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Abstract: With the rapid development of artificial intelligence, machine learning is gradually be-
coming popular for predictions in all walks of life. In meteorology, it is gradually competing with
traditional climate predictions dominated by physical models. This survey aims to consolidate the
current understanding of Machine Learning (ML) applications in weather and climate prediction—a
field of growing importance across multiple sectors, including agriculture and disaster management.
Building upon an exhaustive review of more than 20 methods highlighted in existing literature,
this survey pinpointed eight techniques that show particular promise for improving the accuracy
of both short-term weather and medium-to-long-term climate forecasts. According to the survey,
while ML demonstrates significant capabilities in short-term weather prediction, its application in
medium-to-long-term climate forecasting remains limited, constrained by factors such as intricate
climate variables and data limitations. Current literature tends to focus narrowly on either short-term
weather or medium-to-long-term climate forecasting, often neglecting the relationship between the
two, as well as general neglect of modeling structure and recent advances. By providing an integrated
analysis of models spanning different time scales, this survey aims to bridge these gaps, thereby
serving as a meaningful guide for future interdisciplinary research in this rapidly evolving field.

Keywords: machine learning; weather prediction; climate prediction; meteorological forecasting;
survey

1. Introduction

Weather and climate prediction play an important role in human history. Weather
forecasting serves as a critical tool that underpins various facets of human life and social
operations, permeating everything from individual decision-making to large-scale indus-
trial planning. Its significance at the individual level is manifested in its capacity to guide
personal safety measures, from avoiding hazardous outdoor activities during inclement
weather to taking health precautions in extreme temperatures. This decision-making ex-
tends into the agricultural realm, where forecasts inform the timing for planting, harvesting,
and irrigation, ultimately contributing to maximized crop yields and stable food supply
chains [1]. The ripple effect of accurate forecasting also reaches the energy sector, where it
aids in efficiently managing demand fluctuations, allowing for optimized power genera-
tion and distribution. This efficiency is echoed in the transportation industry, where the
planning and scheduling of flights, train routes, and maritime activities hinge on weather
conditions. Precise weather predictions are key to mitigating delays and enhancing safety
protocols [2]. Beyond these sectors, weather forecasting plays an integral role in the realm
of construction and infrastructure development. Adverse conditions can cause project
delays and degrade quality, making accurate forecasts a cornerstone of effective project
management. Moreover, the capacity to forecast extreme weather events like hurricanes
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and typhoons is instrumental in disaster management, offering the possibility of early
warnings and thereby mitigating loss of life and property [3].

Although climate prediction is often ignored by human beings in the short term, it has
a close relationship with Earth’s life. Global warming and the subsequent rise in sea levels
constitute critical challenges with far-reaching implications for the future of our planet.
Through sophisticated climate modeling and forecasting techniques, we stand to gain
valuable insights into the potential ramifications of these phenomena, thereby enabling
the development of targeted mitigation strategies. For instance, precise estimations of
sea-level changes in future decades could inform rational urban planning and disaster
prevention measures in coastal cities. On an extended temporal scale, climate change is
poised to instigate considerable shifts in the geographical distribution of numerous species,
thereby jeopardizing biodiversity. State-of-the-art climate models integrate an array of
variables—encompassing atmospheric conditions, oceanic currents, terrestrial ecosystems,
and biospheric interactions—to furnish a nuanced comprehension of environmental trans-
formations [4]. This integrative approach is indispensable for the formulation of effective
global and regional policies aimed at preserving ecological diversity. Economic sectors
such as agriculture, fisheries, and tourism are highly susceptible to the vagaries of climate
change. Elevated temperatures may precipitate a decline in crop yields, while an upsurge
in extreme weather events stands to impact tourism adversely. Longitudinal climate fore-
casts are instrumental in guiding governmental and business strategies to adapt to these
inevitable changes. Furthermore, sustainable resource management, encompassing water,
land, and forests, benefits significantly from long-term climate projections. Accurate pre-
dictive models can forecast potential water scarcity in specific regions, thereby allowing for
the preemptive implementation of judicious water management policies. Climate change
is also implicated in a gamut of public health crises, ranging from the proliferation of
infectious diseases to an uptick in heatwave incidents. Comprehensive long-term climate
models can equip public health agencies with the data necessary to allocate resources and
devise effective response strategies.

Table 1 elucidates the diverse applications of weather forecasting across multiple
sectors and time frames. In the short-term context, weather forecasts are instrumental for
agricultural activities such as determining the optimal timing for sowing and harvesting
crops, as well as formulating irrigation and fertilization plans. In the energy sector, short-
term forecasts facilitate accurate predictions of output levels for wind and solar energy
production. For transportation, which encompasses road, rail, aviation, and maritime
industries, real-time weather information is vital for operational decisions affecting safety
and efficiency. Similarly, construction projects rely on short-term forecasts for planning and
ensuring safe operations. In the retail and sales domains, weather forecasts enable busi-
nesses to make timely inventory adjustments. For tourism and entertainment, particularly
those involving outdoor activities and attractions, short-term forecasts provide essential
guidance for day-to-day operations. Furthermore, short-term weather forecasts play a
pivotal role in environmental and disaster management by providing early warnings for
floods, fires, and other natural calamities. In the medium-to-long-term scenario, weather
forecasts have broader implications for strategic planning and risk assessment. In agricul-
ture, these forecasts are used for long-term land management and planning. The insurance
industry utilizes medium-to-long-term forecasts to prepare for prospective increases in
specific types of natural disasters, such as floods and droughts. Real estate sectors also
employ these forecasts for evaluating the long-term impact of climate-related factors like
sea level rise. Urban planning initiatives benefit from these forecasts for effective water
resource management. For the tourism industry, medium-to-long-term weather forecasts
are integral for long-term investments and for identifying regions that may become popular
tourist destinations in the future. Additionally, in the realm of public health, long-term
climate changes projected through these forecasts can inform strategies for controlling the
spread of diseases. In summary, weather forecasts serve as a vital tool for both immediate
and long-term decision-making across a diverse range of sectors.
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Table 1. Applications of Short term and medium-long term weather/climate forecasting in daily life.

Time Scale Domains Applications

Agriculture
The timing for sowing and harvesting;
Irrigation and fertilization plans [5].

Energy Predicts output for wind and solar energy [6].

Transportation
Road traffic safety; Rail transport;
Aviation and maritime industries [7].

Construction Project plans and timelines; Safe operations [8].

Retail and Sales Adjusts inventory based on weather forecasts [9].

Tourism and
Entertainment

Operations of outdoor activities
and tourist attractions [10]

Short Term

Environment and
Disaster Management

Early warnings for floods, fires,
and other natural disasters [11].

Agriculture Long-term land management and planning [12].

Insurance
Preparations for future increases in
types of disasters, such as floods and droughts [13].

Real Estate
Assessment of future sea-level rise or other
climate-related factors [14].

Urban Planning Water resource management [15].

Tourism
Long-term investments and planning,
such as deciding which regions may become
popular tourist destinations in the future [16].

Medium—Long Term

Public Health
Long-term climate changes may impact the
spread of diseases [17].

Short-term weather prediction. Short-term weather forecasting primarily targets
weather conditions that span from a few hours up to seven days, aiming to deliver highly
accurate and actionable information that empowers individuals to make timely decisions
like carrying an umbrella or postponing outdoor activities. These forecasts typically
decrease in reliability as they stretch further into the future. Essential elements of these
forecasts include maximum and minimum temperatures, the likelihood and intensity of
various forms of precipitation like rain, snow, or hail, wind speed and direction, levels
of relative humidity or dew point temperature, and types of cloud cover such as sunny,
cloudy, or overcast conditions [18]. Visibility distance in foggy or smoky conditions and
warnings about extreme weather events like hurricanes or heavy rainfall are also often
included. The methodologies for generating these forecasts comprise numerical simulations
run on high-performance computers, the integration of observational data from multiple
sources like satellites and ground-based stations, and statistical techniques that involve
pattern recognition and probability calculations based on historical weather data. While
generally more accurate than long-term forecasts, short-term predictions are not without
their limitations, often influenced by the quality of the input data, the resolution of the
numerical models, and the sensitivity to initial atmospheric conditions. These forecasts play
a crucial role in various sectors, including decision-making processes, transportation safety,
and agriculture, despite the inherent complexities and uncertainties tied to predicting
atmospheric behavior.

Medium-to-long-term climate prediction. Medium-to-long-term climate forecasting
(MLTF) concentrates on projecting climate conditions over periods extending from several
months to multiple years, in contrast to short-term weather forecasts, which focus more
on immediate atmospheric conditions. The time frame of these climate forecasts can be
segmented into medium-term, which generally ranges from a single season up to a year,
and long-term, which could span years to decades or even beyond [19]. Unlike weather
forecasts, which may provide information on imminent rainfall or snowfall, MLTF centers
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on the average states or trends of climate variables, such as average temperature and
precipitation, ocean-atmosphere interactions like El Niño or La Niña conditions, and the
likelihood of extreme weather events like droughts or floods, as well as anticipated hurri-
cane activities [20]. The projection also encompasses broader climate trends, such as global
warming or localized climatic shifts. These forecasts employ a variety of methods, including
statistical models based on historical data and seasonal patterns, dynamical models that
operate on complex mathematical equations rooted in physics, and integrated models that
amalgamate multiple data sources and methodologies. However, the accuracy of medium-
to long-term climate forecasting often falls short when compared with short-term weather
predictions due to the intricate, multi-scale, and multi-process interactions that constitute
the climate system, not to mention the lack of exhaustive long-term data. The forecasts’
reliability can also be influenced by socio-economic variables, human activities, and shifts in
policy. Despite these complexities, medium-to-long-term climate projections serve pivotal
roles in areas such as resource management, agricultural planning, disaster mitigation,
and energy policy formulation, making them not only a multi-faceted, multi-disciplinary
challenge but also a crucial frontier in both climate science and applied research.

Survey Scope. In recent years, machine learning has emerged as a potent tool in
meteorology, displaying strong capabilities in feature abstraction and trend prediction.
Numerous studies have employed machine learning as the principal methodology for
weather forecasting [21,22]. Our survey extends this current understanding by including
recent advances in the application of machine learning techniques such as High-Resolution
Neural Networks and 3D neural networks, representing the state-of-the-art in this multidis-
ciplinary domain. This survey endeavors to serve as a comprehensive review of machine
learning techniques applied in the realms of meteorology and climate prediction. Previous
studies have substantiated the efficacy of machine learning methods in short-term weather
forecasting [23]. However, there exists a conspicuous dearth of nuanced research in the
context of medium-to-long-term climate predictions [24]. The primary objective of this
survey is to offer a comprehensive analysis of nearly 20 diverse machine-learning methods
applied in meteorology and climate science. It is worth noting that our selection criteria
are twofold: we include classic models in the application of machine learning to meteo-
rology, as well as, from a computer science perspective, represent recent state-of-the-art
complex models. We categorize these methods based on their temporal applicability: short-
term weather forecasting and medium-to-long-term climate predictions. This dual focus
uniquely situates our survey as a bridge between immediate weather forecasts and longer
climatic trends, thereby filling existing research gaps summarized as follows:

• Limited Scope: Existing surveys predominantly focus either on short-term weather
forecasting or medium-to-long-term climate predictions. There is a notable absence of
comprehensive surveys that endeavour to bridge these two-time scales. In addition,
current investigations tend to focus narrowly on specific methods, such as simple
neural networks, thereby neglecting some combination of methods.

