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Abstract: Antibiotics are pharmaceuticals that are used to treat bacterial infections in humans and
animals, and they are also used as growth promoters in livestock production. These activities lead to
an alarming accumulation of antibiotics in aquatic environments, resulting in selection pressure for
antibiotic resistance. Given that it is impractical to completely avoid the use of antibiotics, addressing
the removal of antibiotics from the environment has become an important challenge. Adsorption
methods and adsorbents have received particular attention because adsorption is highly efficient in
the removal of low-concentration chemicals. Among the different adsorbents, biochars have shown
promise for antibiotic removal, owing to their low cost and efficiency as well as their potential for
modification to further increase their adsorption capacity. This review attempts to analyze the surface
properties and ash contents of different biochars and to critically discuss the knowledge gaps in
antibiotic adsorption. A total of 184 articles on antibiotic properties, adsorption of antibiotics, and
biochar properties were reviewed, with a focus on the last 12 years. Antibiotic adsorption by pristine
biochars and modified biochars was critically reviewed. Recommendations are provided for the
adsorption of different antibiotic classes by biochars.
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1. Introduction

Antibiotics are traditionally defined as natural or synthetic pharmaceuticals that inhibit
or eliminate bacterial infections (i.e., bacteriostatic or bactericidal agents) [1,2]. Sometimes,
the definition of antibiotics is extended to include antiviral, antifungal, and antitumor
compounds [3]. More than 250 antibiotics of about 38 different classes are currently being
used in human and animal medicine [4,5]. Interestingly, antibiotics are not only used for
therapeutic purposes, but also frequently used as growth enhancers in the production of
livestock such as cattle, chickens, pigs, etc. [6,7]. In fact, this is now the most frequent use
of antibiotics, accounting for approximately 70% of their total use worldwide [8], and is the
most alarming form of antibiotic use. Because antibiotics are given to livestock at low or
sublethal concentrations, they allow bacteria to develop antibiotic resistance (antimicrobial
resistance; AMR) through genetic modification [9], a similar consequence to the misuse of
antibiotics by humans. AMR is alarming, as declared by the World Health Organization
(WHO), because by 2050 as many as 10 million people are expected to lose their lives each
year because of AMR [10]. Already it has been estimated that 1.27 million people lost
their lives because of AMR in 2019 [10]. These values may be only the tip of the iceberg.
Modern medicine may become obsolete in the near future because medical operations
cannot be performed if all bacteria become resistant to antibiotics [11]. Other adverse but
less-known effects of antibiotic consumption include the reduction in human immunity
and the interference with human hormone secretion [12].

Historically, the USA was the most important producer and consumer of antibiotics,
but today China and India have surpassed them in the production and consumption of
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antibiotics [8]. Reports have indicated that global antibiotic consumption increased by
65% between 2000 and 2015 [13] and by 46% between 2000 and 2018 [14]. The global
consumption of antibiotics was estimated to be between 100,000 and 200,000 tons 21 years
ago [3,8,15,16]. Today, this figure is possibly much higher. It is also likely that, during the
COVID-19 pandemic, therapeutic consumption of antibiotics was higher than in previous
years [17]. It is expected that by 2030 total antibiotic consumption will increase by 67% for
animal use [18] and by up to 200% for total consumption [8].

In recent years, the development of new antibiotics has not kept up with the occur-
rence rate of antibiotic-resistant bacteria [11]. New antibiotics have mainly been isolated
and developed from soil microorganisms, particularly from bacteria of the actinomycete
group [19], but this process seems to have faced a hiatus after the years between 1940 and
1960, known as the golden age of antibiotics discovery [19]. Because the discovery rate of
new antibiotics has declined, known compounds have started to be rediscovered [5,19].
New methods of antibiotic development are currently under research, including genome
mining and editing of different bacteria [19], as well as the application of artificial intelli-
gence to model antibiotic activity and screen potentially new antibiotics from structurally
different molecules [20].

At the same time, measures have been taken worldwide to restrict antibiotic use,
particularly in livestock production. However, it is unclear whether they will effectively
reduce the concentration of antibiotics in the environment in the short or medium term,
particularly in the low- and middle-income countries (LMICs) [21]. Because the world’s
population has risen exponentially in the last 100 years, global food consumption will
likely increase in the foreseeable future, leading to increased use of antibiotics in livestock
production if strict measures are not put into effect. The therapeutic use of antibiotics in
both human and animal medicine is also a source of concern, because only 10–70% of the
administered antibiotics are used by the body, with the rest being excreted and ending
up in aquatic environments [8,22,23]. Data on the production volume of antibiotics are
scarce. However, it has been reported that China alone produces more than 150,000 tons of
antibiotics each year [24,25]. Therefore, it is estimated that huge amounts of antibiotics are
released to the environment each year, particularly into the water bodies. Another difficulty
in estimating the total quantity of antibiotics in the environment arises due to their highly
variable metabolism, stability, and solubility [26].

Antibiotics are classified as emerging pollutants in aquatic ecosystems, owing to their
continuous input and persistence at low concentrations [3]. The traditional method of
removing antibiotics from waters is sewage treatment by screening and sedimentation,
followed by secondary biological treatment. A number of novel methods, such as advanced
oxidation processes (AOPs) (including photocatalysis, Fenton, ozonation, and UV irradi-
ation AOPs), application of nanofiltration and reverse osmosis membrane filtration, and
membrane bioreactors, as well as chlorination [3,23,27–30], have been shown to be effective
in removing antibiotics from wastewater at a small scale, but they have high capital and
operation costs [31] or slow kinetics [32] and, therefore, their applicability in large-scale
sewage treatment plants is unclear.

Conventional sewage treatment in wastewater treatment plants (WWTPs) is the most
important process in removing antibiotics from wastewater. The WWTPs are the principal
sources of the antibiotics that are released into the environment [31]. Conventional sewage
treatment plants cannot effectively remove antibiotics from wastewater [33] because they
include a large number of chemicals with different physicochemical properties that result
in highly variable (17–90%) removal percentages; for instance, the removal percentage of
tetracyclines may be as high as 90%, while it can be as low as 17% forβ-lactams [34–36]. Certain
antibiotics can be considered to be non-biodegradable or poorly biodegradable and present at
ng/L or µg/L concentrations [37]. The low concentrations usually range from nanograms to
micrograms per liter, and the half-lives are highly variable in wastewaters [4,22,38].

Adsorption is an economical and effective method of removing a number of pollu-
tants from water, such as heavy metals, organic pollutants, and dyes, because adsorbents
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are usually widely available, require little or no processing, and have good adsorption
properties [39,40]. Different materials are currently being used as adsorbents, and their ad-
sorption properties may be tuned by applying a thermal or chemical process. The activated
carbons are possibly the most promising materials for the removal of organic pollutants
from water, but they are costly. Alternative low-cost adsorbents such as microalgae [31]
and carbon-based materials such as graphene-based nanomaterials, carbon nanotubes,
hydrochars, and biochars [4,22,41] are currently being investigated for antibiotic removal.
Biochars are promising adsorbents because they can be produced by using waste products
as feedstocks, ranging from agricultural and forest residues to sewage sludges and manures.
Their adsorption properties can be customized by changing the biomass feedstock and py-
rolysis conditions to obtain distinct surface physicochemical properties for the adsorption
of specific contaminants, such as antibiotics [42].

