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Abstract: Fragility fractures, caused by low-energy trauma, are a significant global health concern,
with 158 million people aged 50 and over at risk. Hip fractures, a common issue in elderly patients,
are often linked to underlying conditions such as osteoporosis. This study proposed a cost-effective
solution using a non-wheeled smart walker with load sensors to measure gait parameters, addressing
the high cost of traditional gait analysis equipment, the prototype used PASCO load cells PS2200
for force measurement, eliminating the need for Arduino UNO or microcontroller-based hardware.
A lightweight amplifier PS2198 amplified the signal, which was transmitted via USB to a personal
computer. PASCO capstone software was used for data recording and visualization. The smart
walker was tested on forty volunteers divided into two equal groups: those with osteoporosis and
those without, by performing a 10 m walk test three times. ANOVA comparing spatiotemporal
parameters (TSPs) of the two participant groups (α = 0.05) showed that significant differences lay
in terms of time taken to complete the walk test (p < 0.01), left step length (p = 0.03), walking speed
(p = 0.02), and stride length (p < 0.02). The results indicate that this smart walker is a reliable tool for
assessing gait patterns in individuals with osteoporosis. The proposed system can be an alternative
for time consuming and costly methods such as motion capture, and for socially stigmatizing devices
such as exoskeletons. It can also be used further to identify risk factors of osteoporosis.

Keywords: fracture prevention; bone health; mobility aid geriatric care; spatiotemporal analysis; osteo-
porotic fractures; hip fracture; elderly healthcare; biomechanical assessment; fall prevention; osteoporosis
management; physical therapy; musculoskeletal disorders; aging population; medical technology; clini-
cal research; bone density; patient rehabilitation; functional mobility; osteoporosis diagnosis

1. Introduction

Osteoporosis is a medical condition distinguished by a reduction in bone mineral
density. It can be coupled with a decline in muscle mass and an increase in the deposition
of adipose tissue. These physiological alterations can influence an individual’s gait and
equilibrium, increasing their vulnerability to falls and fractures [1]. The decrease in bone
density in osteoporosis causes injury to the hip joint by exposing it to heightened stress
levels. This phenomenon is notably prevalent in postmenopausal females. The increased
stress makes seemingly healthy hip joints susceptible to osteoarthritis through perturbations
to the typical patterns of gait and balance [2].
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While conventional methods for assessing gait disturbances and fear of falling in
persons with bone diseases exist, they often necessitate manual patient evaluations, which
can be cumbersome for both the patient and the clinician. For instance, the dual cognitive
task test can gauge gait abnormalities in individuals afflicted with osteoporosis and a fear
of falling [3], while the ten-meter test assesses the impact of training programs on balance,
gait velocity, and muscle strength in people with osteoporosis [4]. However, these manual
assessments mandate specialized testing facilities and trained therapists to administer
them, rendering them impractical in various settings.

To address these challenges, alternative automated systems have emerged to conduct
gait analysis and assessments [5]. These systems encompass a wide array of technologies,
including motion capture systems [6,7], and video cameras [8]. While undeniably effective
in suitable contexts with the requisite infrastructure and trained personnel, these methods
are not universally accessible or convenient.

Another avenue involves the utilization of sensors, such as inertial measurement units
(IMUs) [9], wearable sensors [10], or insole foot pressure sensors and accelerometers [11,12].
These sensors offer the advantage of portability and can be employed in diverse environments.
However, they necessitate attachment to specific body locations, which may not always be
convenient or comfortable for the user.

A promising solution to these challenges lies in the integration of gait-monitoring
sensors into mobility aids commonly used by individuals, such as rollators [13–15], and
canes [16,17]. This innovative approach ensures that gait analysis is accessible irrespective
of location or time, without requiring specific body attachments. Nonetheless, it is essential
to note that this method may yield approximated gait information and, consequently, is
susceptible to a margin of error compared to more intricate systems [18].