• Lack of model details: Many extisting studies offer only generalized viewpoints and
lack a systematic analysis of the specific model employed in weather and climate
prediction. This absence creates a barrier for researchers aiming to understand the
intricacies and efficacy of individual methods.

• Neglect of Recent Advances: Despite rapid developments in machine learning and
computational techniques, existing surveys have not kept pace with these advance-
ments. The paucity of information on cutting-edge technologies stymies the progres-
sion of research in this interdisciplinary field.

By addressing these key motivations, this survey aims to serve as a roadmap for future
research endeavors in this rapidly evolving, interdisciplinary field.

Contributions of the Survey. The contributions of this paper are as follows.

• Comprehensive scope: Unlike research endeavors that restrict their inquiry to a singu-
lar temporal scale, our survey provides a comprehensive analysis that amalgamates
short-term weather forecasting with medium- and long-term climate predictions. In
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total, 20 models were surveyed, of which a select subset of eight were chosen for
in-depth scrutiny. These models are discerned as the industry’s avant-garde, thereby
serving as invaluable references for researchers. For instance, the PanGu model ex-
hibits remarkable congruence with actual observational results, thereby illustrating
the caliber of the models included in our analysis

• In-Depth Analysis: Breaking new ground, this study delves into the intricate op-
erational mechanisms of the eight focal models. We have dissected the operating
mechanisms of these eight models, distinguishing the differences in their approaches
and summarizing the commonalities in their methods through comparison. This com-
parison helps readers gain a deeper understanding of the efficacy and applicability of
each model and provides a reference for choosing the most appropriate model for a
given scenario.

• Identification of Contemporary Challenges and Future Work: The survey identifies
pressing challenges currently facing the field, such as the limited dataset of chronolog-
ical seasons and complex climate change effects, and suggests directions for future
work, including simulating datasets and physics-based constraint models. These
recommendations not only add a forward-looking dimension to our research but also
act as a catalyst for further research and development in climate prediction.

Outline of the paper. This paper consists of six sections. Section 1 describes our
motivation and innovations compared with other weather prediction surveys. Section 2
introduces some weather-related background knowledge. Section 3 broadly introduces
relevant methods for weather prediction other than machine learning. Section 4 highlights
the milestones of forecasting models using machine learning and their categorization.
Sections 5 and 6 analyze representative methods on both short-term and medium- and
long-term time scales. Sections 7 and 8 summarize the challenges faced, present promising
future work, and conclude the paper.

2. Background

In this section, the objective is to provide a thorough understanding of key meteo-
rological principles, tailored to be accessible even to readers outside the meteorological
domain. The section commences with an overview of Reanalysis Data, the cornerstone for
data inputs in weather forecasting and climate projection models. Following this, the focus
shifts to the vital aspect of model output validation. It is necessary to identify appropriate
benchmarks and key performance indicators for assessing the model’s predictive accuracy.
Without well-defined standards, the evaluation of a model’s effectiveness remains nebulous.
Furthermore, three essential concepts—bias-correction, down-scaling, and emulation—are
introduced. These become particularly relevant when discussing the role of machine learn-
ing in augmenting physical models. Finally, the text offers an in-depth explanation of
predicting extreme events, clearly defining “extreme event” and differentiating them from
routine occurrences.

Data source. Observed data undergoes a series of rigorous processing steps before it
enters the predictive model (or what is known as the reanalysis data generation process).
They are amassed from heterogeneous sources, such as ground-based networks like the
Global Historical Climatology Network (GHCN), atmospheric tools like Next-Generation
Radar (NEXRAD), and satellite systems like the Geostationary Operational Environmental
Satellites (GOES). Oceanic measurements are captured through the specialized ARGO float
network, focusing on key parameters like temperature and salinity. These raw datasets are fur-
ther audited for quality control, spatial and temporal interpolation, and unit standardization.

Despite meticulous preprocessing, observational data exhibit challenges such as
spatial-temporal heterogeneity, inherent measurement errors, and discrepancies with nu-
merical models. To mitigate these issues, data assimilation techniques are employed. These
techniques synergize observations with model forecasts using mathematical and statistical
algorithms like Kalman filtering, Three-Dimensional Variational Analysis (3D-Var), and
Four-Dimensional Variational Analysis (4D-Var) [25].
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Additionally, data assimilation can be utilized to enhance the initial model conditions
and correct systemic model biases. The scope of data assimilation extends beyond singular
meteorological models to complex Earth System Models that integrate dynamics from
atmospheric, oceanic, and terrestrial subsystems. Post-assimilation, where the model
state is updated, leads to the generation of “reanalysis data”. Popular reanalysis datasets
include ERA5 from the European Centre for Medium-Range Weather Forecasts (ECMWF),
NCEP/NCAR Reanalysis from the National Centers for Environmental Prediction and the
National Center for Atmospheric Research, JRA-55 from the Japan Meteorological Agency,
and MERRA-2 from NASA.

Result evaluation. Result evaluation serves as a critical stage in the iterative process
of predictive modeling. It involves comparing forecasted outcomes against observed data
to gauge the model’s reliability and accuracy. The temporal dimension is a critical factor
in result evaluation. Short-term predictive models, like those used in weather forecasting,
benefit from near-real-time feedback, which allows for frequent recalibration using machine
learning algorithms like Ensemble Kalman Filters. On the other hand, long-term models,
such as climate projections based on General Circulation Models (GCMs), are constrained
by the absence of an immediate validation period. In weather forecasting, meteorologists
employ a variety of numerical models, like the Weather Research and Forecasting (WRF)
model, which are evaluated based on short-term observational data. Standard metrics for
evaluation include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Skill Scores. The high-frequency availability of data from sources like weather radars
and satellites facilitates rapid iterations and refinements. In contrast, climate models are
scrutinized using different methodologies. Given their long-term nature, climate models
are often validated using historical and paleoclimatic data. Statistical techniques like
Empirical Orthogonal Functions (EOF) and Principal Component Analysis (PCA) are
employed to identify and validate overarching climatic patterns. These models often
have to account for high levels of uncertainty and are cross-validated against geological
or even astronomical records, making immediate validation impractical. For weather
forecasts, predictive accuracy within the scope of hours to days is paramount. Climate
models, conversely, are evaluated based on their ability to accurately reproduce decadal
and centennial patterns.

Bias correction. In the context of meteorology, climate science, machine learning, and
statistical modeling, bias correction (or bias adjustment) refers to a set of techniques used
to correct systematic errors (biases) in model simulations or predictions. These biases may
arise due to various factors such as model limitations, uncertainties in parameterization,
or discrepancies between model assumptions and real-world data. Bias Correction (Bias
Adjustment) can be formally defined as the process of modifying the output of predictive
models to align more closely with observed data. The primary objective is to minimize the
difference between the model’s estimates and the observed values, thereby improving the
model’s accuracy and reliability.

In more formal terms, let M represent the model output and O represent the observed
data. Bias B is defined as:

B = M−O (1)

The aim of bias-correction is to find a function f such that:

f (M) ≈ O (2)

Various methods can be employed for bias-correction, including simple linear adjustments,
quantile mapping, and more complex machine-learning techniques. The choice of method
often depends on the specific characteristics of the data and the overarching objectives of
the study.

Emulation. The term emulation is utilized here to denote the approach where machine
learning models are employed to simulate or approximate components and processes of the
original physical model. In meteorology, physical models are devised based on a compre-
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hensive understanding of atmospheric dynamics, often entailing intricate hydrodynamic
equations to elucidate atmospheric motions and interactions. However, to attain high com-
putational efficiency in practical operations, direct resolution of these equations is frequently
computationally demanding, particularly when high spatial and temporal resolution simula-
tions are requisite. To alleviate these issues, modelers are already using fast and accurate ML
simulations to simulate existing time-consuming parameterizations [26–28]. Machine learning
methods are capable of delivering fast and precise approximations of complex physical pro-
cesses by learning patterns and relationships from historical data or high-precision model
runs. For instance, neural networks or other machine learning algorithms can be deployed
to deal with Longwave and shortwave radiation parameterization [29,30] and emulate
nonlinear wave interactions in wind wave models [31]. Consequently, machine learning
models can substitute traditional physical parameterization schemes in prediction models,
significantly alleviating the computational burden while preserving or even augmenting
the accuracy of predictions.

Down-scaling. Down-scaling in meteorology and climate science is a computational
technique employed to bridge the gap between the spatial and temporal resolutions offered
by General Circulation Models (GCMs) or Regional Climate Models (RCMs) and the scale at
which specific applications, such as local weather predictions or hydrological assessments,
operate. Given that GCMs and RCMs typically operate at a coarse resolution—spanning
tens or hundreds of kilometers—Down-scaling aims to refine these projections to a more
localized level, potentially down to single kilometers or less.

Extreme events. In meteorology, an “extreme event” refers to a rare occurrence within
a statistical distribution of a particular weather variable. These events can be extreme high
temperatures, heavy precipitation, severe storms, or high winds, among others. These
phenomena are considered “extreme” due to their rarity and typically severe impact on
ecosystems, infrastructure, and human life.

Symbol definition. Since many formulas are involved in weather and climate predic-
tion methods, we have defined an Abbreviation in the end of paper that summarizes all the
common symbols and their definitions.

In standard meteorological models, precipitation is usually represented as a three-
dimensional array containing latitude, longitude, and elevation. Each cell in this array
contains a numerical value that represents the expected precipitation for that particular
location and elevation during a given time window. This data structure allows for straight-
forward visualization and analysis, such as contour maps or time series plots. Unlike
standard precipitation forecasts, which focus primarily on the water content of the at-
mosphere, extreme events may require tracking multiple variables simultaneously. For
example, hurricane modeling may include variables such as wind speed, atmospheric pres-
sure, and sea surface temperature. Given the higher uncertainty associated with extreme
events, the output may not be a single deterministic forecast but rather a probabilistic one.
An integration approach can be used to generate multiple model runs to capture a range
of possible outcomes. Both types of predictions are typically evaluated using statistical
metrics; however, for extreme events, more sophisticated measures such as event detection
rates, false alarm rates, or skill scores associated with probabilistic predictions can be used.

3. Related Work

This study principally centers on the utilization of machine learning techniques in the
realm of climate prediction. However, to furnish a comprehensive perspective, we also
elucidate traditional forecasting methodologies—statistical and physical methods—within
this section. Historically speaking, the evolution of predictive models in climate science has
undergone three distinct phases. Initially, statistical methods were prevalently deployed;
however, their limited accuracy led to their gradual supplantation by physical models.
While the role of statistical methods has dwindled in terms of standalone application, they
are frequently amalgamated with other techniques to enhance predictive fidelity. Subse-
quently, physical models ascended to become the prevailing paradigm in climate prediction.
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Given the current predominance of physical models in the field of climate prediction, they
serve as the natural benchmarks against which we evaluate the performance of emerging
machine learning approaches. Finally, our focus is on machine learning methods, exploring
their potential to mitigate the limitations intrinsic to their historical predecessors.

3.1. Statistical Method

Statistical or empirical forecasting methods have a rich history in meteorology, serving
as the initial approach to weather prediction before the advent of computational models.
Statistical prediction methodologies serve as the linchpin for data-driven approaches
in meteorological forecasting, focusing on both short-term weather patterns and long-
term climatic changes. These methods typically harness powerful statistical algorithms,
among which Geographically Weighted Regression (GWR) and Spatio-Temporal Kriging
(ST-Kriging) stand out as particularly effective [32,33].