The objective of this review is to critically analyze the previous antibiotic adsorption
studies, with particular attention to biochar sorbents and their properties (e.g., specific
surface areas, pore structures, and surface functional groups), modification, and interactions
with the different antibiotic classes to provide a state-of-the-art reference to screen biochars
for different antibiotic adsorption processes, as well as to optimize their performance.

2. Biochars and Adsorption: A Bibliometric Survey

Biochars are carbon-based materials that are produced by pyrolysis processes of
organic biomass (wood, leaves, manure, etc.) and used for non-fuel purposes such as
adsorption [8,43], soil amendment [44,45], and as catalysts for chemical reactions [46].
The production of biochar is a carbon-negative process that contributes to mitigating the
greenhouse effect [47,48]. Biochars typically have larger specific surface areas than raw
biomass (generally <1 m2 g−1 for lignocellulosic biomass), but their specific surface areas
are generally much smaller than those of activated carbons (500–3000 m2 g−1). The range
of surface area and pore structure of different biochars is not well known. Biochars usually
contain surface chemical groups, while in activated carbons these groups are modified or
lost during the thermal or chemical activation processes.

Biochars have a significant cost advantage over activated carbons. The production of
biochars costs between 0.35 USD/kg and 1.2 USD/kg [8], which is about one-sixth the cost
of activated carbons [49]. Another interesting property of biochars is their high affinity for
adsorbing organic pollutants [50]. This set of properties of biochars suggests their use for
the removal of antibiotics from wastewater.

The favorable cost of biochars, along with their promising adsorption properties, has
led to an increased usage of biochars for the removal of antibiotics [12]. Biochars show
selectivity in the adsorption of antibiotics; for instance, they showed higher sulfamethoxa-
zole removal capacities than multiwalled carbon nanotubes, graphite, and clay minerals [4].
The adsorption properties were compared based on adsorption coefficient values, which
showed partitioning of antibiotics between the adsorbent and water [4]. This result is
interesting because biochars adsorbed higher amounts of sulfamethoxazole antibiotics than
carbonaceous adsorbents with low specific surface areas such as graphite (1–10 m2/g) and
multiwalled carbon nanotubes (100–1000 m2/g). Tetracycline antibiotics showed stronger
adsorption to graphite than to activated carbon and multiwalled carbon nanotubes, in spite
of the latter’s higher specific surface areas [4]. Therefore, specific surface area is not the
only determining factor in the adsorption of antibiotics onto biochars.

The pore structure and surface chemical groups of the carbonaceous materials also
play an important role in the adsorption of antibiotics [41]. The pore structure is particularly
important in the adsorption of bulky antibiotics such as tetracycline, where high-surface-
area-bearing microporous activated carbons and carbon nanotubes demonstrated low
affinity due to size exclusion and slow adsorption kinetics [51]. The size exclusion effect,
on the other hand, may be beneficial in biochars containing macro- and mesopores [51],
similar to reverse osmosis or nanofiltration membranes [27,52]. Surface chemical groups
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such as hydroxyl, carbonyl, carboxyl, and amine groups also contribute to the adsorption
through intermolecular interactions and covalent bonding.

Metal components of the inorganic biomass fraction also contribute to adsorption
through surface complexation mechanisms [53]. The effect of the inorganic composition of
the biochar is often ignored in adsorption studies.

The adsorption capacity of biochars may be further increased by physical or chemical
treatments, as well as by metal oxide or heteroatom doping. Physical treatments are princi-
pally used to increase the surface area, while chemical treatments are applied to modify
the surface chemistry and pore structure of biochars [8]. Metal oxides and hydroxides are
frequently used to prepare biochar–metal composites. This application is essentially ap-
plied to convert the negative surface charge of biochars to positive [8], to produce magnetic
biochars by using Fe3O4 [54], and to increase the porosity [8].

The adsorption of antibiotics with biochars is a major issue, especially in the last
decade, considering the efficiency and cost advantage of biochars. The number of adsorp-
tion studies with the keywords “biochar” and “antibiotics” on the Web of Science has
increased in the last eleven years, particularly after 2021, indicating the importance of the
topic (Figure 1).
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Figure 1. Number of publications with the keywords “antibiotic + biochar”, “antibiotic + removal”,
and “antibiotic + adsorption” on the Web of Science (WOS).

The specific search keywords “biochar” and “antibiotic” resulted in a total of
233 documents, where 94% were research articles and 4% were review articles. Envi-
ronmental sciences (56%), environmental engineering (27%), and chemical engineering
(17%) were the main contributors to these studies. China-based researchers dominated
the studies, performing 78.5% of them, followed by researchers from the USA (12.5%) and
South Korea (6.9%). The UN Sustainable Development Goal “clean water and sanitation”
was the principal aim, making up 42.9% of the biochar and antibiotic studies.

The broader search keywords “antibiotic” and “adsorption” yielded a total of
527 documents, where 93% were research articles and 3% were review articles. The scientific
areas mentioned above were also dominant in these studies. China-based researchers were
also the principal contributors to the antibiotic and adsorption studies, with a 51.0% share,
but the studies were distributed more evenly among a large number of countries, where
Iran (7.4%), India (6.0%), and the USA (5.7%) were important.

The most relevant research topics in biochar and adsorption studies can be visualized
by using a co-occurrence network map [55] (Figure 2). In this figure, it can be seen that
tetracycline, quinolone, and sulfonamide antibiotics were frequently studied for adsorption.
Antibiotic resistance genes, removal of antibiotics by magnetic biochar and activated
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carbon, and advanced antibiotic removal methods such as photocatalytic degradation were
trending research topics.
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3. Antibiotics and Bacterial Cytology

Antibiotics are a diverse group of chemicals comprising as many as 38 different
groups by chemical structure [5]. However, the most frequently used antibiotics may be
grouped according to their chemical structure, such as β-lactams, sulfonamides, tetra-
cyclines, quinolones, and macrolides [12,49,56]. The specific chemical composition of
antibiotics is designed to selectively attack bacterial cells without affecting human cells,
inspired by selective staining of bacterial cells [19].

In order to understand the mode of action of antibiotics, it is also necessary to analyze
the chemical composition of the targeted bacteria. Most bacteria can be broadly classified
as Gram-positive or Gram-negative bacteria according to Gram staining. Gram-positive
bacteria contain a thick cell wall (10–80 µm) of peptidoglycan layers, while Gram-negative
bacteria contain a thinner cell wall (7.5–10 µm) of peptidoglycan as well as an additional
lipopolysaccharide membrane. Human cells do not contain peptidoglycan cell walls.
Therefore, the cell walls of bacteria are the first target of antibiotics. Generally, Gram-
positive bacteria are less resistant to antibiotics than Gram-negative bacteria due to their
cell wall structure. Apart from bacterial cell walls, the other three major targets of antibiotics
are DNA replication, protein synthesis (50 s and 30 s ribosomes), and folic acid metabolism
of the bacteria (Table 1).
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Table 1. Important properties of antibiotics (mechanism, spectrum, target bacteria, chemical structure,
chemical formula, functional groups). Chemical structures are taken from http://www.chemspider.
com, (accessed on 1 June 2023).

