. Conversely, the combined occurrence of
other attack types is lower than that of the normal class. This observation suggests that the
predominant traffic in IOT systems is of the normal type, and the highest level of assault
encountered by IOT devices is typically of a generic nature.

• Protocol Distribution: Determining the most often utilized protocols in IoT systems
can be achieved by employing a visual representation such as a pie chart or bar plot,
as shown in Figure 3 to showcase the distribution of these protocols throughout the
dataset. It can facilitate the identification of protocols that are more susceptible to
attacks and that require implementing supplementary security measures.

The term “protocol” pertains to a collection of regulations or criteria that dictate
how data is conveyed and received across a network. In datasets related to network
security, the column labeled “proto” commonly denotes the protocol employed for each
network connection or packet, encompassing protocols like TCP, UDP, ICMP, and others. A
comprehensive knowledge of the protocol used in network communication holds significant
importance in network security applications, as distinct protocols may be susceptible to
certain forms of attacks. There were many protocol types involved in this dataset, around
131, but we only visualized those with the maximum distribution in the dataset. TCP and
UDP are the two most prevalent protocol types.

• Correlation Matrix: A correlation matrix can provide insights into the relationships
between different properties within a dataset. Adopting this approach will facilitate
a more comprehensive understanding of the critical attributes that hold the most
significance in the anomaly identification process while distinguishing those that may
be superfluous or lacking in substance. Below, Figure 4 shows the correlation matrix
for selected features of the UNSW data frame.
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Correlation is a robust descriptive measure that provides valuable insights into the
degree of association between two variables. The strength of the association between
variables can be assessed using the correlation coefficient. A correlation coefficient close to
1 indicates a high degree of correlation, whereas a value below 1 or negative suggests a
weak relationship between the variables. In the figure above, only significant features were
depicted, with those presented in blue hues indicating a strong correlation, while those
shown in red hues denote a weak correlation. Additionally, the correlation coefficient is
displayed on each correlated box, providing a quantifiable correlation assessment.

• Box Plots of Feature Distributions: The examination of box plots depicting the dis-
tributions of individual characteristics enables comprehension of the variability and
distribution of the data. It can facilitate the identification of abnormal data points and
outliers.

As depicted in Figure 5, outliers exhibit significant divergence from the remaining
data points within the sample. The presence of outliers within the characteristics could
indicate atypical or deviant patterns in the network traffic under investigation within the
framework of this code. A significantly elevated value for the “sbytes” or “dbytes” attribute
indicates the presence of huge network packets. Identifying and analyzing outliers can
facilitate an understanding of network traffic patterns and the detection of anomalous
behavior. Additional research may be necessary to ascertain the underlying source of
any observed outliers, as outliers might arise from measurement errors or other factors
unrelated to network traffic behavior.

• Distribution of Label Classes: The equilibrium of the dataset can be ascertained by
examining a bar plot that exhibits the distribution of the label classes, namely, normal
or assault. Considering an imbalanced dataset is crucial when creating a machine
learning model for anomaly detection. 
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Figure 1: Box Plot of Selected Features Distributions for Outliers. Figure 5. Box plot of the distributions of selected features for outliers.
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The visualization presented in Figure 6 depicts the distribution of binary label classes,
with 1 representing regular traffic and 0 representing harmful traffic. In contrast to a multi-
label distribution characterized by significant class imbalance over ten classes, the label
distribution under consideration exhibits balance. Consequently, it may serve as a promising
target variable for developing a prediction model focused on anomaly identification.
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• Service Distribution: Figure 7, titled “Service Distribution Count,” depicts the fre-
quency of various service types utilized in the dataset. The graph serves as a tool for
discerning commonly employed network traffic services that may be susceptible to
security breaches.
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The chart’s vertical axis represents the quantity of each service, while the horizontal
axis enumerates the many types of services. To facilitate the identification of the most
commonly utilized services, the bars in the chart depicting the frequency of each service are
organized in descending order. This visual representation may aid network administrators
in prioritizing the protection of commonly utilized services and implementing measures to
defend them against potential vulnerabilities. The dataset indicates that DNS and HTTP
are the most commonly utilized services.

• State Distribution: The state distribution of a dataset characterizes the various states
that a network connection may encounter over its lifespan. Established, Syn_sent,
Fin_Wait1, Fin_Wait2, Time_Wait, Close, and other states are illustrative of such
conditions.

