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Abstract: Analyzing the condition and function of the heart is very important because cardiovascular
diseases (CVDs) are responsible for high mortality rates worldwide and can lead to strokes and heart
attacks; thus, early diagnosis and treatment are important. Phonocardiogram (PCG) signals can be
used to analyze heart rate characteristics to detect heart health and detect heart-related diseases. In
this paper, we propose a method for designing using wavelet analysis techniques and an ensemble
of deep learning models from phonocardiogram (PCG) for heart sound classification. For this pur-
pose, we use wavelet scattering transform (WST) and continuous wavelet transform (CWT) as the
wavelet analysis approaches for 1D-convolutional neural network (CNN) and 2D-CNN modeling,
respectively. These features are insensitive to translations of the input on an invariance scale and
are continuous with respect to deformations. Furthermore, the ensemble model is combined with
1D-CNN and 2D-CNN. The proposed method consists of four stages: a preprocessing stage for
dividing signals at regular intervals, a feature extraction stage through wavelet scattering transform
(WST) and continuous wavelet transform (CWT), a design stage of individual 1D-CNN and 2D-CNN,
and a classification stage of heart sound by the ensemble model. The datasets used for the experiment
were the PhysioNet/CinC 2016 challenge dataset and the PASCAL classifying heart sounds challenge
dataset. The performance evaluation is performed by precision, recall, F1-score, sensitivity, and speci-
ficity. The experimental results revealed that the proposed method showed good performance on two
datasets in comparison to the previous methods. The ensemble method of the proposed deep learning
model surpasses the performance of recent studies and is suitable for predicting and diagnosing
heart-related diseases by classifying heart sounds through phonocardiogram (PCG) signals.

Keywords: heart sound classification; phonocardiogram signal; deep learning; convolutional neural
network; ensemble

1. Introduction

From various physiological signals in the human body, important functions and the
health status of the body can be indicated through phonocardiogram (PCG), electrocar-
diography (ECG), electroencephalography (EEG), electromyography (EMG), etc. [1]. PCG
and ECG can diagnose heart-related diseases and diseases, EEG can diagnose brain-related
diseases and diseases such as Epilepsy and Brain Tumors, and EMG can diagnose problems
such as muscle diseases and nerve damage. According to statistics from the World Health
Organization (WHO), Cardiovascular Diseases (CVDs) cause high mortality worldwide,
and the current mortality rate is steadily increasing [2]. Early diagnosis and treatment
are important because the symptoms of cardiovascular diseases include stroke and heart
attack. To diagnose and predict cardiovascular disease, an analysis is possible using one-
dimensional physiological signals, such as PCG and ECG, and images obtained through
cardiac MRI, CT, ultrasound, etc. Among them, PCG refers to the recording of sounds gen-
erated by heart valves, atria, and blood flow during the heartbeat, and is a signal that can
be identified when there is an abnormality in heart function or condition [3]. In addition,
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the PCG measurement method is noninvasive because it records heart sounds through a
sensor and stethoscope, and can be measured in a simple and low-cost manner compared to
other biological signal measurements. Because the heart plays essential roles and functions
in survival, such as temperature control, nutrient delivery, blood pressure maintenance,
and oxygen supply, information on the condition and function of the heart can be obtained
through this organ, making it possible to diagnose cardiovascular diseases [4]. It is impor-
tant to analyze PCG signals for early diagnosis and treatment of cardiovascular diseases.
The PCG signal consisted of S1 (1st heart sound), S2 (2nd heart sound), S3 (3rd heart sound),
and S4 (4th heart sound). S1 is the first heart sound during a heartbeat and is a signal
produced when the mitral and tricuspid valves close when ventricular contraction begins.
S2 is the second heart sound during the heartbeat and represents the signal that occurs
when the ventricle ends systole and begins to relax, whereas S3 and S4 are low-frequency
sounds that represent signals that appear in patients with cardiovascular disease [5,6]. In
this way, we aimed to achieve a more accurate diagnosis using deep learning models to
analyze and diagnose cardiac function from normal and abnormal cardiac signals.