Antibiotics Mechanism Spectrum Target Bacteria Chemical Structure

Chemical
Formula

Functional
Groups

Penicillins
Inhibition of cell
wall synthesis

Broad-
spectrum,
last resort,

narrow-
spectrum

Gram-positive
bacteria

(first-generation)
Gram-positive and

Gram-negative
bacteria (second-,

third-, and
fourth-generation)
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Gram-positive 
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negative 
bacteria 

OH
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N N

NH

F
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(ciprofloxacin) 
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spectrum 

Gram-positive 
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C22H24N2O8 
(tetracycline) 
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OH 
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Macrolides 

Inhibition of 
protein 

synthesis (50 s 
ribosome) 

Broad-
spectrum 

Gram-positive 
and Gram-

negative 
bacteria 

(-)-Erythromycin 
(C37H67NO13) 

C=O 
OH 

C16H19N3O5S
(L-amoxillin)
β-lactam ring

COOH
NH
NH2
OH
CH3

Cephalosporins Cell wall
disruption

Broad-
spectrum,
last-resort

Gram-positive
bacteria (first- and
second-generation)
Gram-positive and

Gram-negative
bacteria (third- and
fourth-generation)
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The cellular structure and organization of the bacteria are helpful in understanding
bacterial diseases and in the development of antibiotics. Therefore, bacterial cytology is
briefly analyzed below.

Characteristics of Bacterial Cytology

Bacterial cytology is the study of bacterial cellular structure and organization. It is
a useful tool to identify pathogenic bacteria, understand the disease mechanisms, and
target antibiotics [57]. The identification of bacteria is the first step in bacterial cytology.
Bacterial cells can be visualized by light, electron, or fluorescence microscopy. Usually,
light microscopy observations are performed. Before the light microscopy observations,
bacterial cells are stained with crystal violet (C25H30ClN3). The Gram-positive bacteria
retain the stain and exhibit a purple color when observed under the microscope, while the
Gram-negative bacteria do not retain the stain and appear pink. After the staining, the
bacterial cell morphology is determined. Spherical bacteria are cocci, rod-shaped bacteria
are bacilli, and spiral-shaped bacteria are spirella. This information, together with staining,
is helpful in the determination of bacterial genus and species. However, Gram staining
cannot be applied to all bacteria, because not all bacteria contain peptidoglycan cell wall
layers that retain the stain, such as mycoplasma. Mycobacteria contain a complex cell wall
with high contents of mycolic acids and are thus identified by acid-fast staining. Certain
morphological properties of bacteria give clues to their pathogenicity. These properties
include the presence of capsules (helping bacteria to evade the immune system), pili and
flagella (helping with adhesion to hosts), endospores, intracellular inclusions, etc. [58].

Protein synthesis and DNA replication are the fundamental processes in all living
organisms. Thus, bacteria synthesize proteins and replicate DNA. The protein synthesis
of bacteria is similar to human and animal protein synthesis, but bacterial ribosomes (70 s
ribosome), composed of 50 s and 30 s subunits, are smaller than eukaryotic ribosomes (80 s
ribosome). Certain antibiotics, such as streptomycin, erythromycin, and tetracycline, inhibit
protein synthesis by selectively binding bacterial ribosome subunits. Fluoroquinolones
such as ciprofloxacin inhibit DNA replication directly by binding topoisomerase IV and
DNA gyrase enzymes. Another way to inhibit DNA replication is to inhibit folate synthesis
by binding the dihydropteroate synthase (DHPS) enzyme, which is necessary for DNA
replication. Sulfonamide antibiotics inhibit DNA replication by blocking folate synthesis.
The most commonly used antibiotics, β-lactams such as penicillin, target peptidoglycan
synthesis by inhibiting the transpeptidase enzyme, which is used for crosslinking reactions
of the peptidoglycan layers [59]. Thus, it is not surprising that β-lactams are highly
successful against Gram-positive bacteria.

This mode of action of antibiotics provides insights into the engineering of adsorbents.
Successful adsorbents can be produced by generating pore structures in biochar that
allow for the diffusion of antibiotics and create similar surface functional groups to those
contained by antibiotic-binding enzymes. The modification of the biochars for the removal
of antibiotics is reviewed in the next section.

4. A Critical Review of Biochar-Based Adsorption Processes

Currently, four different processes are applied to remove antibiotics from water
sources, including the conventional process (i.e., filtration and sedimentation, followed
by biological processing), oxidation (advanced oxidation), disinfection (chlorination), and
adsorption, as well as combined processes [12]. The conventional wastewater treatment
process consists of primary mechanical (filtration and sedimentation) and secondary biolog-
ical (activated sludge) processes. Antibiotics are partially removed through these processes.
The activated sludge process is the main process for the removal of organics in WWTPs.
Alternative biological processes, such as fixed-bed bioreactors, moving-bed biofilm reactors,
and membrane bioreactors, are less common compared to the activated sludge process [60].
Some wastewater treatment plants also apply a final disinfection with UV irradiation, or by
using chlorine in the final step of the water treatment. These latter processes have been
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shown to be effective in the removal of antibiotics. Advanced oxidation processes based
on the generation of reactive radicals such as hydroxyl or sulfate radicals [61] are highly
effective against organic pollutants such as antibiotics. Biochars can be integrated into the
AOPs as activators for the generation of radicals [61,62]. This latter approach seems to be
particularly promising for the simultaneous removal of heavy metals and antibiotics [63,64].

Adsorption has certain advantages over conventional and oxidation processes, such
as high efficiency at low concentrations, being easy to scale up, low cost, and the possibility
of utilizing a wide range of waste materials, including plastics [12,65,66].

Adsorption also has disadvantages, such as the production of concentrated waste
and the generation of secondary pollution when the adsorbent is modified to enhance the
adsorption, as in the case of doping the biochars with metals [42]. Yet another disadvantage
of the adsorption is the time-consuming separation of the adsorbent from water [67].

It is possible to apply a wide range of adsorbents for the removal of antibiotics from
water resources, including clay and minerals, metal oxides, polymeric resins, polymers, chi-
tosans, gels, carbon-based materials, and metal–organic framework (MOF) materials [65].

Carbon-based materials (mainly in the form of activated carbons, carbon nanotubes,
graphene, and biochars) are commonly used for the adsorption of antibiotics [12,53] because
of their four characteristics that contribute to adsorption:

1. Specific surface area;
2. Micro- and mesopore structures;
3. Surface functional groups;
4. Mineral content and composition.

These characteristics are determining factors in the adsorption of antibiotics, along
with the antibiotic properties and the adsorption conditions [12]. Therefore, they are
evaluated below for biochar adsorbents.

4.1. Biochar Properties

The most relevant properties of biochars in relation to their adsorption ability are
the specific surface area (i), the pore size distribution (ii), and surface functional groups
(iii) such as hydroxyl, carboxyl, carbonyl, etc. [68]. The mineral content and composition
(iv) of biochars are also important in the adsorption of bulky antibiotics such as tetracyclines
through surface complexation [53,69].

The biochar’s properties contribute to the available active sites for adsorption, improv-
ing the adsorption capacity [70]. The pore structure is formed due to the release of volatile
compounds and water loss in the dehydration process during pyrolysis. Thus, the feedstock
and the pyrolysis conditions, especially the temperature, significantly affect the biochar’s
pore structure and, consequently, the adsorption capacity of the biochar [49,71,72].