Figure 8 displays the distribution of state types. Examining the distribution of states
can offer valuable insights into the dynamics of a network and the characteristics of the
traffic inside the dataset. Through the examination of state distributions, it becomes possible
to discern potential anomalies and correlations that may exist between particular states
and the various categories of attacks. Utilizing this knowledge can confer benefits in the
advancement of ML models for anomaly detection, as well as the design of network security
strategies.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 33 
 

The chart’s vertical axis represents the quantity of each service, while the horizontal 
axis enumerates the many types of services. To facilitate the identification of the most 
commonly utilized services, the bars in the chart depicting the frequency of each service 
are organized in descending order. This visual representation may aid network adminis-
trators in prioritizing the protection of commonly utilized services and implementing 
measures to defend them against potential vulnerabilities. The dataset indicates that DNS 
and HTTP are the most commonly utilized services. 
• State Distribution: The state distribution of a dataset characterizes the various states 

that a network connection may encounter over its lifespan. Established, Syn_sent, 
Fin_Wait1, Fin_Wait2, Time_Wait, Close, and other states are illustrative of such con-
ditions. 
Figure 8 displays the distribution of state types. Examining the distribution of states 

can offer valuable insights into the dynamics of a network and the characteristics of the 
traffic inside the dataset. Through the examination of state distributions, it becomes pos-
sible to discern potential anomalies and correlations that may exist between particular 
states and the various categories of attacks. Utilizing this knowledge can confer benefits 
in the advancement of ML models for anomaly detection, as well as the design of network 
security strategies. 

 
Figure 8. State-type distribution. 

3.3. Data Processing 
The protocol for conducting data processing utilizing the UNSW-NB15 dataset for 

anomaly detection in IoT systems through active learning involves the following steps: 
• Data cleaning: The data cleaning process includes identifying and removing dupli-

cate records and the appropriate treatment of missing or erroneous data entries. It is 
possible to employ techniques such as one-hot or label encoding to convert categori-
cal data into numerical form. The dataset under consideration exhibits a complete 
absence of missing or null elements. To complete the data cleaning process, it is nec-
essary to convert the categorical variables in the dataset using label encoding. The 
dataset’s categorical variables, namely protocol, state, service, and attack_category, 
are presented in Table 3. 

Table 3. Categorical variables. 

Figure 8. State-type distribution.

3.3. Data Processing

The protocol for conducting data processing utilizing the UNSW-NB15 dataset for
anomaly detection in IoT systems through active learning involves the following steps:

• Data cleaning: The data cleaning process includes identifying and removing duplicate
records and the appropriate treatment of missing or erroneous data entries. It is possi-
ble to employ techniques such as one-hot or label encoding to convert categorical data
into numerical form. The dataset under consideration exhibits a complete absence
of missing or null elements. To complete the data cleaning process, it is necessary to
convert the categorical variables in the dataset using label encoding. The dataset’s cat-
egorical variables, namely protocol, state, service, and attack_category, are presented
in Table 3.
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Table 3. Categorical variables.

Proto State Service Attack_Cat

UDP INT - Normal
UDP INT - Normal
UDP INT - Normal
UDP INT - Normal
UDP INT - Normal

Upon the use of label encoding, the categorical variables are transformed into numeri-
cal representations, denoted by the values 0, 1, 2, 3, and so on. This conversion is illustrated
in Table 4.

Table 4. Label encoded categorical variables.

Proto State Service Attack_Cat

117 4 0 6
117 4 0 6
117 4 0 6
117 4 0 6 0
117 4 0 6

• Feature Selection: Choose the characteristics that have the utmost significance in iden-
tifying abnormalities. Consider the concept of domain competence and the importance
of feature significance metrics such as mutual information and correlation. To enhance
the outcomes, it is possible to select specific traits that exhibit a strong correlation.
However, previous studies have predominantly employed a limited number of charac-
teristics. This study aims to construct an anomaly detection model using all available
data, encompassing highly and minimally linked features.

• Feature Scaling: To ensure comparability, it is necessary to standardize the scales of
the features. Standardization and min-max scaling are widely used techniques in data
pre-processing. To ensure consistency within our dataset, we utilized traditional scalar
operations. The revised data frame is presented in Table 5.

Table 5. Standardized features data frame.

0 1 2 3 4 5 6

1.457197 −0.110851 0.088625 −0.674406 −2.050741 −0.094586 −0.134511
−1.176180 −0.213728 0.410563 0.274329 0.932695 −0.124455 −0.151816
0.569545 −0.213729 −3.881935 −0.674406 0.932695 −0.124455 −0.151816
−0.081899 −0.206895 0.088625 −0.674406 −0.559023 0.204110 0.263504
−0.035069 −0.090130 0.088625 −0.674406 −0.559023 −0.064716 −0.099901

• Train/Test Split: Generate training and testing datasets by partitioning the available
data. The testing set will be utilized to evaluate the efficacy of the anomaly detection
model after its training on the training set. The data frame consisting of 45 columns
will be initially partitioned into two separate frames:

# 1: Qualities.
# 2: Education.

The initial 43 feature variables will be included in the features data frame. Two
variables are used to represent the classes in our study: one is binary, while the other is
multi-dimensional. In the present investigation, we will exclude the multi-label target
variable and solely focus on binary labels. Subsequently, the dataset will be partitioned
into a training set including 70% of the data and a testing set comprising the remaining
30%, using Sklearn’s train–test split procedure.
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• X_train size = (57,632, 43)
• y_train size = (57,632)
• X_test size = (24,700, 43)
• y_test size = (24,700)

The initial record consists of many rows, while the subsequent record has multiple
variables within each data frame. The training and testing feature sets comprise 43 variables,
while the training and testing classes or target sets consist of 1 variable.