GWR is instrumental in adjusting for spatial heterogeneity, allowing meteorologi-
cal variables to exhibit different relationships depending on their geographical context.
ST-Kriging extends this spatial consideration to include the temporal domain, thereby cap-
turing variations in weather and climate that are both location-specific and time-sensitive.
Such spatio-temporal modeling is especially pertinent in a rapidly changing environment,
where traditional stationary models often fail to capture the dynamism inherent in meteo-
rological systems.

Forecasting using inter-annual increments is now a statistically based forecasting
method with better results. The interannual increment of a variable such as precipitation is
calculated as:

Interannual Increment = Valueyear −Valueyear−1

Through meticulous analysis of variables correlating with the inter-annual growth rate of
the predictive variable, five key predictive factors have been identified. A multivariate
linear regression model was developed, employing these selected key predictive factors
to estimate the inter-annual increment for future time units. The estimated inter-annual
increment is subsequently aggregated with the actual variable value from the preceding
year to generate a precise prediction of the total quantity for the current time frame.

However, these statistical models operate on a critical assumption cited in litera-
ture [34,35], which posits that the governing laws influencing past meteorological events
are consistent and thus applicable to future events as well. While this assumption generally
holds for many meteorological phenomena, it confronts limitations when dealing with
intrinsically chaotic systems. The Butterfly Effect serves as a prime example of such chaotic
behavior, where minuscule perturbations in initial conditions can yield dramatically diver-
gent outcomes. This implies that the reliability of statistical models could be compromised
when predicting phenomena susceptible to such chaotic influences.

3.2. Physical Models

Physical models were the predominant method for meteorological forecasting before
the advent of Artificial Intelligence (AI) and generally produce more accurate results com-
pared with statistical methods. Physical models are predicated upon a foundational set
of physical principles, including but not limited to Newton’s laws of motion, the laws of
conservation of energy and mass, and the principles of thermodynamics. These governing
equations are commonly expressed in mathematical form, with the Navier–Stokes equations
serving as a quintessential example for describing fluid dynamics. At the core of these mod-
els lies the objective of simulating real-world phenomena in a computational setting with
high fidelity. To solve these intricate equations, high-performance computing platforms are
typically employed, complemented by specialized numerical methods and techniques such
as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA).

In the context of atmospheric science, these physical models are especially pivotal
for Numerical Weather Prediction (NWP) and climate modeling. NWP primarily focuses
on short-to-medium-term weather forecasting, striving for highly accurate meteorological
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predictions within a span of days or weeks. In contrast, climate models concentrate on
long-term changes and predictions, which can span months, years, or even longer time
scales. Owing to their rigorous construction based on physical laws, physical models offer
a high degree of accuracy and reliability, providing researchers with valuable insights into
the underlying mechanisms of weather and climate variations.

As mentioned before, statistical-based methods can analyze past weather data to make
predictions, but they may often fail to accurately predict future weather trends [36], and
physic-based models, despite being computationally intensive [37], help us understand at-
mospheric, oceanic, and terrestrial processes in detail. Recently, machine learning methods
have begun to be applied to the field of meteorology [38], offering new ways to analyze
and predict weather patterns and climate change [39]. Machine learning methods are
increasingly being utilized in meteorology for forecasting. Compared to physical models,
they offer faster predictions, and compared with statistical methods, they provide more
accurate results [40]. Additionally, machine learning can be employed for error correction
and Down-scaling, further enhancing its applicability in weather and climate predictions.

In the critical fields of weather forecasting and climate prediction, achieving accu-
racy and efficiency is of paramount importance. Traditional methods, while foundational,
inevitably present limitations, creating a compelling need for innovative approaches. Ma-
chine learning has emerged as a promising solution, demonstrating significant potential
for enhancing prediction outcomes.

4. Taxonomy of Climate Prediction Applications

In this section, we primarily explore the historical trajectory of machine learning
applications within the field of meteorology. We categorize the surveyed methods according
to distinct criteria, facilitating a more lucid understanding for the reader.

4.1. Climate Prediction Milestone Based on Machine-Learning

In this subsection, we surveyed almost 20 methods of machine learning applications
for weather prediction and climate prediction. These methods are representative and
common. We listed them in the following timeline shown in Figure 1. The journey of
machine learning applications in climate and weather prediction has undergone significant
transformations since their inception.

Climate prediction methods before 2010. The earliest model in this context is the
Precipitation Neural Network Prediction Model, published in 1998. This model serves
as an archetype of Basic DNN Models, leveraging Artificial Neural Networks to offer
short-term forecasts specifically for precipitation in the Middle Atlantic Region. Advancing
to the mid-2000s, the realm of medium-to-long-term predictions saw the introduction of
ML-Enhanced Non-Deep-Learning Models, exemplified by KNN-Down-scaling in 2005
and SVM-Down-scaling in 2006. These models employed machine learning techniques
like K-Nearest Neighbors and Support Vector Machines, targeting localized precipitation
forecasts in the United States and India, respectively. In 2009, the field welcomed another
medium-to-long-term model, CRF-Down-scaling, which used Conditional Random Fields
to predict precipitation in the Mahanadi Basin.

Climate prediction methods from 2010–2019. During the period from 2010 to 2019,
the field of weather prediction witnessed significant technological advancements and di-
versification in modeling approaches. Around 2015, a notable shift back to short-term
predictions was observed with the introduction of Hybrid DNN Models, exemplified by
ConsvLSTM. This model integrated Long Short-Term Memory networks with Convolu-
tional Neural Networks to provide precipitation forecasts specifically for Hong Kong. As
the decade progressed, models became increasingly specialized. For instance, the 2017
Precipitation Convolution prediction model leveraged Convolutional Neural Networks
to focus on localized precipitation forecasts in Guang Dong, China. The following year
saw the emergence of the Stacked-LSTM-Model, which utilized Long Short-Term Memory
networks for temperature predictions in Amsterdam and Eindhoven.
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Figure 1. Applications: of machine-learning on climate prediction milestone [41–61].

Climate prediction methods from 2020. Fast forward to 2020, the CapsNet model,
a Specific Model, leveraged a novel architecture known as Capsule Networks to predict
extreme weather events in North America. By 2021, the scope extended to models like
RF-bias-correction and the sea-ice prediction model, focusing on medium-to-long-term
predictions. The former employed Random Forests for precipitation forecasts in Iran, while
the latter utilized probabilistic deep learning techniques for forecasts in the Arctic region.
Recent advancements as of 2022 and 2023 incorporate more complex architectures. Cycle
GAN, a 2022 model, utilized Generative Adversarial Networks for global precipitation
prediction. PanGu, a 2023 release, employed 3D Neural Networks for predicting extreme
weather events globally. Another recent model, FourCastNet, leverages a technique known
as AFNO to predict extreme global events. Furthermore, in 2022, this year also witnessed
the introduction of DeepESD-Down-scaling and CNN-Bias-correction models, both utiliz-
ing Convolutional Neural Networks to predict local temperature scales and perform global
bias correction, respectively.

4.2. Classification of Climate Prediction Methods

To provide a deeper level of understanding regarding the various weather prediction
methods discussed, we have organized them into classifications in Table 2. These classifi-
cations are made according to multiple criteria that encompass Time Scale, Type, Model,
Technique, Name, Region, and Event. This structured approach aims to offer readers an
easy way to compare and contrast different methods, as well as to gain insights into the
specific contexts where each method is most applicable.
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Table 2. Classification of models.

Time Scale Spational Scale Type Model Technology Name Event

Short-term weather prediction

Special DNN Models

AFNO FourCastNet [47]
Extreme Events3D Neural Network PanGu [49]

Vision Transformers ClimaX [50] Temperature & Extreme
Event

Global SwinTransformer SwinVRNN [62]
Temperature & PrecipitationU-Transformer FuXi [63]

GNN
CLCRN [64] Temperature

GraphCast [48]
Extreme EventsTransformer FengWu [65]

ML
Single DNNs Model

CapsNet [45]

CNN Precipitation Convolution
prediction [43] Precipitation

Regional ANN Precipitation Neural
Network prediction [41]

LSTM Stacked-LSTM-Model [44] Temperature

Hybrid DNNs Model LSTM + CNN
ConsvLSTM [42]

PrecipitationMetNet [46]

Probalistic deep learning Conditional Generative
Forecasting [61] Temperature & Precipitation

Global CNN CNN-Bias-correction
model [60]

Temperature & Extreme
Event

Single DNN models GAN Cycle GAN [59]
NN Hybrid-GCM-Emulation [53] Precipitation

Medium-to-long-term climate prediction
ResDNN NNCAM-emulation [57]

ML
Enhanced CNN DeepESD-Down-scaling

model [58] Temperature

Random forest (RF) RF-bias-correction model [55]

Precipitation

Regional Support vector
machine (SVM) SVM-Down-scaling model [52]

K-nearest
neighbor (KNN) KNN-Down-scaling model [51]

Non-Deep-Learning
Model

Conditional random
field (CRF) CRF-Down-scaling model [54]
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Time Scale. Models in weather and climate prediction are initially divided based on
their temporal range into ‘Short-term’ and ‘Medium-to-long-term’. Short-term weather
prediction focuses on the state of the atmosphere in the short term, usually the weather
conditions in the next few hours to days. Medium-to-long-term climate prediction focuses
on longer time scales, usually the average weather trends over months, years, or decades.
Weather forecasts focus on specific weather conditions in the near term, such as temperature,
precipitation, humidity, wind speed, and direction. Climate prediction focuses on long-term
weather patterns and trends, such as seasonal or inter-annual variations in temperature and
precipitation. In the traditional approach, weather forecasting usually utilizes numerical
weather prediction models that predict weather changes in the short term by resolving
the equations of atmospheric dynamics; climate prediction usually utilizes climate models
that incorporate more complex interacting feedback mechanisms and longer-term external
drivers, such as greenhouse gas emissions and changes in solar radiation.

Spatial Scale. Regional meteorology concerns a specified geographic area, such as a
country or a continent, and aims to provide detailed insights into the weather and climate
phenomena within that domain. The finer spatial resolution of regional models allows
for a more nuanced understanding of local geographical and topographical influences on
weather patterns, which in turn can lead to more accurate forecasts within that particular
area. On the other hand, global meteorology encompasses the entire planet’s atmospheric
conditions, providing a broader yet less detailed view of weather and climate phenomena.
The spatial resolution of global models is generally coarser compared with regional models.
As such, global forecasts might not capture localized weather events as accurately as
regional forecasts. However, global models are crucial for understanding large-scale
atmospheric dynamics and providing the boundary conditions necessary for regional
models.

ML and ML-Enhanced Types. We categorize models into ML and ML-Enhanced
types. In ML type, algorithms are directly applied to climate data for pattern recogni-
tion or predictive tasks. These algorithms typically operate independently of traditional
physical models, relying instead on data-driven insights garnered from extensive climate
datasets. Contrastingly, ML-Enhanced models integrate machine learning techniques into
conventional physical models to optimize or enhance their performance. Fundamentally,
these approaches still rely on physical models for prediction. However, machine learning
algorithms serve as auxiliary tools for parameter tuning, feature engineering, or addressing
specific limitations in the physical models, thereby improving their overall predictive
accuracy and reliability. In this survey, ML-enhanced was divided into three catagories:
bias correction, down-scaling, and emulation [66]. Model. Within each time scale, models
are further categorized by their type. These models include: Specific Models: These are
unique or specialized neural network architectures developed for particular applications.