PCG signals, which are biological signals, can be used to detect and classify heart
diseases and abnormalities using machine and deep learning methods [7]. PCG sounds can
be classified using machine learning classifiers such as the Support Vector Machine (SVM)
and K-Nearest Neighbor (KNN) [8,9]. An SVM is an algorithm that classifies classes by
determining the optimal decision boundary for class classification. If the input data are
nonlinear, they can be classified by converting them into a high-dimensional feature space
using a kernel trick [10,11]. KNN is an algorithm that classifies the k-closest classes of new
data from training data using a distance metric [12].

Meanwhile, deep learning is a deep neural network comprising multiple hidden layers,
and various network models can be used depending on the complexity and availability
of the data. Deep learning is an artificial intelligence technology that is being actively
researched in various fields, such as medicine, agriculture, robots, and self-driving cars. As
it can automatically extract features and patterns from physiological signals and images,
such as PCG, PCG, and EEG, it is suitable for processing data for disease classification,
diagnosis, and lesion segmentation in the medical field. The Mel-Frequency Cepstral
Coefficient (MFCC), which is widely used for PCG signal analysis, can effectively extract
voice and audio signals by retaining important information and reducing dimensionality;
however, since MFCC is weak in robustness to noise, it can affect various noises included
in PCG acquisition [13]. Variable PCG signals contain various features depending on heart
disease and appear in irregular patterns [14]. Due to this, there is a limitation that it is
difficult to extract important information and characteristics. In addition, when using
a single feature extraction method on PCG signals, considering the possibility of losing
information owing to time changes, information, and features in various frequency domains,
two types of analyses are possible: using wavelet analysis technology to extract features
and classifying them using 1D-(Convolutional Neural Network) CNN and 2D-CNN.

The wavelet scattering transformation method and continuous wavelet transformation
method, which can extract information and characteristics about transformation invariance
and put limitations in PCG signals, can be used to extract characteristics from information
such as the period, intensity, and frequency of the heartbeat. In addition, through the
1D-CNN model, it is possible to learn the temporal and spatial features of the signal, and
hierarchical feature learning that allows pattern analysis by layer, making it possible to
analyze heartbeat patterns and analyze the health status of the heart. Not only can the
time and frequency domain characteristics be analyzed through the 2D-CNN model using
the image converted from the 1D PCG signal to the 2D time-frequency domain, but also a
multi-resolution analysis is possible; thus, the abnormal parts of the signal can be analyzed.
Since each model represents different characteristics, combining the predicted values of the
two models allows you to analyze your heart health with accurate and reliable results.

We propose a method for classifying heart sounds by the ensemble of the two classified
models. The dataset used was the PhysioNet/CinC 2016 Challenge Dataset and the
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PASCAL Classifying Heart Sounds Challenge Dataset. Because the PCG signal appears
differently for each person depending on the measurement method and the shape, size,
and location of the heart and heart valves, the signal was divided at regular intervals to
extract features. By extracting signal features from the segmented PCG signal through a
Wavelet Scattering Transform (WST), a 1D-CNN suitable for the two datasets was designed.
In addition, one-dimensional PCG signals are converted into two-dimensional images
through CWT (Continuous Wavelet Transform), and among CNN’s transfer learning
models, GoogleNet, ResNet50, and ResNet101 are used. The performance evaluation
method is performed by the precision, recall, F1-score, sensitivity, and specificity. It was
confirmed that the ensemble method of 1D-CNN and 2D-CNN using two wavelet analysis
techniques improved the heart sound classification performance compared to the single
feature extraction method.

The remainder of this paper is organized as follows. Section 2 describes heart sound
classification as related research, and Section 3 describes the dataset, preprocessing method,
feature extraction method, deep learning model, and proposed ensemble method as experi-
mental methods. Section 4 describes the performance evaluation method and experimental
results, and Section 5 concludes the paper.

2. Related Work

Research using deep learning is actively underway in various fields, but especially in
the medical field, which has been attracting attention in recent years, lesion segmentation
through biosignals such as PCG, ECG, EMG, and medical images such as MRI, CT scan,
and ultrasound, and research on disease prediction and diagnosis is in progress.