• Active Learning: To train the model, selecting a small subset of labeled data is recom-
mended. The selection of the most informative data points can be iteratively performed
using an active learning approach, wherein a human expert or a trained classifier is
involved in the labeling. Incorporate the designated data points into the training set
and afterwards engage in iterative model retraining to achieve the required level of
performance.

• Evaluation: Analyze the model’s performance on the test set. Various metrics, such as
accuracy, recall, F1-score, and Area Under the Curve Receiver Operating Characteris-
tics (AUC-ROC), can be employed to assess the efficacy of abnormality detection.

4. Proposed Methodology

The approach that is suggested in our research focuses on an active learning frame-
work for an IoT anomaly detection system. A machine learning technique called active
learning reduces the need for labeled data while increasing model accuracy. It operates
by actively choosing particular data points for labeling, decreasing the cost of annotation,
and improving accuracy by emphasizing instructive samples. To more accurately discover
anomalies with fewer labeled data points, active learning quickly locates and categorizes
anomalous data inside complex IoT datasets. Figure 9 shows our active learning system,
which blends supervised and unsupervised techniques to improve anomaly detection.
While the unsupervised portion locates potential anomaly clusters, the supervised portion
categorizes the data as normal or anomalous. Active learning adapts to different IoT data
types and applications by iteratively classifying data based on uncertainty. Entropy and
information theory constitute the basis of active learning, particularly uncertainty sampling.
A probability distribution’s entropy measures its degree of randomness, and active learning
chooses which data to label by maximizing information gain. Entropy-based uncertainty
sampling, which concentrates on data points close to the decision border or those where
the model is uncertain, is the fundamental basis of active learning. Entropy, margin, and
variance are three metrics that help it choose data points. Our model uses the modAL
package for autonomous active learning and a random forest classifier. The model finds
ambiguous instances in the test set, labels them, and adds them to the training set at the
end of each iteration. It is especially helpful in situations when there is little or expensive
labeled data since it minimizes labeled data while optimizing accuracy. This procedure
continues until a performance threshold is reached.
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4.1. Active Learning

Active learning is a machine learning strategy that aims to enhance the accuracy of
a model with a reduced number of labeled data points. In this approach, the computer
actively selects the specific data points to be marked. Additionally, active learning is a
strategy that reduces the expense of annotation and enhances accuracy by choosing the
most informative samples for human annotation repetitively, hence requiring fewer labeled
examples. Active learning can be employed as a rapid approach to identify and classify
atypical data points within a large and intricate dataset to find anomalies in IoT systems.
The active learning algorithm selects the most informative data points for labeling by
focusing on areas of the dataset where anomalies are anticipated to arise. This approach has
the potential to significantly reduce the number of labeled data points needed to achieve the
accurate detection of abnormalities. The general architecture of active learning is depicted
in Figure 9 above.

The revised depiction in the experimental environment for the suggested approach,
as depicted in Figure 9, offers a thorough representation of the active learning algorithm.
The understanding of the query stage is heightened, as it is a crucial element within the
active learning process. The classifier is provided with a pool of unlabeled examples
during the query step. This stage is of significant importance as it entails the intentional
selection of valuable data points from the dataset lacking labels to assign labels to them. By
strategically selecting the most valuable samples, we enhance the algorithm’s efficiency
and efficacy in acquiring knowledge from a restricted set of labelled data. Incorporating
the testbed experiment within the image constitutes a noteworthy supplementary inclusion.
The testbed experiment constitutes a crucial stage in assessing the performance and efficacy
of the algorithm under consideration. The process entails gathering empirical data to
evaluate the algorithm’s performance inside predetermined parameters or situations. By
presenting the testbed experiment in the picture, we underscore the empirical basis of our
methodology and its practical relevance. In addition, the revised depiction integrates the
procedure of assigning labels to the chosen samples. Labelling the selected samples entails
the assignment of accurate and verified labels to the data points that have been specifically
selected for annotation. This particular phase is of the utmost importance as it enables us
to acquire labelled samples, which can enhance the training data. Including these labelled
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samples in the training dataset enhances the precision and dependability of the algorithm’s
predictions when utilized on the remaining set of unlabeled samples. The revised depiction
within the experimental platform for the suggested technique offers a more intricate and
all-encompassing portrayal of the active learning algorithm. This statement emphasizes
the significance of three key elements: the query stage, the incorporation of a testbed
experiment, and the labelling of chosen samples. The comprehension of the active learning
process and the efficacy of the proposed algorithm are augmented by the visualization of
these crucial steps.

4.2. The Foundational Mathematical Equations for Active Learning

Active learning is a machine learning methodology that involves identifying and
selecting data points that possess significant informational value for expert labeling. The
primary objective of active learning is to minimize the quantity of labeled data required to
attain a specific performance threshold.

On the other hand, uncertainty sampling draws upon the principles of information
theory, while the notion of entropy forms the foundational mathematical framework for
active learning. The measure of entropy in a probability distribution signifies the degree of
randomness or uncertainty present within it. In the context of active learning, the selection
of data points for labeling is determined by assessing the entropy of a model’s output to
identify the most informative points.