Specific DNN Models: Unique or specialized neural network architectures developed
for particular applications.

Hybrid DNN Models: These models use a combination of different neural network
architectures, such as LSTM + CNN.

Single DNN Models: These models employ foundational Deep Neural Network archi-
tectures like ANNs (Artificial Neural Networks), CNNs (Convolutional Neural Networks),
and LSTMs (Long Short-Term Memory networks).

Non-Deep-Learning Models: These models incorporate machine learning techniques
that do not rely on deep learning, such as Random Forests and Support Vector Machines.

Technique. This category specifies the underlying machine learning or deep learning
technique used in a particular model, for example, CNN, LSTM, Random Forest, Probalistic
Deep Learning, and GAN.

CNN. A specific type of ANN is the Convolutional Neural Network (CNN), designed
to automatically and adaptively learn spatial hierarchies from data [67]. CNNs comprise
three main types of layers: convolutional, pooling, and fully connected [68]. The convo-
lutional layer applies various filters to the input data to create feature maps, identifying
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spatial hierarchies and patterns. Pooling layers reduce dimensionality, summarizing fea-
tures in the previous layer [69]. Fully connected layers then perform classification based
on the high-level features identified [70]. CNNs are particularly relevant in meteorology
for tasks like satellite image analysis, with their ability to recognize and extract spatial
patterns [71]. Their unique structure allows them to capture local dependencies in the data,
making them robust against shifts and distortions [72].

LSTM. Long Short-Term Memory (LSTM) units are a specialized form of recurrent
neural network architecture [42]. Purposefully designed to mitigate the vanishing gradient
problem inherent in traditional RNNs, LSTM units manage the information flow through a
series of gates, namely the input, forget, and output gates. These gates govern the retention,
forgetting, and output of information, allowing LSTMs to effectively capture long-range
dependencies and temporal dynamics in sequential data [42]. In the context of meteorolog-
ical forecasting, the utilization of LSTM contributes to a nuanced understanding of weather
patterns as it retains relevant historical information and discards irrelevant details over
various time scales [42]. The pioneering design of LSTMs and their ability to deal with
nonlinear time dependencies have led to their outstanding robustness, adaptability, and
efficiency, making them an essential part of modern predictive models [42].

Random forest. A technique used to adjust or correct biases in predictive models,
particularly in weather forecasting or climate modeling. Random Forest (RF) is a machine
learning algorithm used for various types of classification and regression tasks. In the
context of bias correction, the Random Forest algorithm would be trained to identify and
correct systematic errors or biases in the predictions made by a primary forecasting model.

Probabilistic deep learning. Probabilistic deep learning models in weather forecasting
aim to provide not just point estimates of meteorological variables but also a measure of
uncertainty associated with the predictions. By leveraging complex neural networks, these
models capture intricate relationships between various features like temperature, humidity,
and wind speed. The probabilistic aspect helps in quantifying the confidence in predictions,
which is crucial for risk assessment and decision-making in weather-sensitive industries.

Generative adversarial networks. Generative Adversarial Networks (GANs) are a class of
deep learning models composed of two neural networks: a Generator and a Discriminator.
The Generator aims to produce data that closely resembles a genuine data distribution,
while the discriminator’s role is to distinguish between real and generated data. During
training, these networks engage in a kind of “cat-and-mouse” game, continually adapting
and improving—ultimately with the goal of creating generated data so convincing that the
Discriminator can no longer tell it apart from real data.

Graph Neural Network. Graph Neural Network( GNN ) are designed to work with
graph-structured data, capturing the relationships between connected nodes effectively.
They operate by passing messages or aggregating information from neighbors and then
updating each node’s representation accordingly. This makes GNNs exceptionally good at
handling problems like social network analysis, molecular structure analysis, and recom-
mendation systems.

Transformer. A transformer consists of an encoder and a decoder, but its most unique
feature is the attention mechanism. This allows the model to weigh the importance of
different parts of the input data, making it very efficient for tasks like text summarization,
question answering, and language generation.

Name. Some models are commonly cited or recognized under a specific name, such
as PanGu or FourCastNet. Some models are named after their technical features.

Event. The type of weather or climatic events that the model aims to forecast is
specified under this category. This could range from generalized weather conditions like
temperature and precipitation to more extreme weather events.

Selection Rationale. In the next section, we will discuss the related reasons. In the
short term, we choose three specific ones (PanGu; GraphCast and FourCastNet) as analysis
targets according to the model type. And we also analyze the MetNet, which is a hybrid
DNNs Model. The other hybrid DNNs Model (ConsLSTM) is one part of MetNet. In



Appl. Sci. 2023, 13, 12019 14 of 36

the medium-to-long term, we choose the probabilistic deep learning model (Conditional
Generative Forecasting). It has more extensive applicability compared with the other one
in the probabilistic deep learning category. The probabilistic deep learning method is
also a minority machine learning method that could be used in medium-to-long-term
prediction. In addition, we also selected three machine learning-enhanced methods for
Down-scaling: bias correction and emulation. In general, our survey includes established
models recognized for their utility in applying machine learning to meteorological tasks
and cutting-edge complex models viewed from a computer science standpoint as state-of-
the-art.

5. Short-Term Weather Forecast

Weather forecasting aims to predict atmospheric phenomena within a short time-
frame, generally ranging from one to three days. This information is crucial for a multitude
of sectors, including agriculture, transportation, and emergency management. Factors
such as precipitation, temperature, and extreme weather events are of particular interest.
Forecasting methods have evolved over the years, transitioning from traditional numerical
methods to more advanced hybrid and machine-learning models. This section elucidates
the working principles, methodologies, and merits and demerits of traditional numerical
weather prediction models, MetNet, FourCastNet, and PanGu.

5.1. Model Design

Numerical Weather Model Numerical Weather Prediction (NWP) stands as a corner-
stone methodology in the realm of meteorological forecasting, fundamentally rooted in
the simulation of atmospheric dynamics through intricate physical models. At the core of
NWP lies a set of governing physical equations that encapsulate the holistic behavior of the
atmosphere:

• The Navier-Stokes Equations [73]: Serving as the quintessential descriptors of fluid
motion, these equations delineate the fundamental mechanics underlying atmo-
spheric flow.

∇ · v = 0 (3)

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p + µ∇2v + ρg (4)

• The Thermodynamic Equations [74]: These equations intricately interrelate the tem-
perature, pressure, and humidity within the atmospheric matrix, offering insights into
the state and transitions of atmospheric energy.

∂ρ

∂t
+∇ · (ρv) = 0 (Continuity equation) (5)

∂T
∂t

+ v · ∇T =
q
cp

(Energy equation) (6)

Dp
Dt

= −ρcp∇ · v (Pressure equation) (7)

The model is fundamentally based on a set of time-dependent partial differential
equations, which require sophisticated numerical techniques for solving. The resolution of
these equations enables the simulation of the inherently dynamic atmosphere, serving as
the cornerstone for accurate and predictive meteorological insights. Within this overarching
framework, a suite of integral components is embedded to address specific physical inter-
actions that occur at different resolutions, such as cloud formation, radiation, convection,
boundary layers, and surface interactions. Each of these components serves a pivotal role:
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• The Cloud Microphysics Parameterization Scheme is instrumental for simulating the
life cycles of cloud droplets and ice crystals, thereby affecting [75,76] and atmospheric
energy balance.

• Shortwave and Longwave Radiation Transfer Equations elucidate the absorption,
scattering, and emission of both solar and terrestrial radiation, which in turn influence
atmospheric temperature and dynamics.

• Empirical or Semi-Empirical Convection Parameterization Schemes simulate vertical
atmospheric motions initiated by local instabilities, facilitating the capture of weather
phenomena like thunderstorms.

• Boundary-Layer Dynamics concentrates on the exchanges of momentum, energy,
and matter between the Earth’s surface and the atmosphere which are crucial for the
accurate representation of surface conditions in the model.

• Land Surface and Soil/Ocean Interaction Modules simulate the exchange of energy,
moisture, and momentum between the surface and the atmosphere, while also ac-
counting for terrestrial and aquatic influences on atmospheric conditions.

These components are tightly coupled with the core atmospheric dynamics equations,
collectively constituting a comprehensive, multi-scale framework. This intricate integration
allows for the simulation of the complex dynamical evolution inherent in the atmosphere,
contributing to more reliable and precise weather forecasting.

In Numerical Weather Prediction (NWP), a critical tool for atmospheric dynamics fore-
casting, the process begins with data assimilation, where observational data is integrated
into the model to reflect current conditions. This is followed by numerical integration,
where governing equations are meticulously solved to simulate atmospheric changes over
time. However, certain phenomena, like the microphysics of clouds, cannot be directly
resolved and are accounted for through parameterization to approximate their aggregate
effects. Finally, post-processing methods are used to reconcile potential discrepancies
between model predictions and real-world observations, ensuring accurate and reliable
forecasts. This comprehensive process captures the complexity of weather systems and
serves as a robust method for weather prediction [77]. While the sophistication of NWP
allows for detailed simulations of global atmospheric states, one cannot overlook the in-
tensive computational requirements of such models. Even with the formidable processing
capabilities of contemporary supercomputers, a ten-day forecast simulation can necessitate
several hours of computational engagement.

MetNet. MetNet [46] is a state-of-the-art weather forecasting model that integrates
the functionality of CNN, LSTM, and auto-encoder units. The CNN component conducts a
multi-scale spatial analysis, extracting and abstracting meteorological patterns across vari-
ous spatial resolutions. In parallel, the LSTM component captures temporal dependencies
within the meteorological data, providing an in-depth understanding of weather transitions
over time [42]. Autoencoders are mainly used in weather prediction for data preprocess-
ing, feature engineering, and dimensionality reduction to assist more complex prediction
models in making more accurate and efficient predictions. This combined architecture
permits a dynamic and robust framework that can adaptively focus on key features in both
spatial and temporal dimensions, guided by an embedded attention mechanism [78,79].

MetNet consists of three core components as shown in Figure 2: Spatial Downsampler,
Temporal Encoder (ConvLSTM), and Spatial Aggregator. In this architecture, the Spatial
Downsampler acts as an efficient encoder that specializes in transforming complex, high-
dimensional raw data into a more compact, low-dimensional, information-intensive form.
This process helps with feature extraction and data compression. The Temporal Encoder,
using the ConvLSTM (Convolutional Long Short-Term Memory) model, is responsible
for processing this dimensionality-reduced data in the temporal dimension. One of the
major highlights of ConvLSTM is that it combines the advantages of CNNs and LSTM. The
advantage of ConvLSTM is that it combines the advantages of CNN and LSTM, and is able
to consider the localization of space in time series analysis simultaneously, increasing the
model’s ability to perceive complex time and space dependencies. The Spatial Aggregator
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plays the role of an optimized, high-level decoder. Rather than simply recovering the raw
data from its compressed form, it performs deeper aggregation and interpretation of global
and local information through a series of axial self-attentive blocks, thus enabling the model
to make more accurate weather predictions. These three components work in concert with
each other to form a powerful and flexible forecasting model that is particularly well suited
to handle meteorological data with a high degree of spatio-temporal complexity.