Yaseen [15] extracted features from a PCG signal through the Mel Frequency Cepstral
Coefficient (MFCC) and Discrete Wavelets Transform (DWT) and fused the two features.
The performance results were analyzed using SVM, KNN, and a Deep Neural Network
(DNN) for model learning and classification. M. Guven [8] divided the entire PCG signal
into short time periods and merged the features extracted through high-order statistics,
energy, frequency domain, and Mel Coefficients. Classification performance was evaluated
using specific algorithms of the Decision Tree, Naive Bayes (NB), Fine Gaussian, KNN,
and Ensemble Method models. S. K. Ghosh [9] extracted features from a time–frequency
matrix based on the Fourier-based Synchrosqueezing Transform (FSST) to classify normal
and abnormal PCG. The performance was evaluated using an SVM classifier to classify
normal and pathological signals. M. Yildirim’s [16] proposed model consists of five stages.
The first obtained a spectrogram through Mel-spectrogram from the audio signal, and
the second used interpolation to generate new data. Third, the feature maps of the data
were extracted through the Darknet53 architecture, fourth, the extracted feature maps
were optimized using Relief as a feature selection method, and fifth, the obtained feature
maps were classified using KNN, SVM, NB, Logistic Regression (LR), Random Forest (RF),
Gradient Boosting Classifier (GBC), XGBoost, Light Gradient Boosting Machine (LGBM),
and CatBoost model.

T. Alafif [17] extracted features using MFCC from PCG signals to automate the recogni-
tion of normal and abnormal heart rates and used transfer learning Inception-ResNet-v2 as
a CNN model. N. Mei [18] proposed a PCG classification method based on WST and quality
assessment. For feature extraction through WST, classification was conducted using an
SVM classifier, and quality evaluation and normal and abnormal PCG were classified using
the Root Mean Square of Successive Difference (RMSSD) and Ratio of Zero Crossing (RZC).
D. S. Park [19] proposed three steps for heart sound classification: signal preprocessing,
feature extraction, and classification. During preprocessing, noise was removed using a
Band Pass Filter, and the length of all signals was set to the same 7 s. MFCC was used in the
feature extraction process, and a CNN-based lightweight model with an Inverted Residual
structure was used for heart sound classification. Y. Al-Issa [20] used the PhysioNet/CinC
2016 Challenge dataset and the publicly available open heartsounds dataset. The publicly
available open heartsounds dataset includes five classes: normal, aortic stenosis, mitral
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stenosis, mitral regurgitation, and mitral valve prolapse. To develop a cardiac diagnostic
system, they proposed a hybrid model that combined the components of a CNN and LSTM.
F. Li [4] used the MFCC algorithm to extract features from PCG signals by fusing the
PhysioNet/CinC 2016 Challenge dataset, the PASCAL Classifying Heart Sounds Challenge
dataset, and the Yassen dataset. The extracted features are classified as Normal, Noise, and
Abnormal using a deep residual network. S. K. Ghosh [21] proposed a Time-Frequency
Domain DNN method to detect FHS Activity (FHSA) in PCG signals. The proposed method
consists of a preprocessing step, Modified Gaussian Window-based Stockwell Transform
(MGWST) step for time-frequency matrix evaluation, using the Shannon–Teager–Kaiser
Energy (STKE) envelope, smoothing, and thresholding techniques to assess heart sound
boundaries, TFD Shannon entropy (TFDSE) feature extraction step calculated through
signal segmented components, and FHS component recognition step through a Stacked
Autoencoder (SAE)-DNN model. S. Chowdhury [22] proposed the SpectroCardioNet deep
learning network that can detect heart diseases using triple spectrograms of PCG signals.
The triple spectrogram is a time-frequency domain representation generated through a
spectrogram, a delta spectrogram, and a double delta spectrogram. SpectroCardioNet
extracts important information from the frequency domain of a spectrogram and consists of
a sequential feature extractor designed based on a Spectral Attention Block (SAB), Spectral
Pattern Detectors (SpPDs), and 1D convolution to extract features from temporal and spatial
information. D. Kinha [23] performed a preprocessing process to convert one-dimensional
phonocardiogram signals into two-dimensional spectrograms for disease detection using
phonocardiograms based on deep learning. The CNN model used for classification was a
neural network expanded by adding a Shuffle Attention layer to ResNet18 and ResNet50.
The shuffle Attention consists of squeeze-excite blocks and a channel shuffle layer.