Let us define these terms:

• X is a collection of all potential input data items.
• Y is a collection of all potential output labels.
• D is the labeled training set of data.
• U is the group of all unlabeled data points.
• H is a collection of all conceivable hypotheses (models).
• The primary goal of active learning is to select a subset of the universal set U, denoted

as the query set Q, to obtain expert annotations. The approach utilizes the entropy of
the model’s output to ascertain the anticipated information gain for each data point
within the set Q.

For a particular data point x, the model’s output entropy is defined as

H (Y|x, D) = −∑ (y|x, D)logp(y|x, D) (1)

where, given the input data point x and labeled data D, p (y|x, D) is the posterior probabil-
ity distribution across the output labels.

For a data point x, the anticipated information gain is specified as follows:

IG (x, D) = H(Y|D)− E[H((Y|x, D))] (2)

where E [H (Y|x, D)] is the anticipated entropy of the output labels for x given the present
model and the labeled data, and H(Y|D) is the entropy of the output labels for the entire
dataset.

The algorithm selects the data points that exhibit the highest anticipated information
gain to augment the labeled dataset D. The process is iterated until the desired level of per-
formance is achieved, at which point the model undergoes retraining using a newly labeled
dataset. To achieve a specific group level of performance with minimal labeled data, active
learning utilizes the concept of entropy to select the most valuable data points for annota-
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tion. Algorithm 1 illustrates the procedural phases of the uncertainty sampling technique.

Algorithm 1: Uncertainty Sampling
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4.3. Uncertainty Sampling

A popular method in active learning for determining which data points to identify
as the most useful is the uncertainty sampling algorithm. The method seeks to utilize
the labeling budget as effectively as possible by considering uncertainty. The steps of the
uncertainty sampling algorithm will be covered in this part, along with information on
how it is implemented in code. Finding the K data samples with the highest uncertainty
ratings is the first step in the uncertainty sampling algorithm. These evaluations are based
on how confidently each data point was predicted by the model. The sample is thought
to be more valuable for annotation the greater the uncertainty rating. The program then
requests accurate labels for each of the K unsure samples and adds them to the labeled
dataset D when the K uncertain samples have been discovered. Then, using the newly
labeled samples, a new model is trained on the updated dataset D. Iteratively, this process
goes on until the labeling budget is depleted or the desired target performance is attained.

The main goal of the uncertainty sampling algorithm is to choose data points that
will maximize the expected information gain. The algorithm attempts to decrease the
uncertainty of the model’s predictions and increase the accuracy of those predictions by
actively seeking the most uncertain data. Through a series of iterations that involve selective
annotation and model retraining, the performance of the model with sparsely labeled data
is gradually improved. The uncertainty sampling algorithm uses the idea of entropy to
quantify uncertainty in its implementation. A probability distribution’s entropy measures
the degree of randomness or uncertainty it contains. In order to lower the total uncertainty
of the model’s predictions, the algorithm chooses data points. Calculating the uncertainty
score for each data point is part of the code for the uncertainty sampling algorithm. The
estimated probabilities of the model for each class label can be used to obtain this score.
The K samples chosen for annotation are those with the greatest scores for ambiguity.
The labeled dataset is used to train the model, and the procedure is repeated until either
the required performance level is reached or the budget is used up. The uncertainty
sampling algorithm, which chooses data points based on their expected information gain,
is an efficient method for active learning. The approach seeks to increase classification
accuracy with less labeled data by iteratively annotating the most ambiguous examples
and retraining the model. The method effectively makes use of the labeling budget that is
available by incorporating the idea of entropy to improve the performance of the model.
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1. Define the function of the uncertainty score:

US (x) = 1 − P (max|x, D) (3)

Given the input x and the current dataset D, y_max is the label with the highest
probability. The chance that the label y_max will appear given the input x and the current
dataset D is known as P (y_max|x, D).

2. Select the K samples with the highest ratings for uncertainty.

Sk = {x_i} i = 1k where x_i = argmax x ∈ U US(x) (4)

where U is the collection of data points without labels.

3. Ask for the accurate label for each sample in S_k, then include them in the labeled
dataset D.

4. Train a new model on the revised dataset D, then continue the procedure until the
budget is used up or the target performance is attained.

The concept of uncertainty sampling, which evaluates the uncertainty of a model
using many measurements, serves as the foundational mathematical principle behind
active learning. Entropy is a statistic that quantifies the amount of information required to
classify a given piece of data accurately. Entropy-based uncertainty sampling selects the
data points close to the decision boundary or those for which the model exhibits the least
certainty in their classification. The formula for entropy-based uncertainty sampling is as
follows:

x_i = argmax_x ∑ Ĉ_j = 1 (−p_ij log(p_ij)) (5)

where p_ij is the anticipated probability of class j for data point x_i, C is the number of
classes, and x_i is the data point with the maximum entropy.