The operational workflow of MetNet begins with the preprocessing of atmospheric
input data, such as satellite imagery and radar information [80]. Spatial features are
then discerned through the CNN layers, while temporal correlations are decoded via the
LSTM units. This information is synthesized with the attention mechanism strategically
emphasizing critical regions and timeframes, leading to short-term weather forecasts
ranging from 2 to 12 h [79]. MetNet’s strength lies in its precise and adaptive meteorological
predictions, blending spatial and temporal intricacies, and thus offering an indispensable
tool for refined weather analysis [46].

Figure 2. MetNet Structure.

FourCastNet. In response to the escalating challenges posed by global climate change
and the increasing frequency of extreme weather phenomena, the demand for precise and
prompt weather forecasting has surged. High-resolution weather models serve as pivotal
instruments in addressing this exigency, offering the ability to capture finer meteorological
features, thereby rendering more accurate predictions [81,82]. Against this backdrop,
FourCastNet [47] has been conceived, employing ERA5, an atmospheric reanalysis dataset.
This dataset is the outcome of a Bayesian estimation process known as data assimilation,
fusing observational results with numerical models’ output [83]. FourCastNet leverages
the Adaptive Fourier Neural Operator (AFNO), uniquely crafted for high-resolution inputs,
incorporating several significant strides within the domain of deep learning.

The essence of AFNO resides in its symbiotic fusion of the Fourier Neural Operator
(FNO) learning strategy with the self-attention mechanism intrinsic to Vision Transformers
(ViT) [84]. While FNO, through Fourier transforms, adeptly processes periodic data and
has proven efficacy in modeling complex systems of partial differential equations, the
computational complexity for high-resolution inputs is prohibitive. Consequently, AFNO
deploys the Fast Fourier Transform (FFT) in the Fourier domain, facilitating continuous
global convolution. This innovation reduces the complexity of spatial mixing to O(N log N),
thus rendering it suitable for high-resolution data [85]. The workflow of AFNO shown in
Figure 3 encompasses data preprocessing, feature extraction with FNO, feature processing
with ViT, spatial mixing for feature fusion, culminating in prediction output, representing
future meteorological conditions such as temperature, pressure, and humidity.

Tailoring AFNO for weather prediction, FourCastNet introduces specific adaptations.
Given its distinct application scenario—predicting atmospheric variables utilizing the
ERA5 dataset—a dedicated precipitation model is integrated into FourCastNet, predict-
ing six-hour accumulated total precipitation [83]. Moreover, the training paradigm of
FourCastNet includes both pre-training and fine-tuning stages. The former learns the
mapping from the weather state at one time point to the next, while the latter forecasts
two consecutive time steps. The advantages of FourCastNet are manifested in its unparal-
leled speed—approximately 45,000 times swifter than conventional NWP models—and
remarkable energy efficiency—consuming about 12,000 times less energy compared with
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the IFS model [84]. The model’s architectural innovations and its efficient utilization of
computational resources position it at the forefront of high-resolution weather modeling.

GraphCast. GraphCast represents a notable advance in weather forecasting, melding
machine learning with complex dynamical system modeling to pave the way for more
accurate and efficient predictions. It leverages machine learning to model complex dy-
namical systems and showcases the potential of machine learning in this domain. It’s an
autoregressive model, built upon graph neural networks (GNNs) and a novel multi-scale
mesh representation, trained on historical weather data from the European Centre for
Medium-Range Weather Forecasts (ECMWF)’s ERA5 reanalysis archive.

（a)AFNO architecture
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Figure 3. (a) The multi-layer transformer architecture; (b) two-step fine-tuning; (c) backbone model;
(d) forecast model in free-running autoregressive inference mode.

The structure of GraphCast shown in Figure 4 employs an “encode-process-decode”
configuration utilizing GNNs to autoregressively generate forecast trajectories. In detail:

• Encoder: The encoder component maps the local region of the input data (on the origi-
nal latitude-longitude grid) onto the nodes of the multigrid graphical representation.
It maps two consecutive input frames of the latitude-longitude input grid, with nu-
merous variables per grid point, into a multi-scale internal mesh representation. This
mapping process helps the model better capture and understand spatial dependencies
in the data, allowing for more accurate predictions of future weather conditions.

• Processor: This part performs several rounds of message-passing on the multi-mesh,
where the edges can span short or long ranges, facilitating efficient communication
without necessitating an explicit hierarchy. More specifically, the section uses a multi-
mesh graph representation. It refers to a special graph structure that is able to represent
the spatial structure of the Earth’s surface in an efficient way. In a multi-mesh graph
representation, nodes may represent specific regions of the Earth’s surface, while
edges may represent spatial relationships between these regions. In this way, models
can capture spatial dependencies on a global scale and are able to utilize the power of
GNNs to analyze and predict weather changes.

• Decoder: It then maps the multi-mesh representation back to the latitude-longitude
grid as a prediction for the next time step.

The workflow of GraphCast begins with the input of weather state(s) defined on a
high-resolution latitude-longitude-pressure-levels grid. The encoder processes these inputs
into a multi-scale internal mesh representation, which then undergoes many rounds of
message-passing in the processor to capture spatio-temporal relationships in the weather
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data. Finally, the decoder translates the multi-mesh representation back to the latitude-
longitude grid to generate predictions for subsequent time steps. It is worth noting that, as
shown in the next part, due to the multi-scale mesh mapping property, the model is able to
capture both localized weather features on a high-resolution mesh and large-scale weather
features on a low-resolution mesh at the same time.

Figure 4. (a) The encoder component of the GraphCast architecture maps the input local regions
(green boxes) to the nodes of the multigrid graph. (b) The processor component uses learned message
passing to update each multigrid node. (c) The decoder component maps the processed multigrid
features (purple nodes) to the grid representation. (d) A multi-scale grid set.

In essence, GraphCast encapsulates a pioneering stride in enhancing weather forecast-
ing accuracy and efficiency through the amalgamation of machine learning and complex
dynamical system modeling. It uniquely employs an autoregressive model structure un-
derpinned by graph neural networks and a multi-scale mesh representation. The model’s
“encode-process-decode” configuration, executed through a novel multi-mesh graphical
representation, adeptly captures spatial dependencies and facilitates global-scale weather
prediction. By processing high-resolution weather data inputs through a systematic work-
flow of encoding, message-passing, and decoding, GraphCast not only generates precise
weather predictions for subsequent time intervals but also exemplifies the profound poten-
tial of machine learning in advancing meteorological forecasting methodologies.

PanGu. In the rapidly evolving field of meteorological forecasting, PanGu emerges as
a pioneering model shown in Figure 5, predicated on a three-dimensional neural network
that transcends traditional boundaries of latitude and longitude. Recognizing the intrinsic
relationship between meteorological data and atmospheric pressure, PanGu incorporates a
neural network structure that accounts for altitude in addition to latitude and longitude.
The initiation of the PanGu model’s process involves Block Embedding, where the dataset
is parsed into smaller subsets, or blocks. This operation not only mitigates spatial resolution
and complexity but also facilitates subsequent data management within the network.

Following block embedding, the PanGu model integrates the data blocks into a 3D
cube through a process known as 3D Cube Fusion, thereby enabling data processing within
a tri-dimensional space. Swin Encoding [86], a specialized transformer encoder utilized in
the deep learning spectrum, applies a self-attention mechanism for data comprehension
and processing. This encoder, akin to the Autoencoder, excels at extracting and encoding
essential information from the dataset. The ensuing phases include Decoding, which strives
to unearth salient information, and Output Splitting, which partitions data into atmospheric
and surface variables. Finally, Resolution Restoration reinstates the data to its original
spatial resolution, making it amenable for further scrutiny and interpretation.
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PanGu’s [49] innovative 3D neural network architecture [87] offers a groundbreaking
perspective for integrating meteorological data, and its suitability for three-dimensional
data is distinctly pronounced. Moreover, PanGu introduces a hierarchical time-aggregation
strategy, an advancement that ensures the network with the maximum lead time is con-
sistently invoked, thereby curtailing errors. In juxtaposition with running a model like
FourCastNet [47] multiple times, which may accrue errors, this approach exhibits superior-
ity in both speed and precision. Collectively, these novel attributes and methodological
advancements position PanGu as a cutting-edge tool in the domain of high-resolution
weather modeling, promising transformative potential in weather analysis and forecasting.
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Figure 5. Network training and inference strategies. (a) 3DEST architecture. (b) Hierarchical temporal
aggregation. We use FM1, FM3, FM6 and FM24 to indicate the forecast models with lead times being
1 h, 3 h, 6 h or 24 h, respectively.

MetNet, FourCastNet, GraphCast, and PanGu are state-of-the-art methods in the
field of weather prediction, and they share some architectural similarities that can indi-
cate converging trends in this field. All four models initiate the process by embedding
or downsampling the input data. FourCastNet uses AFNO, MetNet employs a Spatial
Downsampler, and PanGu uses Block Embedding to manage the spatial resolution and
complexity of the datasets, while GraphCast maps the input data from the original latitude-
longitude grid into a multi-scale internal mesh representation. Spatio-temporal coding is an
integral part of all networks; FourCastNet uses pre-training and fine-tuning phases to deal
with temporal dependencies, MetNet uses ConvLSTM; PanGu introduces a hierarchical
temporal aggregation strategy to manage temporal correlations in the data; and GraphCast
employs GNNs to capture and address spatio-temporal dependencies in weather data.
Each model employs a specialized approach to understand the spatial relationships within
the data. FourCastNet uses AFNO along with Vision Transformers, MetNet utilizes Spatial
Aggregator blocks, and PanGu integrates data into a 3D cube via 3D Cube Fusion, while
GraphCast translates data into a multi-scale internal mesh. Both FourCastNet and PanGu
employ self-attention mechanisms derived from the Transformer architecture for better
capturing long-range dependencies in the data. FourCastNet combines FNO with ViT, and
PanGu uses Swin Encoding.
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5.2. Result Analysis

MetNet: According to the MetNet experiment, at the threshold of 1 mm/h precipita-
tion rate, both MetNet and NWP predictions have high similarity to ground conditions.
Evidently, MetNet exhibits a forecasting capability that is commensurate with NWP, dis-
tinguished by an accelerated computational proficiency that generally surpasses NWP’s
processing speed.

FourCastNet: According to the FourCastNet experiment, FourCastNet can predict
wind speed 96 h in advance with extremely high fidelity and accurate fine-scale features.
In the experiment, the FourCastNet forecast accurately captured the formation and path of
the super typhoon Shanzhu, as well as its intensity and trajectory over four days. It also
has a high resolution and demonstrates excellent skills in capturing small-scale features.
Particularly noteworthy is the performance of FourcastNet in forecasting meteorological
phenomena within a 48 h horizon, which has transcended the predictive accuracy intrinsic
to conventional numerical weather forecasting methodologies. This constitutes a significant
stride in enhancing the veracity and responsiveness of short-term meteorological projec-
tions.

GraphCast: According to the GraphCast experiment, GraphCast demonstrates su-
perior performance in tracking weather patterns, substantially outperforming NWP in
various forecasting horizons, notably from 18 h to 4.75 days, as depicted in Figure 3b. It
excels at predicting atmospheric river behaviors and extreme climatic events, with signifi-
cant improvement seen in longer-term forecasts of 5 and 10 days. The model’s prowess
extends to accurately capturing extreme heat and cold anomalies, showcasing not just its
forecasting capability but a nuanced understanding of meteorological dynamics, thereby
holding promise for more precise weather predictions with contemporary data.