3. Proposed Method

This study consisted of a preprocessing stage using a PCG dataset for heart sound
classification, a feature extraction stage using Wavelet Scattering Transform and Continuous
Wavelet Transform at regular intervals, a classification stage using 1D-CNN and 2D-CNN,
and an ensemble stage combining the prediction values of the two models. After extracting
features using the Wavelet Scattering Transform method and Continuous Wavelet Trans-
form method, the features extracted using Wavelet Scattering Transform are classified using
1D-CNN, and the features extracted using Continuous Wavelet Transform are classified
using 2D-CNN. We then use an ensemble method that combines the predicted values in the
two models. Figure 1 shows the architecture of the ensemble method using a deep learning
model based on the proposed wavelet analysis technology.

3.1. Signal Segmentation

To classify diseases and heart sounds using PCG signals, preprocessing was performed
to adjust the original signals containing various signal lengths to the same signal length.
Additionally, because PCG signals occur differently for each person depending on the
location, shape, size, and health status of the heart and heart valves, features in specific
areas can be extracted in more detail through signal segmentation [24]. PCG signals are
composed of various signal lengths, and by adjusting the original signal length to a constant
length, important features in the signal can be confirmed. Information loss can occur in
the process of cropping a long signal to fit a short signal or increasing a short time to
a long signal. In addition, if a long signal is used as is without dividing it, important
features and patterns that appear minutely in the S3 and S4 sections of the PCG signal,
which may indicate heart-related diseases, may be missed; thus, a segmentation process
is performed for accurate analysis and diagnosis results. To perform signal segmentation,
each dataset is read, the division time interval of the original PCG signal is set, and the
division is automatically performed using MATLAB’s ‘for’ loop so that the divided signals
do not overlap. The signal divided from the original PCG signal corresponding to each
class is saved as a new WAV file for that class, and the signal’s label is designated as the
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label belonging to each class. The minimum signal of the PhysioNet/CinC 2016 Challenge
Dataset was 5.31 s, cut into 5-s segments and stored, and signals shorter than 5 s were
not used. When dividing the PASCAL Classifying Heart Sounds Challenge Dataset A
and Dataset B into 1 s, which is the minimum time, a signal that does not include the
components S1, S2, S3, and S4 cycles of the PCG signal was included; therefore, it was
divided into 3 s intervals. Figure 2 shows the signal segmentation process for the Abnormal
and Normal classes of the PhysioNet/CinC 2016 Challenge Dataset.
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3.2. Feature Extraction

Wavelets are capable of analyzing signals in various time and frequency domains
from time series, biological signals, audio signals, and images and are capable of multi-
resolution analysis, allowing the extraction of fine features. In this study, wavelet scattering
and continuous wavelet transforms were used based on wavelet analysis technology to
extract features.

3.2.1. Wavelet Scattering Transform

Wavelet scattering transform is a method for analyzing multiple scales and frequencies,
and can analyze signals through filler modulus, which can extract information and features
about transform invariance [25,26]. In this way, it is possible to remove the characteristic in-
formation such as the period, frequency, and intensity of the heartbeat at various positions
in the PCG signal, the noise of the measurement equipment generated during acquisition,
and the noise generated in the surrounding environment. Therefore, important charac-
teristic information in the signal can be extracted to analyze the heart health information
and diagnose the heart related disease. Wavelet scattering transformation analyzes signals
through a hierarchical method of wavelet analysis using a wavelet filter, calculation using
the filtered modulus, and averaging, in which features are extracted through a scale filter.
Features are extracted repeatedly such that the first output becomes the second input, and
wavelet scattering is composed of a tree structure algorithm, as shown in Figure 3 [18].
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[Step 1] The 0 order scattering coefficient of the wavelet scattering transform is cal-
culated through a convolution operation with the input data signal y and is defined by
Equation (1). φ(n) represents the scale function. The scale function allows a hierarchical
analysis of signals and is used for feature extraction.

N0y = y× φ(n) (1)

[Step 2] For the 1st order scattering coefficient, the modulus calculation is obtained
using the complex wavelet ψλ, as shown in Equation (2), and the 1st order scattering
coefficient is obtained through averaging in Equation (3).

C1y =|y× ψλ(t)| (2)

N1y(c, λ) = |y(t)× ψλ × φ(n)| (3)



Appl. Sci. 2023, 13, 11942 7 of 25

[Step 3] For the 1st order scattering coefficient, the modulus calculation is obtained
using the complex. The 2nd order scattering coefficient repeats the step of generating the
1st order scattering coefficient to calculate the second modulus, as shown in Equation (4),
and generates the second scattering coefficient through Equation (5).