Another statistic to consider is the margin, representing the difference between the
two highest projected probabilities. Margin-based uncertainty sampling is employed to
select data points that exhibit the smallest discrepancy between the two highest projected
probabilities. The formula for margin-based uncertainty sampling is as follows:

x_i = argmax_x min_j ∈ {1, . . . , C}, j 6= y_i (p_ij− p_iy_i) (6)

where x_i is the data point with the lowest margin, C is the number of classes, y_i is the
accurate class label for data point x_i, and p_ij is the estimated likelihood that class j will
occur for data point x_i.

Variance, which refers to the degree of fluctuation in the model’s predictions, con-
stitutes a third metric. Variance-based uncertainty sampling is employed to select the
data points that exhibit the most significant variability in the model’s predictions. The
mathematical expression for uncertainty sampling, which is determined by variance, can
be represented by the following formula:

x_i = argmax_x (1/T) ∑ T̂_t = 1
(

p_it− (1/T) ∑ T̂_t′ = 1 p_it′
)̂
2 (7)

where T is the total number of model predictions, p_it is the projected probability of class j
for data point x_i in the t-th model prediction, and x_i is the data point with the highest
variance.

Active learning can attain superior model performance using a reduced number of
labeled data points by selecting the most valuable data points for labeling. This approach
is particularly advantageous when obtaining labeled data is challenging or costly.

The active learning process involves training a model iteratively on a limited portion
of the available data, referred to as the active learning set. This trained model is then
utilized to select the next set of data points that require labeling, which is subsequently
added to the active learning set. The procedure above is commonly referred to as active
learning. The process above continues iteratively until the desired level of precision is



Appl. Sci. 2023, 13, 12029 22 of 31

achieved, or a predetermined stopping criterion is met. To reduce the amount of labeled
data required for training and to enhance the model’s accuracy, active learning endeavors
to select the most informative and representative data points for annotation.

4.4. The Architectural Framework of an IOT-Based Smart City

The operational environment of a smart city can be seen to incorporate technology
like the Internet of Things and other intelligent systems. This connection makes it easier
for information to flow freely and helps with the efficient administration of different ser-
vices. The wide variety of technologies present in a smart city contributes significantly to
the improvement of several industries, such as energy consumption, healthcare, educa-
tion, logistics, and pollution reduction. Three separate layers make up the architectural
composition of a smart city: the fog layer, the cloud layer, and the terminal layer, in that
order.

The storage resources, which include servers and other devices that facilitate the
processing and management of large amounts of data, are included in the cloud layer. The
fog layer is the term used to describe the intermediate layer that creates a link between
the cloud layer and the terminal layer. Data flow between sensors and Internet of Things
devices is facilitated by the terminal layer’s interactions with a variety of devices. It also
gathers data that is both structured and unstructured. Figure 10 illustrates the IoT-based
smart city’s architectural foundation.
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4.5. Model Architecture Design

The method under consideration employs a random forest classifier sourced from
the Scikit-Learn toolkit as its primary constituent. The classifier comprises a collection of
50 decision trees, each with a depth of 15. The random forest classifier utilizes ensemble
learning to perform classification and regression tasks. The algorithm constructs a set of
decision trees and afterwards calculates the class or average prediction by combining the
outputs of these trees. The ultimate forecast of the random forest model is derived from a
majority vote among the individual trees that have been trained on a subset of randomly
chosen features. Furthermore, the input features undergo pre-processing and normalization
through the utilization of the StandardScaler approach. As shown in Figure 11.
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The modAL package is utilized for the implementation of active learning. This enables
the model to independently determine the data samples that require labelling in each
iteration, in contrast to labelling all the data samples simultaneously, as is customary in
traditional techniques. The ActiveLearner class within the MODAL framework is employed
for this specific objective. During the initialization phase, the necessary components for
the experiment are configured, including the training data, the random forest classifier as
the chosen estimator, and the uncertainty_sampling query technique. The query approach
known as uncertainty sampling is responsible for selecting examples that the model ex-
hibits the least certainty in classifying. The implementation of this technique utilizes the
uncertainty_sampling function provided by the modAL library. The uncertainty sampling
approach is employed to choose data points by considering the model’s highest level of
uncertainty in its predictions. This level of uncertainty is determined by subtracting one
from the likelihood of the label that is most likely to be correct. During each iteration of the
active learning loop, the model selects the instances with the highest level of ambiguity
from the test set, assigns labels to these instances, and subsequently integrates them into the
training set. The procedure is iterated for a predetermined number of inquiries, specifically
50. Following each query, the model is subjected to retraining using the adjusted training
data, followed by the computation of accuracy using the test data. The correctness of every
iteration is documented, and the cumulative accuracy is stored as the variable “acc”. The
algorithm incorporates an active learning framework to efficiently identify anomalies in
the Internet of Things (IoT) domain. This is achieved by harnessing the capabilities of
random forest classification, uncertainty sampling, and an iterative approach for selecting
and labelling cases that exhibit ambiguity. The provided description offers a thorough
understanding of the operational mechanism of the algorithm under consideration.

4.6. Model Training

The implementation of active learning improved our model’s performance, achieving
a remarkable accuracy of 99.7%. This outcome can be attributed to a range of potential
factors. One possible explanation could be that active learning facilitates the expert’s ability
to select the most informative data points for annotation, enhancing their efficiency in
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utilizing their time and resources. Active learning can reduce the required number of
samples for achieving high accuracy by focusing on the most informative occurrences. It
can be particularly advantageous in large datasets where identifying all samples may prove
unfeasible or cost-prohibitive.