A high pyrolysis temperature has been linked to a larger surface area, higher microporos-
ity, and graphitic structures, due to the increase in volatilization at higher temperatures [73–77].
On the other hand, at low pyrolysis temperatures, the functional groups are retained and they
contribute to adsorption [69,78]. Therefore, generally, moderate temperatures (400–700 ◦C)
are more suitable for the development of favorable pore structures [74]. The aromatic carbon
groups (C=C), carbonyl groups (C=O), and aliphatic groups (CH2 + CH3) were determined
for four biochars produced by carbonizing corn crop residue (Zea mays L.) and wood shavings
of oak (Quercus ssp.) at 350 ◦C and 600 ◦C using slow pyrolysis. The results showed that the
aromatic carbon content increased with temperature for both biochars, while the carbonyl
and aliphatic groups decreased [79,80], which is in agreement with the results of Fu et al. [81].
Thus, a high pyrolysis temperature is almost always advantageous for the adsorption process,
although the biochar yield decreases with increasing pyrolysis temperature and the economic
viability of the process is reduced.

Several pore measurements have been reported for biochars. The most common
measure is the total pore volume, which includes all pores. According to the Interna-
tional Union of Pure and Applied Chemistry (IUPAC), pores can be divided into three
main groups: micropores (<2 nm), mesopores (2–50 nm), and macropores (>50 nm) [71].
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However, some authors also use the term “nanopores” to indicate micropores, probably
because they are in the nanometer range. The role of each type of pore in adsorption is
different. Macropores are primarily linked to the diffusion of substances, mesopores serve
as channels for mass transfer, and micropores provide space for trapping [71,82]. The high
temperatures in pyrolysis have been stated to be responsible for the presence of pores with
sizes around 1.2 and 1.0 nm—the so-called micropores—leading to an increased surface
area [83]. Nevertheless, the surface area only increases with the pyrolysis temperature up
to a maximum, after which the surface area decreases [68]. For instance, some authors
state that there are two competing phenomena: the first increases the volatile release and,
consequently, the surface area; and the other is thermal deactivation that leads to char
melting, pore fusion, and structure ordering, which decrease the surface area and pore
volume [84–86].

The heating rate is also important in the formation of the pore structure. For example,
tests conducted at two different heating rates (10–30 ◦C/min and 50 ◦C/min) showed that
at the lower heating rate the volatiles formed were released from the surface, leading to an
open fiber structure with the formation of cavities and, therefore, increasing the surface
area [87]. On the other hand, a higher heating rate led to a decrease in surface area and
pore volume, which was believed to be due to some of the pore walls becoming too thin
and breaking [87]. The same effect was also observed with pyrolysis residence time. Thus,
the severity of the pyrolysis conditions (i.e., maximum pyrolysis temperature, heating rate,
and solid residence time) increases the surface area to some extent, but it decreases after a
certain limit (which is dependent on biomass, chemical and anatomical composition, and
the heat and mass transfer rate). This phenomenon has two practical implications: (i) it is
not always necessary to apply the most severe conditions, and (ii) energy savings can be
achieved by applying the optimal pyrolysis conditions.

The determination of the surface area available for adsorption faces some problems.
For instance, the prevailing method to determine the surface area, N2 adsorption at 77 K,
has a kinetic diffusion limitation for N2 in small micropores [88]. The kinetic limitation
arises from the inflexibility of the matrix, leading to an artificially lower surface area for
some chars. This phenomenon has been reported by several authors, for instance for oak,
pine, and grass chars, where the N2 surface area was 225, 285, and 77 m2/g, respectively,
while the CO2 area for the same materials was 528, 843, and 427 m2/g, respectively [89].
Similar results were presented for sewage sludge and wood chip char [90]. The higher
surface area estimation by CO2 has been reported to be due to the higher kinetic energy
associated with the smaller kinetic diameter of CO2 (3.3 Å vs. 3.64 Å for CO2 and N2,
respectively), which allows CO2 to diffuse more easily into the small pores [89,91,92].

Argon has also been used to measure char’s surface area at 77 K and 87 K. The results
showed that at 87 K the surface area was slightly greater than at 77 K, which was attributed
to the increased mobility of Ar molecules at higher temperatures. On the other hand, the
low values of surface area measured by Ar were believed to be due to the lower amount of
mesopores [93].

The size of the pores also affects the sorption, because the filling of micropores involves
a higher number of contact points than the filling of mesopores, and pore filling has been
characterized as being influenced by size exclusion effects [88]. A comparison of the
adsorption-relevant properties of different biochars is presented in Table 2.

The results of Table 2 show that biochar properties are highly variable between dif-
ferent precursors and applied pyrolysis temperatures. However, data analyses allow for
certain conclusions:

1. The specific surface area of biochars is usually between 0 and 100 m2/g;
2. Wood biochars have the greatest specific surface area (up to 738 m2/g);
3. The pore volume of different biochars is between 0 and 0.2 cm3/g;
4. The ash content of biochars is highly variable; it is highest in sewage sludge, algae,

and manure biochars, and lowest in wood biochars.
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Table 2. Pyrolysis temperature, char yield, surface properties, and ash content of different biochars.

Feedstock Pyrolysis
Temperature (◦C) Char Yield (%) Surface Area

m2/g
Pore Volume

cm3/g
Ash Content

(%) Reference

Sewage sludge 750 - 60.7 - [94]

Sewage sludge 400 76.1 23.7 - [95]

Sewage sludge 600 - 92.3 - [96]

Sewage sludge 500 - 25.4 0.056 74.2
[97]900 67.6 0.099 88.1

Sewage sludge 700 65 26.70 0.159 86.8 [98]

Palm oil mill
sludge

400 54.2 47.7 0.007 44.8
[99]800 - 193.1 0.065 59.5

Pine needles
400 30 112.4 0.044 2.3

[83]
700 14 490.8 0.186 2.2

Pine needles 700 25 390 0.12 18.7 [73]

Used tea leaves 350–550 - 8.1 0.012 - [100]

Ponderosa pine
wood 500 28.4 196 2.1

[101]Ponderosa pine
wood 700 22.0 347 1.7

Tall fescue straw 700 28.8 139 19.3

Quercus lobata
wood

650

225
3.7

[89]

285

Pinus taeda wood
77

(N2) 1.1

528
Tripsacum

floridanum grass
643

15.9427
(CO2)

Beech wood

800 12.5 ± 0.2 70.2 0.003

- [86]
1200 10.0 ± 0.7 110.2 0.047
1600 8.3 ± 0.4 48.7 0.040
2000 8.3 ± 0.5 22.2 0.032

Poplar wood 600 - 411 0.182 4.7 [87]

Durian wood
550 24.6 221 0.008 20.8 [102](Durio zibethinus)

Paulownia elongata - - 310 4.1 [103]wood

Pinewood sawdust
800 11.6 738.0 0.244 1.9 [104](Pinus radiata)

Oak bark 450 22.8 1.9 1.060 11.3 [105]

Corn stover 450 15 12 58.0 [106]

Corn stover 500 17 3.1 32.4 [107]

Soybean stover 700 21.6 420.3 0.190 17.2 [108]

Cotton stalk 500 1.5 0.007 2.7 [81]

Duckweed 500 44 12 0.014 9.5 [109]

Rice husk 500 - 34.4 0.028 42.2 [110]

Rice husk 550 - 181 - [111]

Rice straw
400 - 4.4 0.015 40.7

[112]700 161.2 0.086 52.5
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Table 2. Cont.