Moreover, the current focus primarily gravitates towards rollators, often equipped
with wheel encoders to estimate the distance covered. However, an often-overlooked
segment of the population consists of users with pronounced instability, rendering rollators
impractical and even hazardous during routine activities or gait monitoring. Consequently,
non-wheeled walkers emerge as a pertinent alternative in facilitating gait analysis for
individuals grappling with high instability and an aversion to the risks associated with
traditional rollators.

Numerous studies have been conducted to analyze gait through different techniques.
The four common techniques including the use of a cane, robotic walker, pick up standard
walker, and smart walker/rollator are presented in Table 1.

Table 1. Related work based on robotic walkers, canes, wheeled walkers, and standard walkers.

Robotic Walkers

Reference Technology Methods Results Limitation Year

[19]
Mobility

Assistance Robotic
rollator

Data was collected by
using a Laser range finder Detected gait phases Users needed to

wear fitted clothes 2014

[20] Assistive Robot

A proximity Sensor was
used by a robotic walker
to measure the distance

between the user’s leg and
the robot.

Controlled forward
walking speed of the

robot according to
distance between the

user and robot.

Only distance and
walking speed
were detected.

2018

[21] Robotic Walker;
Walk-IT

Multi-camera and
multimodal dataset was

used for
biomechanical analysis.

Biomechanical
analysis of posture and
gait, pose estimation,

and human gait
detection and

tracking algorithm.

Need to wear full
body motion

tracking system.
2022
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Table 1. Cont.

Canes

Reference Technology Methods Results Limitation Year

[16] Cane
A Force sensor was
attached to measure
the load on the cane.

Continuously
measurement using

weight bearing
during walking

No temporal-spatial gait
parameters were

estimated in this study.
2019

[22] Cane Robot
Laser range finders

were used to detect the
user’s leg motion.

Spatiotemporal gait
parameters

were measured

Users needed to wear
tight pants or short skirts

during monitoring.
2022

Wheeled Walkers

Reference Technology Method Results Limitation Year

[14] i-Walker Platform

Force sensors were
embedded on
handlebars of

the walker.

Extracted
spatiotemporal
gait parameters.

The user needed to put a
mass of at least 3 kg on the
walker handlebars for use

2015

[23] Smart Walker

Gait monitoring by
using feet position and

orientation by using
ISIR’s smart walker

prototype with Active
depth sensor.

Spatial patterns are
reported in this study

by using a camera
depth sensor

without markers.

Spatiotemporal
parameters were not

reported in this study.
2015

[24] Wheeled Walker

Microwave Doppler
radars are embedded
in the four wheels of

the walker.

Gait velocity
estimation for normal

and abnormal gait.

Important gait parameters
for diagnosis of the user’s

condition are not the
scope of this study for
instance cadence, step

length, etc.

2015

[18] i-Walker Platform
Embedded force

sensors in handlebars
of the walker.

Estimated force
difference of

handlebar sensors
during walking

This system was
interfaced with the

optotrack system and a
treadmill, so it needed a
confined environment

for operation.

2016

[25] Smart Rollator,
i-Walker

Data of volunteers
using a smart rollator

based on a force
sensor, an

accelerometer, and a
gyroscope was
classified using

machine learning.

Found distinct
walking-age groups
according to walking

speed, the forces
exerted by the

individual on the
i-Walker.

For assessment only two
parameters were known

i.e., walking speed
and force.

2018

[26] Smart Walker

Smart Walker based on
functionalities

sit-stand assistance,
navigation system,

and obstacle detection
with gait monitoring.

The gait parameters
determined by smart
walker and GaitRite
were concurrently

validated.

This walker only
determined temporal gait
parameters and extraction
of spatial gait parameters

are not in the scope of
this system.

2019

[27] Smart Rollator
Walk-IT

Open-source
modular-based rollator

for gait monitoring
and support. It

included force sensors,
encoders in the wheel,

and light detection
and ranging sensors.

Assessment of
spatiotemporal gait
parameters by leg

speed information and
weight bearing

of users.

The main draw of this
device was that it needed
users’ leg visibility during

rollator use due to a
laser-based gait analysis

system. Walk-IT also
encountered visibility
issues when it came to
tracking steps, a crucial

element for
gait assessment.