A further factor to consider is that implementing active learning techniques can mit-
igate the challenge of class imbalance, a common issue seen in occupations requiring
anomaly identification. Implementing active learning techniques has been shown to en-
hance the classifier’s ability to detect anomalies and reduce the occurrence of false positives.
It is achieved by strategically selecting samples from the minority class that provide difficul-
ties in classification. Active learning can potentially improve the performance of anomaly
detection models by choosing the most informative samples for labeling and addressing
the class imbalance problem.

5. Results

Model assessment is a pivotal stage in machine learning since it evaluates the per-
formance of a trained model on novel and unexplored data. The subsequent list of the
customary evaluation metrics can be used for anomaly identification.

• Precision

Precision refers to the proportion of accurate optimistic predictions made by a model
that are true positives, meaning it correctly identifies anomalies. A model with a high
accuracy score suggests a minimal occurrence of false positives.

• Recall

The true positive rate is the percentage of real anomalies in the dataset that were found.
A model with few false negatives has good recall accuracy. Table 6 presents the evaluation
metrics pertaining to our suggested model.

Table 6. Evaluation metrics of the proposed model.

Evaluation Metric Performance Value

Weighted Average Accuracy 0.995
Accuracy 0.997
Precision 0.974
Recall 0.971
F1-Score 0.992

• F1-Score

These are two requirements balanced by the harmonic mean of accuracy and recall. A
well-balanced model with great accuracy and recall has a high F1-score.

• Receiver Operating Characteristic (ROC) Curve

Image 13 shows the relationship between the genuine positive rate (recall) and false
positive rate (1-specificity) at different thresholds. This illustration is frequently referred
to as a ROC curve. One measure used to evaluate a model’s overall performance is the
AUC score. A rating of 1 signifies optimal categorization performance, whereas a score of
0.5 denotes random guessing.

5.1. Confusion Matrix

A confusion matrix simplifies the machine learning system evaluation. Model perfor-
mance is measured by correct predictions, including true positives, true negatives, false
positives, and false negatives. True positive (TP) models effectively anticipate the positive
class. A true negative (TN) occurs when the model properly predicts the negative class. A
model FP happens when it mis-predicts the positive class. A false negative (FN) occurs
when the model mis-predicts the negative class.
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Figure 12 below illustrates that 11,062 samples from the test data were accurately
predicted within the harmful class, whereas 57 samples were incorrectly classified as
belonging to the normal class. In the normal class, a total of 13,580 instances were accurately
predicted, with only one instance being incorrectly predicted. The discrepancy in incorrect
predictions between the two classes can be attributed to a slight imbalance within the
dataset, wherein the number of normal samples exceeded that of malicious samples.
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In assessing the effectiveness of an anomaly detection model through active learning,
it is essential to monitor the number of labeled instances employed for training during
each iteration alongside the progression of the performance metrics. Cross-validation
techniques are additionally recommended to offer a more precise assessment of the model’s
performance. When analyzing the mistakes generated by a model, it is crucial to consider
many factors that may contribute to misclassification, including data imbalance, noise in
the data, and model complexity.

The suggested model’s evaluation metrics are summarized in Table 6, which is an
important part of evaluating the model’s performance. These metrics provide insightful
information about the model’s effectiveness in several areas. With a high value of 0.995, the
weighted average accuracy shows that the model is generally accurate in its predictions,
even when the classes are unbalanced. The accuracy demonstrates that nearly 99.7% of
the dataset’s cases are properly predicted by the model. It is an easy way to gauge overall
accuracy. Another crucial statistic is precision, which now stands at 0.974. The proportion
of accurate positive predictions made by the model is indicated by precision. This indicates
that roughly 97.4% of the model’s optimistic predictions were correct. Recall is 0.971, which
indicates that 97.1% of all real positive cases are captured by the model. The F1-score is
currently 0.992. This measurement strikes a compromise between recall and precision.
It shows that the model is achieving excellent results in balancing the reduction of false
positives and false negatives. The performance of the suggested model, which is shown
in the table, is encouraging. It exhibits high classification accuracy, strong classification
precision, high recall, and high F1-score values, all of which indicate that the model is
successful in properly classifying events in the dataset.
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The receiver operating characteristic (ROC) curve illustrates the performance of pre-
diction accuracy, as shown in Figure 13. A curve that approaches a value of 1 implies a
strong version of the model. Conversely, a curve centered at 0.5 suggests that the model’s
accuracy is approximately 50%. In our specific example, the curve is positioned at 1.0,
indicating exceptional model performance with an accuracy close to 100%.
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5.2. Novel Model Design

This study employed a fusion of active learning and machine learning techniques
to identify anomalies in IoT systems. Active learning lowers the amount of labeled data
needed to train an accurate model. This method selects and queries the most informative
labeling data points iteratively. The model’s lowest certainty determines data points for
labeling in this study’s uncertainty sampling active learning technique. A machine learning
model was created using IoT device network traffic data. The researchers detected network
intrusions using the freely available UNSW-NB15 dataset. Our work used a random forest
classifier, an ensemble learning method that builds numerous decision trees and aggregates
their predictions to improve model accuracy and robustness.