Feedstock Pyrolysis
Temperature (◦C) Char Yield (%) Surface Area

m2/g
Pore Volume

cm3/g
Ash Content

(%) Reference

Rice straw 700 - 20.6 0.019 - [113]

Rapeseed 550 -
25.4 (BET)

0.0480 24.9 [114]18.3 (Micro)
7.1 (Meso)

Rapeseed 700 29.6 19.3 1.254 14.4 [115]

Maize 600 29.54 70 0.06 27.2 [116]

Sugarcane
bagasse (SGB)

300
-

224.1 4.2
[117]400 361.8 4.2

500 291.4 4.1

Giant Miscanthus
500 27.2 181 - [118]700 25.1 369

Peanut shell 700 21.9 448.2 0.200 8.9 [108]

Palm kernel shell

400 46.7 4.5 0.011 8.1

[77]
500 37.5 12 0.086 5.2
600 35.4 260 0.17 8.9
700 32.8 370 0.19 8.4

Olive stones
400 - 476.3 36.2

[119]600 173.3 41.2

Alfalfa
500 - 31.1 31.3 [120](Medicago sativa)

Orange peel 700 22.2 201.0 0.035 2.8 [121]

Tire rubber
400 59.3 24.2 0.080 15.4

[122]600 54.5 51.5 0.120 15.6
800 43.0 50.0 0.110 10.5

Grape seeds

700 28
124 (N2)

- [93]

454 (CO2)
66 (Ar77)

600 31
110 (N2)

424 (CO2)
57 (Ar77)

Wood

600

23.3 127 1.3

[123]
Straw 25.2 22 24.5

Green waste 24.4 46 13.4
Dry algae 22.9 19 73.0

Cow manure

500

57.2 21.9 0.028 67.5

[124]

Pig manure 38.5 47.4 0.075 48.4
Shrimp hull 33.4 13.3 0.039 53.8
Bone dregs 48.7 113 0.278 77.6
Wastewater

sludge 45.9 71.6 0.060 61.9

Waste paper 36.6 133 0.084 53.5
Sawdust 28.3 203 0.125 9.9

Grass 27.8 3.33 0.010 20.8
Wheat straw 29.8 33.2 0.051 18.0
Peanut shell 32.0 43.5 0.040 10.6

Chlorella 40.2 2.78 0.010 52.6
Waterweeds 58.4 3.78 0.009 63.5

Spruce wood
525 -

40.4 4.7
[125]Poplar wood 55.7 6.8

Wheat straw 14.2 12.7
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Table 2. Cont.

Feedstock Pyrolysis
Temperature (◦C) Char Yield (%) Surface Area

m2/g
Pore Volume

cm3/g
Ash Content

(%) Reference

Pine sawdust (air
lim.) 300

-

12.1 6.7

[126]

Maize straw (air
lim.) 300 7.8 15.4

SCB (air lim.) 300 25.3 11.8
Pine sawdust N2 300 8.2 4.6
Maize straw N2 300 2.6 11.3

SCB N2 300 12.2 8.9
Pine sawdust N2 500 68.4 6.9
Maize straw N2 500 33.2 17.6

SCB N2 500 97.8 12.3

Wheat straw
600

24.6 177 0.110 12.0
[127]Corn straw 26.7 7 0.012 18.0

Peanut-shell 28.5 185 0.110 11.0

Broiler litter
350 - 60.0 0.000 - [128]700 94 0.018

Poultry litter 600 46 5.79 60.8 [129]

Feedlot manure 700 32.2 145.2 92.0 [76]

Goat-manure
600 37.9 13.9 0.008 - [130]800 33.8 93.5 0.049

Yak manure 700 - 82.9 0.074 - [131]

S. dimorphus 500 - 123 43.3
[132]Microalgae 600 89 44.2

Laminaria japonica
600 38.0 79.9 0.044 55.1 [133]microalgae

Waste marine 400 67.7 70.3 0.112 41.9

[134]
Macroalgae 600 47.8 61.8 0.078 48.7

(Undaria
pinnatifida roots) 800 39.3 44.5 0.057 50.4

Saccharina
japonica

600 -
266 (unwashed)

543 (washed)
0.132

- [135]
macroalgae 0.266

Bamboo
Industrial waste

550
650
750
850
950

-

277.3

0.173
0.162
0.144
0.254
0.142

- [136]

266.7
228.6
382.8
143.4
(SBET)

221.6
228.7
200.8
320.7
99.7

(Smic)

Rice straw
700

30.7 32.9 0.049 - [137]Pig manure 38 20.5 0.045

Douglas fir wood
600

16.0 500 0.2

- [138]
Hybrid poplar

wood 20.4 416 0.17

Douglas fir bark 29.6 423 0.17
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Table 2. Cont.

Feedstock Pyrolysis
Temperature (◦C) Char Yield (%) Surface Area

m2/g
Pore Volume

cm3/g
Ash Content

(%) Reference

Sewage sludge

- -

165 0.047

- [90]

87 0.027

Sludge and food
waste

683
(CO2) 0.186

97 0.153

Wood chips 84 0.133
261

(N2) 0.160

4.2. Modification of Biochars

A number of methods have been developed to tailor and maximize the adsorption
capacity of biochars used in water treatment and soil remediation, as well as in energy
storage [139]. The modified or engineered biochar is the derivative of pristine biochar that
has undergone physical, chemical, or biological treatments to improve its properties, such
as its specific surface area, porosity, cation-exchange capacity, surface functional groups,
pH, etc. [140–142]. The engineered biochars contain a large number of carbons, including
activated carbons. Interestingly, most biochar engineering methods are less expensive and
easier processes than the typical carbon activation processes [68].

Currently, different physical or chemical modifications (Table 3) are applied to biochars
to improve their adsorption capacity [12]. These modifications are discussed below.

Table 3. Critical comparison of the advantages and disadvantages of the main biochar modification
methods.

Treatment No. Treatment Advantages Disadvantages

1 Acid treatment Removal of metals;
increased surface area

Lower biochar yield due to acid hydrolysis;
inefficient removal of silica;

high cost

2 Alkali treatment Removal of silica;
increased surface area

Lower biochar yield due to alkaline hydrolysis;
inefficient removal of metals;

high cost

3 Demineralization with hot water Efficient removal of metals and
silica

Energy- and time-consuming;
additional drying step required

4 Ball milling Increased surface area High cost;
less effective than chemical methods

5 Steam activation Increased surface area Reduced biochar yield

6 Doping with organic compounds Addition of surface functional
groups High cost

7 Surfactant modification Addition of acidic or basic surface
functional groups

Leaching of surfactant;
high cost

8 Mineral impregnation Addition of metal oxides on the
biochar surface

Secondary contamination by leaching of
mineral

9 Mineral impregnation: iron

Addition of iron atoms on the
biochar surface;

easy removal of magnetic
particles from water

Secondary contamination by leaching of iron

10 Composite-forming clays Enhanced ion-exchange
mechanism Environmental impact of clay processing

11 Composite-forming by carbon Addition of adsorption sites High cost

12 Composite-forming by
heteroatom doping

Addition of surface
functional groups

High cost;
heteroatom leaching;
specialized process

13 Molecular imprinting

Production of a specialized type
of biochar selective to target

(imprint) molecules;
reusable

High cost;
specialized process
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Acid or alkali activation is the most widely used and effective way to enhance biochars’
surface area and porosity. Both acid and alkali treatments increase the porosity of biochars
by altering the biochar’s structure and surface functional groups via depolymerization,
dehydration, and dehydrogenation reactions (i), creating micro- and mesopores inside the
biochar’s structure (ii), and removing the inorganic compounds (iii) [49,143–145].