C2y(c, λ1, λ2) =
∣∣∣∣y× ψλ1

∣∣×ψλ2

∣∣ (4)

N2y(c, λ1, λ2) =
∣∣∣∣y× ψλ1

∣∣×ψλ2

∣∣×φ(n) (5)

[Step 4] The N-th order scattering coefficient can be generated by repeating the steps
for generating the 1st order and 2nd order scattering coefficients.

Figure 4 shows some signals from which features were extracted using the WST for the
Normal, Murmur, Extrahls Heart Sound, and Artifact classes of the PASCAL Classifying
Heart Sounds Challenge Dataset A.
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3.2.2. Continuous Wavelet Transform

The existing Fourier Transform does not consider the time domain of the signal, can
only analyze the frequency domain, and has the limitation of being able to analyze only a
fixed domain. To complement this, the wavelet transform can analyze signals that change
over time, and because it enables a multi-resolution analysis through various scales, it can
effectively extract changes over time and features from PCG signals that occur at various
frequencies [27]. CWT is expressed as Equation (6), where a is the input signal, and α is the
transformation parameter, which means that the signal is analyzed according to the wavelet
function position or time change. ψ is the wavelet function, and p is the scale parameter,
which controls the compression and expansion of the wavelet function. In the case of a low
scale, narrow resolution in the time domain and high resolution in the frequency domain
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are possible; therefore, detailed feature analysis of PCG signal problems, such as diseases
and abnormalities, can be analyzed. Additionally, in the case of a high scale, the overall
state of the signal can be analyzed with a wide resolution in the time domain and a low
resolution in the frequency domain.

CWTψ
a (p, α) =

1
√

p

∫ +∞

−∞
a(t)ψ

(
t− α

p

)
dt (6)

Figure 5 shows some signals from which features were extracted using CWT for the
Normal, Murmur, Extrahls, and Artifact classes of the PASCAL Classifying Heart Sounds
Challenge Dataset A.
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3.3. Deep Learning Model
3.3.1. 1D-CNN

1D-CNN is a neural network used for the analysis of one-dimensional time series
and sequence data. It is suitable for analyzing time-series data recorded as signals that
change over time, such as biological signals, voices, and machine vibration signals, and
sequence data arranged in order, such as sentences. The structure of a 1D-CNN consists
of an input layer, convolution layer, activation function, pooling layer, flatten layer, fully
connected layer, and output layer. Figure 6 shows the structure of the 1D-CNN model used
in the PhysioNet/CinC 2016 Challenge Dataset and the PASCAL Classifying Heart Sounds
Challenge Dataset.
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3.3.2. 2D-CNN

2D-CNN is a neural network designed to process image data. It can analyze hierarchi-
cal features within images, making it suitable for extracting detailed features from medical
images and biosignals for disease prediction and diagnosis. In addition, a pre-trained
model can use a small amount of data, save time, and effectively extract features. Classifi-
cation performance can be improved through transfer learning models using datasets with
insufficient amounts of data, such as those that need to be kept confidential for personal
information protection, for example, biosignals and medical images necessary for disease
prediction and accurate diagnosis. Pre-trained models include GoogleNet, ResNet, and
SqueezeNet, and this paper used GoogleNet, ResNet50, and ResNet101. As shown in
Figure 7, GoogleNet [28] has nine inception layers consisting of 1 × 1 convolution, 3 × 3
convolution, 5 × 5 convolution, and max pooling. To solve gradient vanishing, it consists
of 22 deep networks, including an auxiliary classifier consisting of Global Average Pooling,
Fully Connected 1, Fully Connected 2, and Softmax.
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ResNet [29] is a deep neural network designed to solve gradient vanishing; the num-
bers 50 and 101 in ResNet refer to the number of layers in the model. Additionally,
ResNet has a structure that uses residual connections, allowing it to learn complex patterns.
Figures 8 and 9 show the structures of ResNet50 and ResNet101, respectively. It can be
observed that the number of layers in Conv4 was different.
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3.4. Ensemble of Proposed CNN Model Based on Wavelet Analysis Technology