PanGu: According to the PanGu experiment, PanGu can almost accurately predict
typhoon trajectories during the tracking of strong tropical cyclones Kong Lei and Yu Tu and
is 48 h faster than NWP. The advent of 3D Net further heralds a momentous advancement
in weather prediction technology. This cutting-edge model outperforms numerical weather
prediction models by a substantial margin and possesses the unprecedented ability to
replicate reality with exceptional fidelity. It’s not merely a forecasting tool but a near-
precise reflection of meteorological dynamics, allowing for a nearly flawless reconstruction
of real-world weather scenarios.

In Table 3, “forecast-timeliness” represents the forecasting horizon of each model,
indicating their ability to predict weather up to certain future days. In meteorology,
z500 refers to the height at the 500 hPa isobaric level, which is critical for understanding
atmospheric structures and weather systems. Model evaluation often employs RMSE
(Root Mean Square Error) and ACC (Anomaly Correlation Coefficient) to gauge prediction
accuracy and correlation with actual observations. Lower RMSE and higher ACC values
indicate better model performance. Among GraphCast, PanGu, and IFS, PanGu exhibits
the highest accuracy with an ACC of 0.872 for a 7-day forecast timeliness. GraphCast, while
having a longer forecast timeliness of 9.75 days, has an ACC of 0.825 and an RMSE of 460,
showing a balance between a longer forecasting duration and decent accuracy. Apart from
this, introducing GPU data and prediction speed can provide crucial reference information
for model selection, especially in scenarios with limited resources or where rapid responses
are required. This aids in finding a balance between efficiency and effectiveness, offering
support for successful forecasting.
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Table 3. Short-term weather forecast model result comparison.

Model Forecast-Timeliness Z500 RMSE (7 Days) Z500 ACC (7 Days) Training-
Complexity Forecasting-Speed

MetNet [46] 8 h - -
256 Google-TPU-
accelerators
(16-days-training)

Fewer seconds

FourCastNet [47] 7 days 595 0.762 4 A100-GPU 24-h forecast for
100 members in 7 s

GraphCast [48] 9.75 days 460 0.825 32 Cloud-TPU-V4
(21-days-training)

10-days-predication
within 1 min

PanGu [49] 7 days 510 0.872 192 V100-GPU
(16-days-training)

24-h-global-
prediction in 1.4 s for
each GPU

IFS [88] 8.5 days 439 0.85 - -

6. Medium-to-Long-Term Climate Prediction

Medium-to-long-term climate predictions are usually measured in decadal quarters.
In the domain of medium-to-long-term climate forecasting, the focal point extends beyond
immediate meteorological events to embrace broader, macroscopic elements such as long-
term climate change trends, average temperature fluctuations, and mean precipitation
levels. This orientation is critical for a wide array of sectors, spanning from environmental
policy planning to infrastructure development and agricultural projections. Over time,
the forecasting methodologies have experienced significant advancements, evolving from
conventional climate models to cutting-edge, computational methods such as Probabilistic
Deep Learning for Climate Forecasting (CGF), Machine Learning for Model Down-scaling
(DeepESD), and Machine Learning for Result Bias Correction (CycleGAN).

6.1. Model Design

Climate Model. Climate models, consisting of fundamental atmospheric dynamics
and thermodynamic equations, focus on simulating Earth’s long-term climate system [89].
Unlike NWP, which targets short-term weather patterns, climate models address broader
climatic trends. These models encompass Global Climate Models (GCMs), which provide a
global perspective but often at a lower resolution, and Regional Climate Models (RCMs),
designed for detailed regional analysis [90]. The main emphasis is on the average state
and variations rather than transient weather events. The workflow of climate modeling
begins with initialization by setting boundary conditions, possibly involving centuries
of historical data. Numerical integration follows, using the basic equations to model the
long-term evolution of the climate system [91]. Parameterization techniques are employed
to represent sub-grid-scale processes like cloud formation and vegetation feedback. The
model’s performance and uncertainties are then analyzed and validated by comparing
them with observational data or other model results [92]. The advantages of climate models
lie in their ability to simulate complex climate systems, providing forecasts and insights
into future climate changes, thereby informing policy and adaptation strategies. However,
they also present challenges such as high computational demands, sensitivity to boundary
conditions, and potential uncertainties introduced through parameterization schemes. The
distinction between GCMs and RCMs and their integration in understanding both global
and regional climate phenomena underscores the sophistication and indispensable role of
these models in advancing meteorological studies [93].

Conditional Generative Forecasting [61]. In the intricate arena of medium-to-long-
term seasonal climate prediction, the scarcity of substantial datasets since 1979 poses a
significant constraint on the rigorous training of complex models like CNNs, thus limiting
their predictive efficacy. To navigate this challenge, a pioneering approach to transfer learn-
ing has been embraced, leveraging the simulated climate data drawn from CMIP5 (Coupled
Model Intercomparison Project Phase 5) [94] to enhance modeling efficiency and accuracy.
The process begins with a pre-training phase, where the CNN is enriched with CMIP5
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data to comprehend essential climatic patterns and relationships. This foundational insight
then transfers seamlessly to observational data without resetting the model parameters,
ensuring a continuous learning trajectory that marries simulated wisdom with empirical
climate dynamics. The methodology culminates in a fine-tuning phase, during which the
model undergoes subtle refinements to align more closely with the real-world intricacies
of medium-to-long-term ENSO forecasting [18]. This innovative strategy demonstrates
the transformative power of transfer learning in addressing the formidable challenges
associated with limited sample sizes in medium-to-long-term climate science.

Leveraging 52,201 years of climate simulation data from CMIP5/CMIP6, which serves
to increase the sample size, the method for medium-term forecasting employs CNNs and
Temporal Convolutional Neural Networks (TCNNs) to extract essential features from high-
dimensional geospatial data. This feature extraction lays the foundation for probabilistic
deep learning, which determines an approximate distribution of the target variables, cap-
turing the data’s structure and uncertainty [95]. The model’s parameters are optimized
by maximizing the Evidence Lower Bound (ELBO) within the variational inference frame-
work. The structure is shown in Figure 6. The integration of deep learning techniques
with probabilistic modeling ensures accuracy, robustness to sparse data, and flexibility
in assumptions, enhancing the precision of forecasts and offering valuable insights into
confidence levels and expert knowledge integration.
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Figure 6. Conditonal Generative Forecasting (CGF) model.

Leveraging advanced techniques in variational inference and neural networks, the
method described seeks to approximate the complex distribution p(Y | X, M), where Y is
the target variable and X and M are predictor and GCM index information, respectively.
The process is outlined as follows:

1. Problem Definition: The goal is to approximate p(Y | X, M), a task challenged by
high-dimensional geospatial data, data inhomogeneity, and a large dataset.

2. Model Specification:

• Random Variable z: A latent variable with a fixed standard Gaussian distribution.
• Parametric Functions pθ , qφ, pψ: Neural networks for transforming z and approx-

imating target and posterior distributions.
• Objective Function: Maximization of the Evidence Lower Bound (ELBO).
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3. Training Procedure:

• Initialize: Define random variable z ∼ N(0, 1) [96,97]
parametric functions pθ(z, X, M), qφ(z | X, Y, M), pψ(Y | X, M, z).

• Training Objective (Maximize ELBO) [98]: The ELBO is defined as:

ELBO = Ez∼qφ

(
log pψ(Y | X, M, z)

)
−DKL(qφ‖p(z | X, M))−DKL(qφ‖p(z | X, Y, M)) (8)

with terms for reconstruction, regularization, and residual error.
• Optimization: Utilize variational inference, Monte Carlo reparameterization, and

Gaussian assumptions.

4. Forecasting: Generate forecasts by sampling p(z | X, M), the likelihood of pψ, and
using the mean of pψ for an average estimate.

This method embodies a rigorous approach to approximating complex distributions,
bridging deep learning and probabilistic modeling to enhance forecasting accuracy and insights.

ELBO(λ) = Eq(z|x)[log p(x, z)− log q(z|x)] (Evidence Lower Bound) (9)

In summary, the combination of deep learning and probabilistic insights presents a
unique and potent method for spatial predictive analytics. The approach is marked by
scalability, flexibility, and an ability to learn complex spatial features, even though chal-
lenges persist, such as intrinsic complexity in computational modeling and the requirement
for a profound statistical and computer science background. Its potential in handling
large data sets and adapting to varying scenarios highlights its promising applicability in
modern spatial predictive analytics, representing an advanced tool in the arena of seasonal
climate prediction.

Cycle-Consistent Generative Adversarial Networks. Cycle-Consistent Generative
Adversarial Networks (CycleGANs) have been ingeniously applied to the bias correction
of high-resolution Earth System Model (ESM) precipitation fields, such as GFDL-ESM4 [99].
This model includes two generators responsible for translating between simulated and real
domains, and two discriminators to differentiate between generated and real observations.
A key component of this approach is the cycle consistency loss, which ensures a reliable
translation between domains coupled with a constraint to maintain global precipitation
values for physical consistency. By framing bias correction as an image-to-image translation
task, CycleGANs have significantly improved spatial patterns and distributions in climate
projections. The model’s utilization of spatial spectral densities and fractal dimension mea-
surements further emphasizes its spatial context awareness, making it a groundbreaking
technique in the field of climate science. The CycleGAN model consists of two generators
and two discriminators, along with a cycle consistency loss:

• Two Generators: The CycleGAN model includes two generators. Generator G learns
the mapping from the simulated domain to the real domain, and generator F learns
the mapping from the real domain to the simulated domain [100].

• Two Discriminators: There are two discriminators, one for the real domain and one for
the simulated domain. Discriminator Dx encourages generator G to generate samples
that look similar to samples in the real domain, and discriminator Dy encourages
generator F to generate samples that look similar to samples in the simulated domain.

• Cycle Consistency Loss: To ensure that the mappings are consistent, the model enforces
the following condition through a cycle consistency loss: if a sample is mapped from
the simulated domain to the real domain and then mapped back to the simulated
domain, it should get a sample similar to the original simulated sample. Similarly, if a
sample is mapped from the real domain to the simulated domain and then mapped
back to the real domain, it should get a sample similar to the original real sample.

Lcyc(G, F) = Ex∼pdata(x)[||F(G(x))− x||1] +Ey∼pdata(y)[||G(F(y))− y||1] (10)
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• Training Process: The model is trained to learn the mapping between these two domains
by minimizing the adversarial loss and cycle consistency loss between the generators
and discriminators.

LGen(G, F) = LGAN(G, Dy, X, Y) + LGAN(F, Dx, Y, X) + λLcyc(G, F) (11)

• Application to Prediction: Once trained, these mappings can be used for various tasks,
such as transforming simulated precipitation data into forecasts that resemble ob-
served data.

The bidirectional mapping strategy of Cycle-Consistent Generative Adversarial Net-
works (CycleGANs) permits the exploration and learning of complex transformation
relationships between two domains without reliance on paired training samples. This
attribute holds profound significance, especially in scenarios where only unlabeled data
are available for training. In its specific application within climate science, this charac-
teristic of CycleGAN enables precise capturing and modeling of the subtle relationships
between real and simulated precipitation data. Through this unique bidirectional mapping
shown in Figure 7, the model not only enhances the understanding of climatic phenomena
but also improves the predictive accuracy of future precipitation trends. This provides a
novel, data-driven methodology for climate prediction and analysis, contributing to the
ever-expanding field of computational climate science.
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Figure 7. CycleGAN flow chart.