2022
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Table 1. Cont.

Standard Walker

Reference Technology Method Results Limitation Year

[28] Pick up
standard walker

In this study force sensors,
light detection and

ranging sensors were
embedded in the

walker’s legs.

Force unbalance on the
walker’s leg and

motor incoordination
was estimated.

Spatiotemporal
gait parameters
were not in the

scope of this study.

2018

While assessing rehabilitative devices and identifying functional limits resulting from
pathologies, three-dimensional instrumented gait analysis is a useful technique. Typical
components of gait analysis include analysis of spatiotemporal parameters, joint kinetics
(moments and power), kinematics (joint angles and ranges of motion), and ground reaction
force analysis [29]. Research in gait analysis has been limited by focusing on specific param-
eters such as walking speed, and spatiotemporal parameters [23,25,26]. These parameters
provide valuable insights into individual gait pattern s [30] but only represent a portion
of the multifaceted domain. Walkers have been used to measure temporal, and spatial
parameters [26], but often interconnected with other systems like GaitRite or treadmills,
limiting their applicability to controlled environments. Alternative solutions such as the
cane robot [22], Robotic walker Walk-IT [21], and smart rollator walker [19] have been
employed to assess gait parameters, but they impose certain prerequisites on participants,
such as wearing tight-fitting clothing or short skirts for enhanced leg movement visibility.
Other devices such as the JARoW [31], i-Walker [32], and FriWalk robotic walker [33]
have also been proposed and offer a good range of sensory and motor applications [34].
However, these devices are either too expensive for a developing country end-user or are
too complicated to be operated by the user without the help of a specialist.

In response to these limitations, the present study endeavors to fill the gap by intro-
ducing a smart walker specifically designed to facilitate a detailed gait analysis. The smart
walker allows for analysis of spatiotemporal gait parameters and offers users valuable
support while minimizing the risk of fall-related injuries, a concern often associated with
traditional wheeled walkers. The design of the walker places minimal weight-bearing de-
mands on the user, making it suitable for individuals with walking disabilities undergoing
rehabilitation treatment using standard walkers.

To assess the device’s effectiveness, we conducted a pilot study involving 40 participants
in an urban setting. The study included a detailed gait analysis of differences between
individuals with and without osteoporosis to validate the proposed smart walkers’ utility in
people with osteoporosis. Our findings show that the benefits of the smart walker extend
beyond its functional capabilities. The lack of specific attire during gait monitoring promotes
greater convenience and ease of use. Specific infrastructure, such as treadmills or video
cameras, is not required for its operation. This makes it suitable for a wide range of clinical
and healthcare settings, including rehabilitation centers, homes, and outdoor environments.

Notably, the versatility of this developed smart walker extends beyond its functional
capabilities; it does not depend on any specific infrastructure, such as treadmills or video
cameras, for its operation. This feature significantly enhances its suitability for a wide range
of clinical and healthcare settings, including rehabilitation centers, homes, and outdoor
environments, effectively eliminating the need for participants to wear specific attire during
gait monitoring, thereby promoting greater convenience and ease of use.

2. Materials and Methods

A smart walker prototype was designed to facilitate the monitoring of gait patterns in
people with osteoporosis during the rehabilitation process. The prototype featured onboard
force sensors integrated into the walking aid. These sensors enabled the acquisition of
spatiotemporal gait parameters, including walking speed, cadence, step length, step time,
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stride time, and stride length. The prototype’s design aimed to obviate the need for
participants to wear external sensors or rely on specialized equipment such as treadmills,
electronic walkways, or post-processing-dependent video cameras.

The prototype was tested on 40 volunteers, comprising 20 healthy elderly individu-
als and 20 older individuals diagnosed with osteoporosis. The study design was quasi-
experimental, where a physiotherapist administered a standardized 10 m walk test, system-
atically. Spatiotemporal parameters were acquired through the smart walker including the
time of walk, walking speed, cadence, step length, step time, stride time, and stride length.