Acid–base combined treatments can be considered for low-porosity biochars bearing
limited surface functional groups, such as municipal sewage sludge biochars [49,146,147].
These treatments seem to be superior to the single acid or alkali treatments [49]. However,
the available data are still scarce. More experimental results with a broader range of
biochars are required to better understand the effects of the combined acid–base treatments.

Physical treatment methods, such as coating with carbonaceous materials, ball milling,
and template formation, can also result in surface enhancement. Ball milling seems to be
a feasible method to produce biochar nanoparticles [148]. Future research should focus
on developing technologies to simultaneously achieve enhanced functionality and porous
structure of biochars.

Cationic or anionic surfactants such as cetyltrimethylammonium bromide (CTAB) and
sodium dodecyl sulfate (SDS) are used to alter the adsorbent’s surface and, in particular, to
change the surface charge [149]. Certain organic compounds, such as humic acid (HA) [150],
methanol [151], and chitosan [152–154], have been used in the modification of biochars
because they introduce supplementary functional groups (e.g., carbonyl (-C=O-), amino
(−NH2) and hydroxyl (-OH)) to the surface of biochar [49]. However, organic compound
modification has cost disadvantages, which limit its development [49]. Metal or metal oxide
modification provides a higher number of adsorption sites and creates a larger surface area
in biochars [49,146,155–157]. The metal modification is particularly effective in the recycling
of biochars after adsorption. However, metal modifications generate contamination of
water bodies through metal ion shedding [49].

Doping with carbonaceous materials is the introduction of carbonaceous materials
(e.g., graphene and carbon nanotubes) into the surface structure of biochars to improve
their adsorption efficiency [49,158]. The increased number of adsorption sites and the
increased specific surface area of the biochar improve its adsorption capacity [49,159,160].
However, graphene, graphene oxide, and carbon nanotubes are highly expensive materials
and cannot be considered practical for large-scale adsorption applications [49].

Non-metallic or heteroatom doping of biochars using nitrogen [161–163], oxygen [162],
sulfur [163], or phosphorus [162] is an efficient modification method to offer increase the
stability and adsorption efficiency of adsorbents [49]. The heteroatom doping of biochar
provides additional surface functional groups and active sites for adsorption. However, the
available research is currently scarce [49].

Other physical modifications, such as steam activation [164] and ball milling [158,165],
generate a higher specific surface area, a higher number of functional groups, and pores
in biochars. Physical modifications are environmentally friendly, as they do not use any
chemicals during biochar modification [49]. However, they are comparatively less effective
than chemical modifications [49].

Molecular imprinting improves the specific adsorption of biochars by creating selective
active sites [49]. Molecularly imprinted biochars can be used to remove low-concentration
and highly toxic pollutants [49,166]. Molecularly imprinted biochars have already been
used to detect and quantify antibiotic residues at trace levels in food and environmental
samples [49,167,168]. Molecularly imprinted biochars are reusable, which is their major
advantage compared to other biochars [48]. Similar to other modified biochars, molecularly
imprinted biochars usually exhibit better adsorption properties for antibiotics than pristine
biochars [49].

4.3. An Overview of Biochar-Based Adsorption Studies

In the bibliometric survey section, it was shown that antibiotic adsorption studies are
increasing in number, while in the antibiotics and bacterial cytology section, antibiotics were
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grouped into different classes based on their chemical structure. It is important to observe
the adsorption studies of each major antibiotic group. Figure 3 provides an overview
of adsorption studies with different antibiotics. Adsorption studies were predominantly
performed on tetracycline, fluoroquinolone, and sulfonamide antibiotics. This is consistent
with the co-occurrence map (Figure 2) and suggests that these antibiotics are selective to
carbonaceous adsorbents.
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Figure 3. Number of publications with “adsorption” and “different antibiotics” titles on the Web of
Science (WOS).

Previous studies on biochar-based removal of antibiotics were mainly performed on
modified biochars. The usage of pristine biochars for the removal of antibiotics is currently
limited to biochars prepared by pyrolysis, which are termed pristine biochars (PBs) [68].
However, in order to modify the adsorption performance of biochars, the first step is to
understand the adsorption performance of pristine biochars by studying the biochars’
properties and adsorption mechanisms.

The adsorption mechanisms of different carbonaceous materials are not identical,
although certain mechanisms, such as π–π electron donor–acceptor (EDA) interactions
and hydrogen bonding, are considered both for high-surface-area carbon nanotubes and
for biochars, indicating the role of intermolecular interactions in the adsorption [169].
According to Du et al. (2023), at least seven different mechanisms, including hydrogen
bonding, π–π interactions, surface complexation, electrostatic interactions, pore filling, ion
exchange, and hydrophobic interactions, can contribute to the adsorption of antibiotics
onto biochars [49]. This excellent review also showed that antibiotic adsorption studies
with biochars were mostly performed with modified biochars (approximately 65% of the
studies) [49].

Table 4 provides a comparison of proposed antibiotic adsorption mechanisms and
maximum adsorption capacities for pristine biochars and modified biochars.

The results of Table 4 suggest that the modification of biochars significantly affects
their antibiotic adsorption capacity. The antibiotic adsorption mechanisms were principally
studied on modified biochars, and π–π interactions were the most commonly proposed
mechanisms for both types of biochars.
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Table 4. Mechanisms of antibiotic adsorption onto biochars; modified from [12].

Biochar
Biochar

Precursor

Pyrolysis
Temperature (◦C) Proposed Mechanism Modification Antibiotic

Used

Maximum
Adsorption

Capacity
(Qm)

(mg/g)

Reference

Pristine biochars

Pinus
radiata wood

sawdust

600–800 n.a n.a Tetracycline
163 [104](TC)

Bamboo
sawdust

500 n.a n.a
Enrofloxacin (EF) 45.9 (EF)

[170]Ofloxacin 45.1
(OF) (OF)

Spent
coffee grounds 200–700 π–π EDA n.a

Sulfadiazine
(SDZ),

sulfamethoxazole
(SMX)

0.12

[171]
(SDZ)
0.13

(SMX)

Modified biochars

Sunflower
seed husk

600

Multiple:
chemisorption,

external diffusion,
intraparticle diffusion

H3PO4

Tetracycline (TC),
ciprofloxacin

(CIP),
sulfamethoxazole

(SMX)

429.3

[172]

(TC)
361.6
(CIP)
251.3

(SMX)

Bamboo 380
Hydrogen bonds,

π–π EDA,
Lewis acid–base

H3PO4
Sulfamethoxazole

(SMX) 88.10 [173]

Poplar
wood

500

Pore filling, π–π interactions,
surface complexation,

hydrogen bonding, and
electrostatic interactions

KOH Fe3O4

Tetracyclines 70.3–89.6

[174]
(TCs) (TCs)

Fluoroquinolones 35.5–60.3
(FQs) (FQs)

Palm fibers 500

Pore filling, surface
electrostatic interactions,

hydrogen bonding
complexation, and π–π EDA

interactions

Fe–N co-doped Sulfamethoxazole
(SMX) 42.9 [175]

4.4. Thermodynamic and Kinetic Considerations

Thermodynamic and kinetic (rate and mechanism) studies are the two essential tools
in adsorption studies because they answer fundamental questions such as whether an
adsorption process works, how it works, how to optimize it, and how to design better
adsorbents.