Using various models and checking the performance using the model with the highest
performance has the advantage of simplicity, but errors can occur due to overfitting and
abnormal patterns. However, when using an ensemble, accuracy can be improved and data
patterns can be reliably classified by combining the features extracted from each model
through various models. Ensemble can be used in a variety of ways, including methods
using voting, boosting, bagging, and stacking, and is a technique used to achieve high
accuracy by combining forecasts from multiple models, as shown in Figure 10. Because
this affects the classification accuracy depending on the dataset used and the structure of
each model, the overall accuracy can be improved by combining various models based on
their strengths.
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This paper proposes a method to use a feature-based 1D-CNN model extracted through
WST, which can analyze features of various frequencies, and a feature-based 2D-CNN
model extracted through CWT, which can extract features for time-frequency in detail. To
classify heart sounds using PCG signals, the process can be divided into signal segmenta-
tion, feature extraction and classification, and final heart sound classification by using an
ensemble, as shown in Figure 11.
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In the first signal segmentation process, the PCG signal was divided into 5 s consider-
ing the minimum time of 5 s for the PhysioNet/CinC 2016 Challenge Dataset according
to the dataset. The PASCAL Classifying Heart Sounds Challenge Dataset had a minimum
time of less than 1 s; thus, performance was checked by dividing it into 2 s and 3 s. It was
confirmed that the performance was higher when divided into 3 s; thus, it was used by
dividing it into 3 s.
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Second, in the feature extraction and classification stage, features are extracted from
various frequency domains through WST, and the characteristics of the time and frequency
domains are analyzed to represent the features one dimensionally, so that periodic patterns
and changes in the PCG can be identified. Since PCG signals can be used to analyze signals
of heart disease, a 1D-CNN model is used to use these signals. 1D-CNN is a model that can
be designed according to each dataset, and is capable of learning the temporal and spatial
characteristics of signals as well as hierarchical characteristic; thus, it can analyze heart rate
patterns in PCG signals, cycles, and intensity and determine the state of heart health. By
converting a one-dimensional PCG signal into a two-dimensional image through CWT, a
time-frequency domain, and using 2D-CNN, spatial and temporal features, visual features,
and multi-resolution analysis of the two-dimensional image are possible. This allows the
time and frequency domain characteristics of the PCG signal to be analyzed, allowing the
analysis of signals that change over time, detecting abnormalities. The 2D-converted image
is used as a 2D-CNN transfer learning model, GoogleNet, ResNet 50, and 101.

Finally, we use an ensemble that combines multiple models for more accurate and
improved performance of a single model. Although the performance of 1D-CNN and
2D-CNN can be checked as a single model, the characteristics of the PCG signal extracted
from each model appear differently; thus, high reliability and stable performance can
be confirmed by ensembling the two models. The performance of the final heart sound
classification is confirmed by multiplying the values predicted through 1D-CNN and 2D-
CNN in the feature extraction and classification stages. This ensemble multi-scale analysis
allows for a more accurate classification of subtle signals and features for the diagnosis of
specific heart diseases in the PCG signals.

4. Experimental Result

For heart sound classification based on the proposed wavelet analysis technique in
this study, we evaluated the performance using the Accuracy, Precision, Recall, F1-Score,
Sensitivity, and Specificity of the PhysioNet/CinC 2016 Challenge Dataset and the PASCAL
Classifying Heart Sounds Challenge Dataset.

4.1. Dataset
4.1.1. The PhysioNet/CinC 2016 Challenge Dataset

The PhysioNet/CinC 2016 Challenge [30] Dataset is composed of training-a, training-
b, training-c, training-d, training-e, and training-f as shown in Table 1. The data collected
from healthy subjects, including children and adults, as well as patients with heart disease,
included 3240 data, including 2575 normal and 665 abnormal data. The length of the signal
consisted of data from a minimum of 5.31 s to a maximum of 122 s, as shown in Figure 12,
and was resampled at 2000 Hz.

Table 1. Composition of the PhysioNet/CinC 2016 Challenge Dataset.

PhysioNet/CinC 2016 Challenge Dataset

Data Normal Abnormal Total

training-a 117 292 409

training-b 386 104 490

training-c 7 24 31

training-d 27 28 55

training-e 1958 183 2141

training-f 80 34 114

Total 2575 665 3240
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Figure 12. PhysioNet/CinC 2016 Challenge Dataset-Shortest and Longest Signal Duration.