Figure 1 shows Smart Walker prototype equipped with PS2200 Force Sensors. In
total, four force sensors were attached on walkers legs including Force sensor on rear
right side (FsRRs),Force Sensor on rear left side (FsRLs), Force Sensor on front left side
(FsFLs), and Force Sensor on front right side (FsFRs).The developed prototype smart walker
with the positions of sensors and electronic components labelled, walker with on board
sensors, providing a visual representation of the device that was used to collect data in
this study. A walker made up of aluminum body and soft rubber pads on the handlebars
was utilized to assist people with osteoporosis in maintaining gait balance, stability and
support during their rehabilitation process. We equipped this commercially available
walker with four sensors, which were placed at the front and rear legs of the walker to
measure the upper limb forces during walking. The sensors were embedded at a distance of
0.7112 m (28 inches) away from the handgrips to avoid damage from overloading. PASCO
load cells PS2200 were used as a sensor in this prototype, which measured forces in all
directions, eliminating the need for Arduino UNO or microcontroller-based hardware for
data transmission. A lightweight load cell amplifier PS2198 was used to amplify the sensor
signal, which was then transmitted to a personal computer via USB interface. The sensor
signal amplifier PS2198 and USB interface PS2100 are light weight and easily travel with
handheld data loggers. For data recording and visualization, PASCO capstone software
v 2.0 (free trial) was used, displaying a graph of forces of right and left hands on the
handlebars of walkers versus time of the walk. The system is wired but this cannot affect
the measurements due to the Well-fitted sockets (six-pin mini-DIN jacks) of amplifier and
USB interface which connects walker sensors to personal computer for data recording. Due
to wired connections, the current design allowed users to walk up to 15 m. To record gait
daily or weekly the user at home needs to setup the hardware and software as follows:

Hardware setup:

i. Connect four separate load cells to the input ports of the amplifier.
ii. Connect the cable of the load cell amplifier to a PASPORT interface.
iii. Connect the PASPORT interface to Personal Computer USB port.

Software setup (Data studio):

i. Once you connect the load cell amplifier to the computer via a PASPORT interface,
the PASPortal window will open automatically as shown in Figure 2.

ii. Select launch Data Studio in PASPortal window.

iii. Click to begin data collection.

Users can save recorded data and can share it with therapist electronically for gait
assessment. After recording data, the user can disconnect the amplifier and USB interface
from sensor to use walker for gait support and rehabilitation every time and everywhere.

The software setup image shown in Figure 2 is taken from https://www.conatex.be/
media/manuals/BAEN/BLEN_1091161.pdf source (accessed on 1 October 2023).

https://www.conatex.be/media/manuals/BAEN/BLEN_1091161.pdf
https://www.conatex.be/media/manuals/BAEN/BLEN_1091161.pdf
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Figure 1. Smart Walker with on board sensors.

Figure 2. PASPortal window, software operation during data collection.

2.1. Sensor Specifications and Calibration

The ranges of force sensors PS2200 used in this study are 100 ± 5 N with safe overloads
of up to ±150 N. The average sampling rate in our recorded data is 20 Hz, the sensor has
taken a new sample after every 0.05 s. The maximum sampling rate of sensor can be
increased up to 500 Hz. The accuracy of sensor signal amplifier is ± 1 N, and a resolution
of 0.003 N. We calibrated force sensors to ensure the accuracy and consistency of data
recording. Calibration of force sensors were performed by hanging standard weights of
1 kg, 2 kg, 3 kg, and 4 kg on middle of handlebars of walker on right and left side. The
hanging weight was distributed in rear and front sensor. By using Equations (1) and (2), the
weight distributed on the rear and front sensors were summed which was approximately
same to the standard weights hung on the handlebars of the walker. FL in Equation (1)
shows total force on left handlebar and in Equation (2) FR shows total force on right
handlebar of walker. The accuracy of the sensors was presented in Figure 3. The percentage
error of the left force sensors was 1.36% and of the right force sensors were 1.18%.

FL = FsRLs + FsFLs (1)

FR = FsRRs + FsFRs (2)
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Figure 3. Validation of sensor measurement after calibration. (a) The sensor on the right handlebar,
and (b) the sensor on the left handlebar.