Thermodynamics determines the feasibility of an adsorption process under various
temperature and pressure conditions. The thermodynamic analysis of adsorption involves
the calculation of thermodynamic parameters such as Gibbs free energy, enthalpy, and
entropy (∆G, ∆H, and ∆S, respectively), which can be used to assess the thermodynamic
feasibility of the adsorption process. For instance,

- If ∆G < 0, the process is thermodynamically favorable, and adsorption will occur
spontaneously;

- If ∆G > 0, the process is thermodynamically unfavorable, and adsorption will not
occur spontaneously:

- If ∆G = 0, the process is at thermodynamic equilibrium.

Enthalpy change (∆H) is another thermodynamic parameter that is used to assess
the feasibility of adsorption. If the adsorption is exothermic (∆H < 0), it releases heat and
is more favorable at lower temperatures. If the adsorption is endothermic (∆H > 0), it
absorbs heat and is more favorable at higher temperatures. Entropy change (∆S) is the final
factor to assess the feasibility of adsorption. An increase in entropy (∆S > 0) favors the
adsorption process.
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These factors are related according to the following equation:

∆G = ∆H − T∆S

In order for ∆G to be negative, either the enthalpy change (∆H) should be negative
(exothermic process) and greater than the T∆S product (typically positive), or, in the case
of endothermic reactions, the entropy change (∆S) should be large enough to offset the
positive enthalpy change (∆H) and temperatures (T) should be high.

Exothermic adsorption (∆H < 0) involves relatively strong adsorbate–surface inter-
actions, such as chemical sorption or strong van der Waals forces, while endothermic
adsorption involves weak adsorbate–surface interactions such as physical sorption (weak
intermolecular interactions). The entropy change (∆S) may be positive or negative in
chemical sorption, but it is usually negative in physical sorption.

Pressure can also affect the adsorption process, but its impact in liquid adsorption
is less pronounced than temperature. High pressures increase the entropy and favor the
adsorption process, but they may also lead to degradation of the adsorbent.

Thus, in order to optimize the adsorption of antibiotics onto biochars, it is necessary to
calculate the thermodynamic properties. If the adsorption is exothermic, it should be per-
formed at low temperatures, and if the adsorption is endothermic it should be performed
at high temperatures. If the adsorption occurs due to surface chemical reactions, the adsor-
bent’s surface should be modified with metal oxides or heteroatoms to increase the number
of available complexation sites and drive the adsorption process in a thermodynamically
favorable manner. If the adsorption occurs through physical sorption, oxygenated surface
functional groups should be introduced to the biochars to increase the intermolecular
interactions, such as hydrogen bonds. It should be noted that the adsorption of antibiotics
is a complex reaction and involves both surface chemical reactions and physical sorp-
tion [172]. Therefore, different experimental conditions should be tested to optimize the
adsorption process.

A particular case of thermodynamic studies is the study of adsorption isotherms that
describe the equilibrium relationship between the concentration of adsorbate molecules
and the amount of adsorbate adsorbed onto the surface of the adsorbent. Thus, they
provide information about the adsorption capacity and the adsorbent–adsorbate surface
interactions. The Langmuir isotherm and Freundlich isotherm are the most frequently
used adsorption isotherms. According to the Langmuir isotherm, the adsorbent’s surface is
homogeneous, and adsorption occurs as a monolayer until all available sites are occupied
by adsorbate molecules and there are no interactions among the adsorbed molecules. The
Freundlich isotherm assumes a heterogeneous adsorbent surface, multilayer adsorption,
and interactions among the adsorbed molecules.

Kinetic models of adsorption describe how adsorbate molecules are adsorbed onto the
surface of an adsorbent material as a function of time. The kinetic models explain the reaction
rate and the mechanisms, and they provide insights into the dynamic aspects of adsorption.
The most frequently used kinetic models are the pseudo-first-order model, pseudo-second-
order model, Elovich model, and intraparticle diffusion model. The pseudo-first-order and
pseudo-second-order models consider the surface reaction as the rate-liming step, while the
intraparticle diffusion model considers the intraparticle diffusion as the rate limiting step.
According to the pseudo-first-order kinetic model, the adsorption rate (dq/dt) is proportional
to the difference between the equilibrium concentration (qe) and the concentration at a
given time (q), while according to the pseudo-second-order kinetic model the adsorption
rate is proportional to the square difference between the equilibrium concentration and the
concentration at a given time. The Elovich model assumes that rate of the adsorption is not
constant over time and that there are interactions between the adsorbate molecules. The
intraparticle diffusion model describes the rate of intraparticle diffusion.

The adsorption of tetracycline antibiotics onto zinc chloride activated biochar was
described by the pseudo-second-order kinetic model and the Langmuir isotherm, with a
maximum (monolayer) adsorption capacity of 200 mg/g tetracycline. Hydrogen bonding



Appl. Sci. 2023, 13, 11963 18 of 27

and electrostatic interactions were the main proposed mechanisms [176]. The adsorption of
quinolone antibiotics onto magnetic biochar also resulted in a similar trend. The adsorption
was described by the pseudo-second-order kinetic model and the Langmuir isotherm,
with a maximum adsorption capacity of 68.9 mg/g [177]. Similarly, the adsorption of
tetracycline, quinolone, and sulfonamide antibiotics onto H3PO4 activated biochar was
described well by the Elovich and pseudo-second-order kinetic models, as well as by
the Langmuir isotherm [172]. Interestingly the results of this latter study indicated that
the adsorption of antibiotics is an endothermic and spontaneous process with negative
Gibbs free energy and a positive entropy change. Both chemical and physical adsorption
occurred simultaneously [172]. The endothermic character of antibiotic adsorption on
activated carbon was also reported for the adsorption of heavy metals [178]. On the other
hand, the adsorption of sulfonamide antibiotics onto H3PO4 activated biochar resulted
in a spontaneous and exothermic process that was favorable at low temperatures [179].
The adsorption was described by the Langmuir isotherm and the pseudo-second-order
kinetic model, similar to previous studies [179]. The study of Srivastava et al. (2002) also
showed a similar trend. The adsorption of quinolone and tetracycline antibiotics onto
modified biochar was exothermic and was described by the Langmuir isotherm and the
pseudo-second-order kinetic model [180].