DeepESD. Traditional GCMs, while proficient in simulating large-scale global climatic
dynamics [101,102], exhibit intrinsic limitations in representing finer spatial scales and
specific regional characteristics. This inadequacy manifests as a pronounced resolution
gap at localized scales, restricting the applicability of GCMs in detailed regional climate
studies [103,104].

In stark contrast, the utilization of CNNs symbolizes a significant breakthrough [105].
Structurally characterized by hierarchical convolutional layers, CNNs possess the unique
ability to articulate complex multi-scale spatial features across disparate scales, commencing
with global coarse-grained characteristics and progressively refining to capture intricate
regional details. An exemplar implementation of this approach was demonstrated by
Baño-Medina et al. [104], wherein a CNN comprised three convolutional layers with spatial
kernels of varying counts (50, 25, and 10, respectively). The transformation process began
with the recalibration of ERA-Interim reanalysis data to a 2° regular grid, elevating it
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to 0.5° [106–108]. This configuration allowed the CNN to translate global atmospheric
patterns into high-resolution regional specificity [109,110].

The nuanced translation from global to regional scales, achieved through sequential
convolutional layers, not only amplifies the spatial resolution but also retains the contextual
relevance of climatic variables [111,112]. The first convolutional layer captured global
coarse-grained features, with subsequent layers incrementally refining these into nuanced
regional characteristics. By the terminal layer, the CNN had effectively distilled complex
atmospheric dynamics into a precise, high-resolution grid [113,114].

This enhancement fosters a more robust understanding of regional climatic processes,
ushering in an era of precision and flexibility in climate modeling. The deployment of
this technology affirms a pivotal advancement in the field, opening new possibilities for
more granulated, precise, and comprehensive examination of climatic processes and future
scenarios [115–117]. The introduction of CNNs thus represents a transformative approach
shown in Figure 8 to bridging the resolution gap inherent to traditional GCMs, with
substantial implications for future climate analysis and scenario planning.
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Figure 8. DeepESD structure.

NNCAM. The design and implementation of the Neural Network Community Atmo-
sphere Model (NNCAM) are architected to leverage advancements in machine learning
for improved atmospheric simulations. The architecture is a nuanced blend of traditional
General Circulation Models (GCMs), specifically the Super-Parameterized Community
Atmosphere Model (SPCAM), and cutting-edge machine learning techniques like Residual
Deep Neural Networks (ResDNNs).

• Reference Model: SPCAM. SPCAM serves as the foundational GCM and is embedded
with Cloud-Resolving Models (CRMs) to simulate microscale atmospheric processes
like cloud formation and convection. SPCAM is employed to generate “target sim-
ulation data”, which serves as the training baseline for the neural networks. The
use of CRMs is inspired by recent advancements in data science, demonstrating that
machine learning parameterizations can potentially outperform traditional methods
in simulating convective and cloud processes.

• Neural Networks: ResDNNs, a specialized form of deep neural networks, are em-
ployed for their ability to approximate complex, nonlinear relationships. The network
comprises multiple residual blocks, each containing two fully connected layers with
Rectified Linear Unit (ReLU) activations. ResDNNs are designed to address the vanish-
ing and exploding gradient problems in deep networks through residual connections,
offering a stable and effective gradient propagation mechanism. This makes them
well-suited for capturing the complex and nonlinear nature of atmospheric processes.
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• Subgrid-Scale Physical Simulator. Traditional parameterizations often employ sim-
plified equations to model subgrid-scale processes, which might lack accuracy. In
contrast, the ResDNNs are organized into a subgrid-scale physical simulator that
operates independently within each model grid cell. This simulator takes atmospheric
states as inputs and outputs physical quantities at the subgrid scale, such as cloud
fraction and precipitation rate.

In the NNCAM model, the core workflow is divided into several key steps to achieve
efficient and accurate climate simulations. First, the dynamic core, which serves as the base
component of the model, is responsible for solving the underlying hydrodynamic equations
and calculating the current climate state, e.g., temperature, pressure, and humidity, as well
as the environmental forcings, e.g., wind and solar radiation. These calculations are then
transmitted to the NN-GCM coupler. Upon receiving these data, the coupler further passes
them to the neural network parameterization module. This module utilizes pre-trained
neural networks, specifically ResDNNs, for faster and more accurate parameterization
of the climate. Upon completion of the predictions, these results are fed back to the host
GCM, i.e., NNCAM. The host GCM then uses the predictions generated by these neural
networks to update the climate state in the model, and based on these updates, it performs
the simulation at the next time step.

Overall, the host GCM, as the core of the whole simulation, is not only responsible for
the basic climate simulation but also efficiently interacts with the dynamic core and neural
network parameterization modules to achieve higher simulation accuracy and computa-
tional efficiency. This hierarchical architecture ensures both computational efficiency and
high simulation fidelity. It allows for seamless integration and synchronization of the model
states and predictions, thereby enabling continuous and efficient operation of NNCAM.
The proposed framework represents a significant stride in the realm of atmospheric science,
offering a harmonious integration of machine learning and physical simulations to achieve
unprecedented accuracy and computational efficiency.

CGF, DeepESD, and CycleGAN are very different in their uses and implementations,
but there are also some levels of similarity. All three approaches focus on mapping from one
data distribution to another. Furthermore, they focus more on the mechanisms of climate
change than previous models for weather forecasting. CycleGAN specifically emphasizes
the importance of not only mapping from distribution A to B but also the inverse mapping
capability from B to A, which is to some extent what CGF and DeepESD are concerned
with. NNCAM realizes the mapping from physical parameterization to machine learning
parameterization. This mapping can be viewed as a functional mapping that replaces
parameterized functions in the physical process with functions learned and inferred by the
machine learning model.

6.2. Result Analysis

CGF: In the utilization of deep probabilistic machine learning techniques, the figure
compares the performance of the CGF model using both simulated samples and actual
data against the traditional climate model, Cancm4. The findings illustrate that our model
outperforms the conventional climate modeling approach in terms of accuracy, irrespective
of the employment of simulated or real data sets. This distinction emphasizes the enhanced
predictive capability of our method and underlines its potential superiority in handling
complex meteorological phenomena.

CycleGANs: In the context of long-term climate estimation, the application of deep
learning for model correction has yielded promising results. As illustrated in the accompa-
nying figure, the diagram delineates the mean absolute errors of different models relative
to the W5E5v2 baseline facts. Among these, the error correction technique utilizing Gen-
erative Adversarial Networks (GANs) in conjunction with the ISIMIP3BASD physical
model has demonstrated the lowest discrepancy. This evidence underscores the efficacy
of sophisticated deep-learning methodologies in enhancing the precision of long-term
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climate estimations, thereby reinforcing their potential utility in climatological research
and forecasting applications.

DeepESD: In the conducted study, deep learning has been employed to enhance
resolution, resulting in a model referred to as DeepESD. The following figure portrays the
Probability Density Functions (PDFs) of precipitation and temperature for the historical
period from 1979 to 2005, as expressed by the General Circulation Model (GCM) in red, the
Regional Climate Model (RCM) in blue, and DeepESD in green. These are contextualized
across regions such as the Alps, the Iberian Peninsula, and Eastern Europe as defined by
the PRUDENCE area. In the diagram, solid lines represent the overall mean, while the
shaded region includes two standard deviations. Dashed lines depict the distribution mean
of each PDF. A clear observation from the graph illustrates that DeepESD maintains higher
consistency with observed data in comparison to the other models.

NNCAM: NNCAM has demonstrated proficient simulation of strong precipitation
centers across maritime continental tropical regions, Asian monsoon areas, South America,
and the Caribbean. The model maintains the spatial pattern and global average of precip-
itation over the subsequent 5 years in its simulation, showcasing its long-term stability.
Overall, in terms of the spatial distribution of multi-annual summer precipitation, NNCAM
results are closer to the standard values compared with those from CAM5, with smaller
root mean square errors and global average deviations. Additionally, NNCAM operates
at a speed that is 30 times faster than traditional models, marking a significant stride in
enhancing computational efficiency.

In Table 4, MAE is a metric commonly used to measure the magnitude of forecast errors.
It calculates the average of the absolute errors between the actual and predicted values. This
metric was selected because it provides a clear, intuitive way to understand the accuracy of
model predictions. A low MAE value indicates better prediction accuracy, while a high
MAE value indicates a larger prediction error. The Euclidean Distance to Observations
in the Probability Density Function (PDF) is utilized to evaluate the performance of the
model by comparing the distance difference in the PDFs between the predicted and actual
observed data. This metric was selected because it provides a means of quantifying how
well a model’s predicted distribution aligns with the actual observed distribution, enabling
the evaluation of model performance in complex systems, particularly when dealing with
systems that possess inherent uncertainty and variability. While these four methods address
different problems and, thus, a direct comparison is not feasible in this study, it is evident
that they all exhibit significant improvements compared with traditional earth system
models.

Table 4. Medium-to-long term climate prediction model result comparison.

Name Categories Metrics ESM This Model

CycleGAN [59] Bias correction MAE 0.241 0.068

DeepESD [58] Down-scaling Euclidean Distance to Observations
in PDF 0.5 0.03

CGF [61] Prediction ACC 0.31 0.4

NNCAM [57] Emulation Speed 1 30 times speed-up

From the results, it can be discerned that although the utilization of machine learning
has significantly diminished in medium-to-long-term climate forecasting, our findings
demonstrate that by judiciously addressing the challenge of scarce sample sizes and em-
ploying appropriate machine learning techniques, superior results can still be achieved
compared with those derived from physical models. This observation underscores the
potential of machine learning methodologies to enhance prediction accuracy in climate sci-
ence, even in situations constrained by data limitations. In the context of climate estimation,
it is observable that the utilization of neural networks for predicting climate variations has
become less prevalent among meteorologists. However, the adoption of machine learning
techniques to aid and optimize climate modeling has emerged as a complementary strat-



Appl. Sci. 2023, 13, 12019 28 of 36

egy. As evidenced by the two preceding figures, climate models that have been enhanced
through the application of machine learning demonstrate superior predictive capabilities
when compared with other conventional models.

7. Discussion

Weather forecasting and climate prediction are closely related to people’s lives and
provide important information and support for social and economic activities. For example,
governments and relief organizations rely on accurate weather forecasts to warn of and
respond to natural disasters, thereby mitigating their impact on people’s lives and property.
At the same time, the energy industry also relies heavily on climate forecasts to predict
energy demand and optimize energy distribution, thereby ensuring the stability and
efficiency of energy supply. Our research purpose, the examination of machine learning
in meteorological forecasting, is situated within a rich historical context, charting the
evolution of weather prediction methodologies. Starting from simple statistical methods to
complex deterministic modeling, the field has witnessed a paradigm shift with the advent
of machine learning techniques.

7.1. Overall Comparison

In this section of our survey, we delineate key differences between our study and
existing surveys, thereby underscoring the unique contribution of our work. We contrast
various time scales—short-term versus medium-to-long-term climate predictions—to sub-
stantiate our rationale for focusing on these particular temporal dimensions. Additionally,
we draw a comparative analysis between machine learning approaches and traditional
models in climate prediction. This serves to highlight our reason for centering our survey
on machine learning techniques for climate forecasting. Overall, this section not only
amplifies the distinctiveness and relevance of our survey but also frames it within the larger
scientific discourse.