Initially, the dataset was partitioned into training and testing sets using an 80:20 ratio.
The ActiveLearner object was initialized, encapsulating both the machine learning model
and the active learning mechanism. To identify the most valuable data points for labeling,
we implemented the uncertainty sampling methodology. A query limit of 50 was set, indi-
cating that 50 data points from the test set would be selected for labeling. Throughout the
active learning process, we utilized the ActiveLearner object to extract the most informative
data points from the test set for labeling. The model was retrained after the incorporation of
labeled data into the training set. Upon conducting calculations to determine the accuracy
of the model after each query, it was observed that accuracy gradually improved as the
active learning process advanced.

Ultimately, our approach exhibited superior performance to traditional machine learn-
ing techniques that do not incorporate active learning, with a test set accuracy of 99.7%. The
primary advantage of our methodology lies in its ability to attain a high level of accuracy
while utilizing a small quantity of labeled data. This characteristic is particularly valuable
in the context of anomaly detection within the Internet of Things (IoT) systems, where the
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acquisition of labeled data might present challenges in terms of both feasibility and cost.
Our innovative approach of integrating active learning with machine learning algorithms
has the potential to enhance anomaly detection in IoT systems.

5.3. Core Contributions of this Study

The primary contributions of our study, titled “Anomaly Detection for IoT Systems
Utilizing Active Learning”, are as follows:

• Development of an effective anomaly detection model using active learning: Our study
has demonstrated that active learning is a valuable technique for developing precise
and efficient anomaly detection models in IoT systems. The model can iteratively select
the most informative data points by employing the uncertainty sampling technique.
This approach enhances the model’s accuracy and decreases the requirement for a
large number of labeled data points during the training process.

• Evaluation of the model on a real-world IoT dataset: Our model is evaluated on the
UNSW-NB15 dataset, a publicly available dataset containing real network traffic data
from an IoT device. The approach presented in this study demonstrates superior
performance compared to various state-of-the-art anomaly detection techniques, with
an accuracy rate of 99.7%.

• Investigation of the impact of different feature selection methods: This study examines
how feature selection tactics affect our model’s performance. PCA, mutual information-
based, and correlation-based feature selection are used to evaluate the model’s efficacy.
Our analysis shows that reciprocal feature selection yields the greatest results.

• Identification of the most significant features for anomaly detection in IoT systems:
Finding the most important features for IoT anomaly detection requires packet lengths,
bytes sent, and packet send rates. Our research shows that these traits can detect
unusual IoT traffic patterns.

• Demonstration of the potential of active learning for future IoT applications: This
study suggests using active learning in Internet of Things applications. We recommend
active learning for creating robust and effective anomaly detection models for Internet
of Things applications in the near future. Active learning can substantially reduce the
cost and time of constructing Internet of Things anomaly detection models. This is
achieved by reducing the labeled data for training.

5.4. Comparative Analysis

The research conducted in our study, titled “Anomaly Detection for IoT Systems
through the Application of Active Learning,” surpasses previous investigations by achiev-
ing a remarkable accuracy rate of 99.75% when evaluated on the UNSW-NB15 dataset
(Table 7). Our model’s utilization of active learning facilitated the dynamic selection of
highly informative data points for labeling. This approach effectively minimized the re-
quirement for a large number of labeled data during the training process while maintaining
a high accuracy level. This approach becomes particularly advantageous in situations
where the acquisition of annotated data is expensive and time-consuming, but still yields
enhancements in the model’s performance.

Table 7. Recent work related to anomaly detection.

Reference Approach Accuracy Dataset

[7] SVM 92.6% UNSW-NB15 dataset
[10] SVM 90.50% UNSW-NB15 dataset
[14] VLSTM 96.7% UNSW-NB15 dataset
[16] RF 96% UNSW-NB15 dataset
[22] SVM 94.3% UNSW-NB15 dataset
[24] RF 98.67% UNSW-NB15 dataset

Our approach Active learning 99.75% UNSW-NB15 dataset
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This study employed the random forest classifier as the chosen model due to its
proven effectiveness on the UNSW-NB15 dataset. The random forest classifier, an ensemble
learning technique, uses many decision trees to enhance accuracy and mitigate the risk
of overfitting. This approach can capture the intricate relationships between the various
attributes and the desired outcome, resulting in a model that exhibits superior performance.

To find anomalies in IoT systems, earlier research used supervised learning tech-
niques like SVM, RF, and VLSTM on the UNSW-NB15 dataset. The accuracy scores of the
investigations ranged from 90.50% to 98.67%.