The above examples were the modified biochars, which are the biochars most fre-
quently used as adsorbents. The kinetic models and isotherms for the adsorption of
antibiotics onto pristine biochars seem to follow the same trend (i.e., Langmuir isotherm
and pseudo-second-order kinetics). However, there are still few studies on pristine biochars
providing insights into their adsorption mechanisms. For instance, the adsorption of tetracy-
cline antibiotics onto wheat-stalk biochars was described well with the Langmuir isotherm
as well as the pseudo-second-order and intraparticle diffusion kinetic models [148]. A
similar kinetic model was reported for the adsorption of sulfonamide antibiotics onto a
biochar based on spent coffee grounds. The adsorption kinetics of sulfadiazine (SDZ) and
sulfamethoxazole (SMX), two common sulfonamide antibiotics, was better described by a
pseudo-second-order model, implying that the adsorption of antibiotics onto biochars is
controlled by the chemisorption mechanism [171].

The overall results indicate that the adsorption of antibiotics onto pristine or modified
biochars predominantly occurs as a monolayer through surface reactions and intraparticle
diffusion mechanisms. Thermodynamic studies of the adsorption of different antibiotics
have shown that the adsorption of antibiotics on biochars can be exothermic or endothermic
and should be determined for each adsorption case to improve the adsorption efficiency.

5. Knowledge Gaps, Critical Evaluation, and Future Directions

The application of biochars in the adsorption of emerging pollutants such as antibiotics
is still in the development stage. The number of scientific studies on the adsorption of
antibiotics is increasing, but only a few studies have used pristine biochars for adsorbents.
On the other hand, biochar modification seems to be a promising approach to increase the
adsorption capacity of biochars.

In order to maximize the potential of biochars in adsorption, the first step is to determine
the knowledge gaps. This review allowed us to identify the following knowledge gaps:

1. Currently, there is deficient monitoring of specific antibiotic compounds in
water sources.

2. Biochars’ surface structure and chemical properties are highly variable among differ-
ent biochars. Waste biomass materials are usually applied for biochar production, but
they have limited potential compared to porous wood biochars.

3. The effect of ash contents on adsorption is usually ignored, although inorganics are
involved in the surface complexation. More studies are required to screen biochars
for ash composition.
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4. Most antibiotic adsorption studies were performed at the batch scale, which is not
representative of real water conditions. Also, studies on the simultaneous removal of
antibiotics and other pollutants are still scarce.

5. Thermodynamic and kinetic studies on the adsorption of antibiotics on biochars are
scarce. The adsorption mechanisms of different antibiotics on pristine chars are not
well known.

6. Heteroatom doping and iron doping of biochars are promising approaches to increase
the adsorption capacity of biochars, but they are costly.

7. Molecular imprinting of biochars is another possible way to improve the adsorption
capacity of biochars, but this process is also costly.

8. The combination of biochars with other antibiotic removal methods, such as the
activation of AOPs, seems to be a promising approach.

Previous studies have demonstrated that biochars are efficient adsorbents for the
removal of antibiotics, while it is important to screen target antibiotics for adsorption.
Among the different antibiotics, β-lactams are the most frequently used, but they are not
stable in water because of the instability of the lactam ring; therefore, they are usually
not detected or are detected at low concentrations in the wastewater [33]. The high-
molecular-weight tetracyclines are the sorbents most readily adsorbed onto biochars [12],
suggesting the size exclusion effect and the role of surface chemistry in adsorption. Another
implication of this result is that biochars are low-cost alternatives to nanofiltration and
reverse-osmosis membranes [27], as well as activated carbons [181], for tetracycline removal.
Hydrothermally produced chars (hydrochars) may be preferentially used for the removal
of tetracyclines because they usually retain surface chemical groups better than biochars.

The adsorption process can be integrated into the activated sludge process as a tertiary
process where antibiotics that are not retained by the activated sludge can be targeted. For
this aim, the octanol–water partition parameter criterion (logKow) can be applied. According
to the classification of Rogers (1996) [182], the antibiotics can be grouped as low-sorption (i.e.,
tetracyclines, sulfonamides, aminoglycosides; logKow < 2.5), medium-sorption (i.e., β-lactams,
macrolides; <2.5 logKow < 4.0), and high-sorption (i.e., glycopeptides; logKow > 4.0) [60].
However, this result should be interpreted with caution, because environmental conditions such
as the pH of the solution can affect the sorption of antibiotics [33].

However, in all cases, the principal adsorption targets of biochars should be low-
sorption and medium-sorption antibiotics that cannot be removed by activated sludge.

As mentioned earlier, the adsorption of antibiotics using biochars leads to the pro-
duction of secondary waste, either due to the concentration of antibiotics in the biochar
or through metal-doping-related secondary pollution. It is highly unlikely to reuse the
antibiotic-loaded biochars, except for molecularly imprinted biochars. Therefore, they
should not be used for soil amendment, as antibiotics may leach from the biochars and
reach surface waters. However, it should be noted that antibiotic leaching depends on
the biochar type, biochar–antibiotic interaction, and environmental conditions. Therefore,
high antibiotic retention may be observed in different biochars, as in the case of activated
carbons [183].

In fact, this problem is not exclusive to biochars. All adsorbents, membranes, and
activated sludge also confront this post-antibiotic-removal problem. The most frequently
used adsorbent, activated sludge, is incinerated to avoid secondary pollution. In recent
years, it has not been allowed for fertilizer use in some countries [60]. A thermochemical
conversion strategy can be applied to antibiotic-loaded biochars by using high temperatures
to produce activated carbons and to remove the antibiotics. The activated biochars can
be used again for the adsorption of antibiotics. The activated carbons can be incinerated
similarly to activated sludge once they have been used for antibiotic removal.

The main problems of biochars are their small particle size and low density, which
make it very difficult to remove them from the water after the adsorption [184]. The small
particle size and low density of biochars lead them to be suspended in water, preventing
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solid–liquid separation or settling. Magnetic modification seems to be the unique solution
to this problem.

6. Conclusions

Antibiotics are natural or synthetic pharmaceuticals that are used to combat bacterial
infections. They are considered to be emerging pollutants, and their concentrations are
continuously increasing in the environment, causing bioaccumulation in animals and the
occurrence of antibiotic resistance, which is an alarming issue according to the World
Health Organization.

It is not possible to completely avoid the use of antibiotics, but their accumulation
may be reduced by using adsorption methods. Adsorption methods are selective for the
removal of low-concentration pollutants. A number of adsorption methods and adsorbents
are currently used for the removal of antibiotics from water sources. Biochars are low-cost
adsorbents that show promising potential for antibiotic removal. The antibiotic adsorption
properties of biochars are comparable to those of activated carbons. The adsorption
capacities of biochars can be further improved by different modification methods. The
adsorption of antibiotics onto biochars predominantly occurs as a monolayer and follows
pseudo-second-order kinetics, and the adsorption may be exothermic or endothermic.

Tetracyclines, quinolones, and sulfonamide antibiotics are the most-tested antibiotics
with biochars. The biochar surface properties, such as specific surface area and pore
structure, as well as ash content and ash composition, are highly variable between different
precursors. Wood biochars should be selected for the adsorption of non-bulky antibiotics,
due to their high surface areas, while ash-rich non-wood biochars should be selected for
the adsorption of bulky antibiotics, due to their surface chemical groups.
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