2.2. Gait Parameters Estimation from Smart Walker with Onboard Sensors

The participant’s weight distribution during walking was measured using the pro-
totype Smart Walker. Figure 4 shows both left- and right-side forces recording from the
four sensors with respect to time. Since the walker was easy to use for both groups of
participants, and osteoporosis participants have experience in walker usage; thus, the data
received have no significant errors and missing values. Therefore, no filters were used for
data preprocessing before data analysis. The participants initiated walks by striking their
right heel to the ground. At each heel strike we obtain the peak of force. The fluctuations
in forces gave valuable information for the calculation of spatiotemporal gait parameters
including time, stride time, stride length, cadence, step length, step time, and velocity. The
force on the handlebar increased on the same side and lowered on the opposing side when
users initiated a heel strike [14]. Hence, the number of steps taken by the users were easily
determined by counting the number of inflection points as shown in Figure 4.
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Figure 4. Force sensor reading. Force sensor on rear right side (FsRRs (N)), force sensor on rear left side
(FsRLs (N)), force sensor on front right side (FsFRs (N)), and force sensor on front left side (FsFLs (N)).

For simplified data visualization, forces of two sensors attached on the left side
(FsRLs + FsFLs) were added and resulted in a single force peak signal for the left heel strike,
presented as the FLeft heel strike peak in Figure 5. Similarly, force measurements from the
two sensors on the right side (FsRRs + FsFRs) were added to obtain one force peak signal,
presented as the Fright heel strike peak in Figure 5.

Figure 5. Sum of forces measured by sensor on rear and front (left) and on rear and front (right)
during walk test using smart walker.

The differences in the forces recorded from left and right sides, occurrence of peaks at
specific time and distance covered by the user, the following gait parameters were measured:

Fdi f f = Fright heel strike peak − Fle f t heel strike peak (3)

Moreover, the following parameters were also measured:

Step Time: Average time in seconds between minimum–maximum (right) and minimum–
maximum (left).
Stride Time: Average time in seconds between maximum–maximum (right) and minimum–
minimum (left).
Number of steps: Number of inflection points.
Time required to complete walk: Number of seconds that a user takes to complete the walk.
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Cadence: Number of steps taken * 60/time required to complete the walk.
Distance: The distance covered by user during test i.e., 10 m.
Walking Speed: Walking speed can be found by using distance (m)/time required to cover
marked distance(s).
Stride length: Walking speed (m/s) * Average time in seconds between maximum–maximum
(right) and minimum–minimum (left).
Step Length: walking speed (m/s) * Average time in seconds between minimum–maximum
(right) and minimum–maximum (left).

User Support = Fright heel strike peak + Fle f t heel strike peak (4)

After aggregating the forces exerted on the walker by the left and right sides for all
walking steps, we determined the level of support provided by the user for propulsion.
Equation (4) was used to calculate the amount of user support, with higher values indicating
that the participant relied heavily on the walker for propulsion due to weak bone and
muscle strength, resulting in high gait instability and balance issues. Conversely, lower
values of user support indicated participants with better gait stability and balance who did
not heavily rely on the walker for propulsion. Therefore, higher values of forces during
walking were associated with gait abnormalities such as gait instability and balance issues.

2.3. Study Participants

Forty participants were recruited from The Ziauddin Hospital’s Physical Therapy
and Rehabilitation Centre in Karachi, Pakistan, as well as from three old age homes
within Karachi, namely Anmol Zindagi, Gill Shelter Home, and Agosha-e-Afiyat. We
studied 20 people with osteoporosis and 20 people without osteoporosis. In the group with
osteoporosis, there were 6 males and 14 females, with a mean age of 70.85 ± 10.18 years. In
the comparison group without osteoporosis, there were 11 males and 9 females with an
average age of 69.85 ± 10.17 years.