Comparison to existing surveys. Compared to existing literature, our survey takes
a unique approach by cohesively integrating both short-term weather forecasting and
medium-to-long-term climate predictions—a dimension often underrepresented. While
other surveys may concentrate on a limited range of machine learning methods, ours ex-
tends to nearly 20 different techniques. However, we recognize our limitations, particularly
the challenge of providing an exhaustive analysis due to the complexity of machine learning
algorithms and their multifaceted applications in meteorology. This signals an opportunity
for future research to delve deeper into specialized machine-learning techniques or specific
climatic variables. In contrast to many generalized surveys, our study ventures into the
technical nuances of scalability, interpretability, and applicability for each method. We
also make a conscious effort to incorporate the most recent advances in the field, although
we acknowledge that the pace of technological change inevitably leaves room for further
updates. In sum, while our survey provides a more comprehensive and technically detailed
roadmap than many existing reviews, it also highlights gaps and opportunities for future
work in this rapidly evolving interdisciplinary domain.

Short-term weather prediction vs. medium-to-long-term climate predication. Short-
term weather predictions focus on immediate atmospheric conditions within a time span
of hours to days. This is a contrast to medium-to-long-term climate predictions, which aim
to forecast broader patterns in weather, temperature trends, and precipitation averages
over extended timeframes of months to decades. The goals underlying these two forms of
prediction also diverge significantly. Short-term forecasts are usually operational in nature,
aimed at immediate public safety or aiding sectors like agriculture and industry, whereas
medium-to-long-term predictions typically inform strategic and policy-oriented planning
for various societal sectors, including agriculture, energy, and urban development.

This comparison extends to the variables considered in the predictive models. Short-
term weather predictions often hone in on localized states like temperature, humidity, wind
speed, and precipitation. On the other hand, medium-to-long-term climate predictions
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scrutinize a wider array of variables, such as average temperature shifts, sea-level rise, and
the general patterns of extreme weather events, often on a global or regional scale.

Regarding methodologies, machine learning techniques such as neural networks,
random forests, and support vector machines are frequently deployed in the realm of
short-term weather prediction, owing to their prowess in swiftly analyzing large datasets.
In contrast, for medium-to-long-term climate predictions, machine learning generally
complements traditional physics-based models, serving a supplementary role to handle
the complexities and uncertainties inherent in longer-range forecasts.

Finally, each type of prediction comes with its own set of challenges. Short-term fore-
casts grapple with issues related to the accuracy and granularity of the data and the speed
of its dissemination to the public. Medium-to-long-term climate predictions, however, face
challenges related to the scarcity of quality long-term datasets and the intricacies associated
with interdependent climatic variables. Yet, there are challenges that are common to both,
exemplified by the nonlinearity inherent in weather and climate prediction models, which
underscore the complex dynamic relationships among atmospheric variables, necessitating
techniques adept at capturing such intricate interactions. Furthermore, the assessment of
model uncertainties is arduous as they emanate from various facets, demanding algorithms
that can quantify, accommodate, and ideally mitigate these uncertainties to augment the
reliability and accuracy of predictions.

Machine-learning models vs. traditional models. In terms of computational speed,
machine learning algorithms—particularly those based on deep learning—have the capa-
bility to process extensive datasets at a far quicker rate compared with traditional method-
ologies. When it comes to prediction accuracy, the machine learning algorithms stand
out for their superior feature extraction capabilities, often yielding more precise outcomes
in short-term weather forecasting scenarios. Additionally, the adaptability of machine
learning models enables them to evolve and improve over time. This flexibility makes
them particularly useful tools that can be fine-tuned as climate data and observational
technologies continue to advance.

While machine learning models can excel at generating rapid and sometimes more
accurate forecasts, their lack of interpretability can be a barrier to gaining deeper scientific
insights. Machine learning models, especially complex ones like deep neural networks, are
often considered “black boxes”, meaning their internal workings are not easily understand-
able. This is a significant drawback during meteorological application. Understanding the
underlying mechanisms of weather and climate variability is crucial across all temporal
scales, serving as the bedrock upon which all predictive methods are built. For instance, in
short-term weather forecasting, an in-depth grasp of these mechanisms assists researchers
in selecting the most relevant datasets. For example, when forecasting precipitation, it
would be ineffective to merely input precipitation data as a training set. Instead, one must
understand the specific meteorological factors that influence precipitation in a given region.
This necessity becomes even more pronounced for medium-to-long-term forecasts, which
are inherently more complex. To construct accurate and reliable models, it is imperative
to identify the factors that interact with each other, eventually leading to variations in the
target predictive elements for a particular region. Thus, a nuanced understanding of these
mechanisms not only enhances the precision of our models but also broadens the scope for
comprehensive climatic analysis and future scenario planning.

7.2. Challenge

Although we found extensive work on machine learning frameworks that succeed in
short-term weather prediction and even outperform traditional methods, climate prediction
in the medium-to-long term mainly relies on traditional methods. The main challenges can
be attributed to the limited data size and complex climate change effects.

Dataset. The scarcity of seasonal meteorological data, particularly evident from the
era around 1979, poses significant challenges for applying machine learning to climate
prediction. While data from this period may be adequate for short-term weather forecasting,



Appl. Sci. 2023, 13, 12019 30 of 36

it falls short for medium-to-long-term climate models. This data limitation impacts machine
learning algorithms, which rely on large, quality datasets for robust training. Consequently,
the lack of seasonal data affects not only the model’s performance and reliability but
also complicates validation procedures. This makes it challenging to assess the model’s
generalizability and accuracy. Additionally, the sparse data hampers the effective fusion of
machine learning with traditional physics-based models, affecting the overall reliability of
climate predictions. Therefore, the limitations of historical meteorological data significantly
constrain the application of machine learning in long-term climate studies.

Complex climate change effect. A certain climate change may be related to hundreds
or thousands of variables. It’s difficult for us to use machine learning to capture their corre-
lation. The intricate nature of climate change, influenced by hundreds or even thousands of
interrelated variables, presents a daunting challenge for machine learning applications in
climate prediction. Unlike simpler systems, where causal relationships between variables
are straightforward, climate systems embody complex, non-linear interactions that are
difficult to model. Machine learning algorithms, though powerful, often require clearly
defined feature sets and labels for effective training, a condition seldom met in the realm
of climate science. The sheer number of variables can lead to issues of dimensionality,
where the complexity of the model grows exponentially, making it computationally inten-
sive and difficult to interpret. Furthermore, capturing long-term dependencies between
these myriad variables is particularly challenging, given the current state-of-the-art in
machine learning techniques. This complexity often results in models that, while math-
ematically sophisticated, lack the interpretability necessary for scientific validation and
policy implications.

7.3. Future Work

For these challenges and the disadvantages of machine-learning prediction methods
in meteorology, we propose the following future work:

• Simulate the dataset using statistical methods or physical methods.
• Combining statistical knowledge with machine learning methods to enhance the

interpretability of patterns.
• Consider the introduction of physics-based constraints into deep learning models to

produced more accurate and reliable results.
• Accelerating Physical Model Prediction with machine learning knowledge.

Simulating Datasets: One promising avenue for future work is to simulate datasets
using either statistical or physical methods. Such synthetic datasets can provide a controlled
environment to test and validate predictive models. Utilizing methods like Monte Carlo
simulations or employing first-principle equations to generate realistic data, this approach
promises to enhance model robustness by enabling better generalizability testing.

Enhancing Interpretability: The issue of interpretability is a well-known drawback
of machine learning models. A future research direction could be the fusion of statistical
methodologies with machine learning algorithms. Incorporating statistical tests for feature
selection or Bayesian methods for uncertainty quantification can render the inherently
opaque machine learning models more interpretable, thereby making their results more
actionable in critical fields like meteorology.

Physics-Based Constraints: A particularly vital frontier for research is the integration
of atmospheric physics-based constraints into deep learning architectures. Traditional
machine learning models, when unconstrained, might produce forecasts that, although
statistically plausible, violate fundamental principles of atmospheric physics and dynamics.
To mitigate this, it would be beneficial to incorporate terms or constraints that reflect the
known interactions among meteorological elements such as temperature, pressure, and
humidity. This can be done through methods like Physics-Informed Neural Networks
(PINNs) or physics-based regularization terms. Such an approach would be invaluable
for complex meteorological applications like severe weather forecasting, where both the
accuracy and physical plausibility of predictions are of utmost importance.
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Accelerating Physical Models: Lastly, the intersection of machine learning with tra-
ditional physical models offers significant potential. Physical models are often computa-
tionally intensive; however, machine learning can expedite these calculations. Techniques
such as model parallelization or simpler surrogate models developed via machine learning
could dramatically speed up real-time analysis and forecasting, a critical need in time-
sensitive applications.

Machine Learning (ML), a subset of Artificial Intelligence (AI), holds a distinctive
prowess in discerning patterns from large datasets, yet it does not possess the capability to
replace physical models, including the NWP and the Global Climate Model. This limitation
predominantly stems from ML’s inherent “black box” nature, which lacks explicability, in
contrast to the physical models based on atmosphere principles. The symbiotic alliance
between ML and physical models unveils a plethora of enhancements in weather forecast-
ing. Specifically, ML significantly augments physical models in areas like bias correction,
parameterization, and Down-scaling, where the fusion of data-driven insights with physi-
cal models tends to yield more accurate and efficient forecasts. On the flip side, physical
models enrich ML by imparting robust physical constraints that guide the learning process
towards physically plausible solutions. The inextricable synergy between ML and NWP
models is underscored by their irreplaceable strengths, heralding a future where their
collaborative integration could unlock new horizons in advancing meteorological science
and forecasting accuracy. This harmonious coexistence not only propels the forecasting
capabilities to new heights but also bridges the interpretability gap, thereby fostering a
more comprehensive understanding and enhanced trust in predictive modeling within the
meteorological community.

8. Conclusions

In conclusion, this study offers an extensive look into the transformative role of ma-
chine learning in meteorological forecasting. It uniquely amalgamates short-term weather
forecasting with medium- and long-term climate predictions, covering a total of 20 models
and providing an in-depth introduction to eight select models that stand at the forefront of
the industry. Our rigorous survey helps distinguish the operational mechanisms of these
eight models, serving as a reference for model selection in various contexts. Furthermore,
this work identifies current challenges, like the limited dataset of chronological seasons,
and suggests future research directions, including data simulation and the incorporation of
physics-based constraints. Thus, the survey not only provides a comprehensive current
view but also outlines a roadmap for future interdisciplinary work in this burgeoning field.
While the research acknowledges its limitations in providing an exhaustive analysis, it
delineates a promising direction for future exploration.
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Abbreviations
Commonly used symbols and definitions:

Symbol Definition
v velocity vector
t time
ρ fluid density
p pressure
µ dynamic viscosity
g gravitational acceleration vector
Eq(z|x) expectation under the variational distribution q(z|x)
z latent variable
x observed data
p(x, z) joint distribution of observed and latent variables
q(z|x) variational distribution
G, F Generators for mappings from simulated to real domain and vice versa.
Dx, Dy Discriminators for real and simulated domains.
Lcyc, LGAN Cycle consistency loss and Generative Adversarial Network loss.
X, Y Data distributions for simulated and real domains.
λ Weighting factor for the cycle consistency loss.
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