To optimize the performance of our model, our study employed a range of feature
engineering techniques, including scaling and normalization of the dataset. Furthermore, in
the context of active learning, our model used various query methods based on uncertainty,
including least confidence, margin sampling, and entropy sampling. Utilizing several query
techniques enabled our model to effectively examine data distribution and select the most
informative examples for labeling. By employing feature engineering techniques, active
learning methodologies, and a random forest classifier, a robust anomaly detection model
for IoT devices was successfully developed, exhibiting high accuracy. Our methodology
reduces the cost and time required for labeling while improving the model’s functionality.
It renders itself a viable choice for practical implementations.

6. Discussion

The objective of this study is to investigate the utilization of active learning techniques
for anomaly detection within IoT systems. The identification of irregularities holds signif-
icant importance in guaranteeing the security and dependability of IoT systems. Given
the substantial amount of data generated by these systems, it is imperative to maintain
consistent monitoring to identify any anomalous patterns or behaviors. The utilization of
supervised learning algorithms is frequently employed in IoT systems for anomaly detec-
tion, as these techniques necessitate tagged data for training. Nevertheless, the process
of categorizing data can be laborious and demanding in terms of resources, particularly
when the quantity of irregular data is considerably smaller compared to the normal data.
Active learning is a pedagogical approach that addresses this challenge by intentionally
choosing the most useful examples from a collection of unlabeled data. These selected
examples are subsequently provided to human annotators for identification. The imple-
mentation of active learning as a pedagogical approach offers advantages in mitigating the
workload associated with labeling tasks while ensuring a sustained degree of precision in
detection. The procedure entails the repetitive choice of cases that exhibit either uncertainty
or instructional value.

The present study employed uncertainty sampling as an active learning technique to
pick samples for labeling, considering their degree of uncertainty. The enhanced efficacy of
our model can be ascribed to the incorporation of a random forest classifier. The random
forest methodology is well known for its capacity to effectively handle datasets defined by
a high number of variables and yield reliable outcomes. The incorporation of an ensemble
of decision trees within the random forest technique was employed to mitigate the potential
issue of overfitting and enhance the precision and reliability of predictions. Furthermore,
the decision to impose a limitation on the maximum depth of each tree to a value of
15 was made to mitigate the problem of overfitting, while simultaneously striking a balance
between the accuracy and interpretability of the model. The assessment of our model on
the UNSW-NB15 dataset generated favorable outcomes, therefore supporting the efficacy of
our methodology. The effectiveness of the model in detecting irregularities in IoT network
traffic data was demonstrated by its high performance metrics. These metrics include a
weighted average accuracy of 0.995, an accuracy of 0.997, precision of 0.974, recall of 0.971,
and F1-score of 0.992. The integration of active learning into our anomaly detection model
for IoT devices, together with the application of a random forest classifier, has resulted in
notable enhancements in performance. Through the implementation of a rigorous sample
selection process and harnessing the collaborative nature of the random forest methodology,
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our model demonstrated an exceptional level of accuracy, reaching a rate of 99.7%. The
aforementioned findings underscore the effectiveness of active learning methodologies and
their ability to augment the identification of abnormalities in IoT systems.

7. Conclusions

In conclusion, our active learning approach outperforms previous methods by accu-
rately detecting anomalies in IoT systems. Additionally, the precision and recall measure-
ments of our approach further validate its effectiveness in correctly identifying anomalies.
One of the key contributions of our research is the development of a unique uncertainty-
based sampling strategy. By selecting the most informative instances for labeling, we were
able to significantly reduce the labeling costs associated with anomaly detection in IoT
systems. This not only saves time and resources but also improves the overall performance
of the model. Furthermore, our framework, which combines active learning with random
forest ensemble classifiers, proved to be highly effective in identifying previously unnoticed
anomalies. It demonstrates the robustness and adaptability of our approach, making it a
valuable tool for protecting IoT devices from potential vulnerabilities. It is worth noting
that our findings have broader implications beyond IoT systems. Furthermore, through
the utilization of various methodologies and the UNSW-NB15 dataset, we were able to
compare and evaluate the performance of different algorithms. Our approach, which incor-
porated active learning, outperformed all other methods with an impressive accuracy rate
of 99.75%. This highlights the effectiveness of active learning in enhancing the identification
of anomalies in IoT systems. The integration of active learning successfully addressed the
challenge of limited annotated data in IoT systems, as it allowed for the identification and
labeling of the most informative examples.

Exploring the scalability and effectiveness of active learning techniques in large-scale
IoT environments is essential for future research. A fascinating area for further investigation
is looking into how advanced anomaly detection algorithms can be combined with active
learning to improve the security and dependability of IoT systems.
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FPR False Positive Rate
MQTT Message Queuing Telemetry Transport
SMTP Simple Mail Transfer Protocol
HTTP Hypertext Transfer Protocol
EDA Exploratory Data Analysis
ROC Receiver Operating Characteristic
TN True Negative
FP False Positive
IDS Intrusion Detection System
RF Random Forest
KNN K-Nearest Neighbor
LR Logistic Regression
ANN Artificial Neural Network
NB Naïve Bayes
TPR True Positive Rate
TCP Transmission Control Protocol
CNN Convolutional Neural Network
FTP File Transfer Protocol
DNS Domain Name System
PCA Principal Component Analysis
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