The inclusion criteria for people with and without osteoporosis included being aged
between 50 and 90 years old with the ability to use a walker. The group with osteoporosis
included people with osteoporosis who were undergoing gait retraining using a standard
walker as a rehabilitative aid and who were able to walk with a standard walker to perform
their daily living activities. Exclusion criteria included individuals who had cerebral,
neurological, cardiovascular or vision disorders other than osteoporosis, or individuals
with osteoporosis plus othe disorders like stroke, ataxia, etc. We also excluded people who
had a medical condition that affected their gait.

Ethical Approval

The Ziauddin university ethical approval policies for research conduct were followed,
and informed consent was acquired from all participants.

2.4. Smart Walker Testing and Data Recording

All participants performed three walk tests at a distance of 10 m (10 m walk test) using
the smart walker in the rehabilitation center, at the Ziauddin University Faculty of Physical
Therapy under the supervision of a physical therapist and a nurse, as shown in Figure 6. A
rehabilitation room with a plain smooth tiled floor was selected, and the volunteers were
asked to walk using the smart walker on a smooth floor with shoes soaked with ink to
produce marks on the floor. The participants were instructed to walk along a designated
pathway while a therapist recorded the time using a stopwatch. In addition, step lengths
(both right and left) and stride length were measured using a measuring tape. The walk
test was used as a benchmark to validate our proposed system.
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Figure 6. A 55-year-old female volunteer from the osteoporosis group performing a walk test.

3. Results

We conducted a 10 m walk test on the study participants using the smart walker
to study gait patterns and associated forces exerted on the walker’s handlebars during
ambulation. The results showed significant differences in participants’ gait dynamics.
Specifically, as the participants initiated heel contact with the ground during their stride,
discernible changes in the forces applied to the walker’s handlebars were observed. This
phenomenon was particularly evident when the participants made contact with their right
heel, which correspondingly led to an augmentation in the forces registered on the right
side of the walker’s legs. Simultaneously, a reciprocal reduction in force was documented
on the opposite side of the walker as illustrated in Figure 7.

Our analysis revealed that the inflection points in the force profiles corresponded to
the instances of heel strikes during the participants’ gait. This analysis allowed us to discern
not only the number of heel strikes, but also the sequence in which they occurred. Evidently,
the first heel strike typically originated from the right foot, marking the commencement of
the gait cycle. The observation and quantification of these inflection points and heel strikes
provided us with a precise and quantifiable measure of the number of steps taken by each
participant during the 10 m walk test.

Figure 7 shows the generated graphs in Pasco Capstone software for the sensor
recording on the walker, which measured the forces exerted by the upper limbs on the
handlebars of the walker during walking. The graphical data was exported to an MS Excel
file for the extraction of gait parameters. Analysis of the data revealed that users with
osteoporosis exerted more force on the walker for propulsion compared to healthy users,
as seen in Figure 7. Specifically, in Figure 7b, people with osteoporosis put over 100 N of
body weight on the walker, while in Figure 7a, people without osteoporosis placed less
than 100 N of their body weight on the walker.
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Figure 7. Force sensor readings at every heel strike during the 10 m walk test. (a) People without
osteoporosis, (b) people with osteoporosis.

The one-way analysis of variance (ANOVA) or F test was performed in order to compare
the two participant groups in terms of gait parameters. The results of this analysis, as well as
the participants’ demographic characteristics, are shown in Table 2. The results of the F test
showed that the two groups were significantly different for the following four variables:

1. For average left step length, the p-value was 0.03, (p(x ≤ F) = 0.01). The test statis-
tic F was 0.350, which was not in the 95% region of acceptance: [0.3958: 2.5265].
S1/S2 = 0.59, was not in the 95% region of acceptance: [0.629: 1.589]. The 95%
confidence interval of σ12/σ22 was: [0.138, 0.886].

2. The p-value for time was found to be 0.00, (p(x ≤ F) = 0.000). The test statistic F was
0.186, which was not in the 95% region of acceptance: [0.395: 2.526]. S1/S2 = 0.43, was
not in the 95% region of acceptance: [0.629: 1.589]. The 95% confidence interval of
σ12/σ22 was: [0.073, 0.470].

3. For walking speed, the p-value was found to be 0.02, (p(x ≤ F) = 0.988). The test
statistic F was 2.961, which was not in the 95% region of acceptance: [0.395: 2.526.
S1/S2 = 1.72, was not in the 95% region of acceptance: [0.629: 1.589]. The 95%
confidence interval of σ12/σ22 was: [1.172, 7.481].

4. The p-value for average stride length was 0.02, (p(x ≤ F) = 0.012). The test statistic F
was 0.342, which was not in the 95% region of acceptance: [0.395: 2.526]. S1/S2 = 0.591,
was not in the 95% region of acceptance: [0.629: 1.589]. The 95% confidence interval
of σ12/σ22 was: [0.135, 0.865].
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Table 2. Comparison of spatiotemporal parameters between participants with and without osteo-
porosis taken from the smart walker, after a 10 m walk test while using the smart walker prototype.
Bold p-values represent significant differences.

Gait Parameters
Participants without Osteoporosis Participants with Osteoporosis

p-Value
Mean ± Standard Deviation Mean ± Standard Deviation

Age 69.85 ± 10.17 70.85 ± 10.18
Total Distance covered (m) 10 ± 0.00 10 ± 0.00

The number of steps counted 19.00 ± 2.83 26.4 ± 2.65 0.69
Time (s) 14.47± 3.23 33.75 ± 7.48 0.00

Average Left Step Length (m) 0.49 ± 0.05 0.25 ± 0.09 0.03
Average Right Step Length (m) 0.51 ± 0.08 0.29 ± 0.12 0.08

Average Left Step Time (s) 0.63 ± 0.13 0.90 ± 0.21 0.15
Average Right Step Time (s) 0.68 ± 0.12 0.99 ± 0.26 0.57

Walking speed (m/s) 0.72 ± 0.13 0.31 ± 0.07 0.02
Cadence (steps/min) 83.49 ± 15.37 47.72 ± 12.28 0.15

Average Stride Time (s) 1.35 ± 0.23 1.83± 0.23 0.56
Average Stride Length (m) 0.99 ± 0.11 0.54 ± 0.18 0.02

For the rest of the parameters, the two participant groups did not differ significantly
(p > 0.05).

The results of the 10 m walk test showed that the people with osteoporosis tended
to swing their leg slowly while walking, which significantly increased the time taken to
take the next step. Consequently, their right and left step time, stride time, and time to
complete the walk test were prolonged as shown in Figure 8. The average stride length of
the people with osteoporosis decreased by 58.82% in comparison to that of people without
osteoporosis while their cadence was higher compared to the people without osteoporosis,
as shown in Figure 9. Moreover, People with osteoporosis walked 20.38% slower than
people without osteoporosis, as can be seen in Figure 10.

Figure 8. Graphical representation of spatiotemporal gait parameters of people with and without
osteoporosis. (a) Average right step time, (b) average left step time, (c) stride time, and (d) average
time taken to complete walk test.
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Figure 9. Graphical representation of spatiotemporal gait parameters of people with and without
osteoporosis. (a) Average right step length, (b) average left step length, (c) average stride length, and
(d) average cadence.

Figure 10. Average walking speed of people with and without osteoporosis.

4. Discussion

In this study, we developed and tested a smart walker prototype for monitoring gait
along with providing support to users with walking disabilities. We found statistical
differences in spatiotemporal gait parameters comparing people in Karachi, Pakistan, aged
50 to 90 years with and without osteoporosis. The smart walker does not need specific
clothes, infrastructure, treadmills, or wearable devices. It can be used daily to assess the
efficacy of therapeutic interventions provided by a physical therapist during rehabilitation
process at home through self-monitoring of the number of force peaks recorded at a fixed
distance. As the user’s gait improves, the number of steps taken will decrease while the
length of their stride will increase. The recorded data can be electronically shared with the
therapist for evaluation to guide future follow-up sessions.
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The gait parameters were highly affected in participants with osteoporosis compared
with healthy users. It was seen that healthy adults in the age range of 50 to 90 years who
do not have any significant chronic health conditions have a greater stride length, step
length, cadence, and walking velocity; moreover, the stride time and average step time
were lower compared with those of the osteoporotic participants because a healthy adult
participant would have little or no fear of falling [35]. Thereby, people without osteoporosis
took longer and a smaller number of steps to cover the 10 m marked distance compared
with people with osteoporosis. The data acquired by our prototype are in accordance with
the previous literature. For example, short maximal step length and slow 10 m walking
speed are associated with osteoporosis in elderly women [36].

Pain due to osteoporosis may also be a factor affecting in altering spatiotemporal gait
parameters. Most of our participants with osteoporosis expressed that they have trouble
walking at a brisk pace and take short strides due to pain in their lower limbs while walking.
Out of these patients, 16 were unable to provide us with three consecutive walk tests on
the same day for the purpose of obtaining an average reading. As a result, we allocated
three days to each of these patients, conducting one test per day.

A primary purpose of a standard walker is partial weight bearing of the user [37].
It was observed that the people with osteoporosis put more force on the walker while
walking, in comparison to the people without osteoporosis. Since the metabolic cost of
using a four-footed walker is already high [38], in the absence of any preliminary data, we
cannot make a conclusive deduction. It is possible that the damage done to the bones and
joints by osteoporosis increases the overall metabolic cost of walking and thus increases
the force applied on our smart walker even higher [16]. Further research can explore if any
correlation exists between osteoporosis and increased weight bearing.

The advantages of our proposed system include that it is portable, can be used any-
where at any time, and is economical. It has been validated with both healthy and unhealthy
participants, and tests have successfully shown that the resulting gait parameters are consis-
tent with those obtained from clinical studies. The results of our methodology are relevant
to the diagnosis of people with osteoporosis by therapists. The system is easy to operate
at home, allowing the user to avoid daily trips to the clinic for monitoring and enabling
the recorded data to be saved according to date. By daily monitoring of the user’s gait
parameters, a clinician can assess the effectiveness of recommended treatment plans on a
daily and weekly basis and make informed decisions about the best course of treatment for
people with osteoporosis.

Usually, instrumented gait analysis via smart assistive devices is more economical
in comparison to the conventional method of motion capture. Even these devices have a
starting range of USD 6000 [39]. Our proposed system costs only USD 1000, making it more
affordable for people in general, and for people in developing countries in particular. In
addition to being cost-effective, our proposed system also offers a user-friendly interface
and easy setup, eliminating the need for specialized training or technical expertise. This
makes it accessible to a wider range of users, including those with limited resources or
knowledge in gait analysis.

Smart Walker did not take into account how confounding variables given by various
other factors might affect the gait; it is expected that in a clinical setting, people with
osteoporosis also have comorbidities that impact the gait, some of them being quite com-
mon, such as joint pain, sores on feet, calluses, ingrown toenails, inner ear issues, poor
lower limb circulation, poor vision, etc., whereas others are more serious, such as arthritis,
herniated disk, or stroke [40]. The smart walker is wired, and users need to use the device
at a fixed distance during gait monitoring; there is no direct transmission of data from
walker to clinicians. This is rather a technical limitation that we considered acceptable in
our prototype which focused on collecting data and identifying gait patterns related to
osteoporosis. Future wireless prototypes with the ability to transmit data to the clinician
will add to the functionality of the smart walker.
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Further research is needed to analyze how other conditions might affect the accuracy
of our proposed method and to determine if the smart walker may be useful in evaluating
these conditions as risk factors for gait impairment.

5. Conclusions

The gait of people with osteoporosis observed via the proposed non-wheeled smart
walker differed from that of people without osteoporosis, in terms of walking step length,
stride length and the time taken to complete the 10 m walk test. The smart walker was
successful in capturing gait characteristics in real-time, without the hassle of any wearable
sensors or motion capture. Additional investigation is required to ascertain whether the
smart walker could be a practical tool in assessing these conditions as risk factors for
gait impairment and to examine how other conditions might impact the accuracy of our
proposed method.

6. Patents

We filed a patent for a smart walker for lower limb disabilities at the international
property organization of Pakistan (IPO).
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