Table 2 shows the number of signals divided into 5 s for each class of the Phys-
ioNet/CinC 2016 Challenge Dataset, and the number of divided signals can be constant or
increase depending on the length of the original signal. Since the PhysioNet/CinC 2016
Challenge Dataset was divided into 5 s, which is the minimum length, and signals shorter
than 5 s were not used, the number of split signals remained constant for signals shorter
than 10 s, and the number of split signals increased for signals longer than 10 s.

Table 2. Number of segmented signals of the PhysioNet/CinC 2016 Challenge Dataset.

PhysioNet/CinC 2016 Challenge Dataset–Signal Segmentation

Data Normal Abnormal Total

training-a 738 1852 2590

training-b 386 104 490

training-c 51 240 291

training-d 51 87 138

training-e 8129 665 8794

training-f 502 210 712

Signal Segmentation 9857 3158 13,015

4.1.2. PASCAL Classifying Heart Sounds Challenge Dataset

The PASCAL Classifying Heart Sounds Challenge [31] dataset was collected in two
ways: Dataset A was recorded using the iStethscope Pro iPhone app for the general public
and included four classes: Normal, Murmur, Extrahls Heart Sound, and Artifact. Dataset
B was collected using the DigiScope digital stethoscope and had three classes: Normal,
Murmur, and Extrasystole. The classes of Datasets A and B are composed as shown in
Table 3. The length of the signal shown in Figure 13 consists of signals recorded from a
minimum of 0.94 s to a maximum of 9 s for Dataset A and from a minimum of 0.76 s to a
maximum of 25 s for Dataset B.
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Table 4 shows the number of signals segmented into 3 s for each class in the PASCAL
Classifying Heart Sounds Challenge Dataset, and the number of segmented signals can
increase depending on the length of the original signal or decrease due to signals that are
less than 3 s long.



Appl. Sci. 2023, 13, 11942 15 of 25

Table 3. Composition of the PASCAL Classifying Heart Sounds Challenge Dataset.

PASCAL Classifying Heart Sounds Challenge Dataset

Class Dataset A Dataset B

Normal 31 200

Murmur 34 66

Extrahls 19 -

Artifact 40 -

Extrasystole - 46

Total 124 312

Table 4. Number of segmented signals of the PASCAL Classifying Heart Sounds Challenge Dataset.

PASCAL Classifying Heart Sounds Challenge Dataset—Signal Segmentation

Class Dataset A Dataset B

Normal 68 185

Murmur 66 134

Extrahls 37 -

Artifact 120 -

Extrasystole - 185

Signal Segmentation 291 504

4.2. Performance Evaluation Method

Accuracy, Precision, Recall, F1-Score, Sensitivity, and Specificity were used as evalua-
tion index methods to classify normal phonocardiograms from phonocardiogram signals
and those of patients with heart disease. Used to evaluate the model’s performance using
actual and predicted labels, True Positives (TP) refer to instances where the model correctly
predicts the positive class and True Negatives (TN) refer to instances when the model
correctly predicts the negative class. False Positives (FP) refer to instances where the model
predicts a negative class as a positive class, and False Negatives (FN) refer to instances
where the model predicts a positive class as a negative class.

Accuracy is a method of checking whether the model correctly predicts the positive
and true negative classes and is measured by adding TP and TN, which represent correctly
classified instances, from the total number of instances, as shown in Equation (7).

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision is a method used to calculate the accuracy with which the model correctly
classifies instances predicted as positive. As shown in Equation (8), the instance is calculated
by dividing the number of correctly predicted TPs by the sum of TP + FP.

Precision =
TP

TP + FP
(8)

Recall is calculated using Equation (9) and is a method to check whether instances
belonging to the positive class are correctly classified as the positive class.

Recall =
TP

TP + FN
(9)
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The F1-Score is obtained by combining Precision and Recall, as shown in Equation (10), to
evaluate the performance of a balanced model considering FP and FN.

F1-Score = 2 × Precision × Recall/Precision + Recall (10)

Sensitivity is a performance evaluation method used to measure whether the model
correctly classifies instances of the positive class as positive classes using Equation (11).

Sensitivity =
TP

TP + FN
(11)

Specificity is a performance evaluation method used to measure whether an instance
of a negative class is correctly classified as a negative class using Equation (12).

Speci f icity =
TN

TN + FP
(12)

4.3. Experiment Result

In this study, we used the open datasets PhysioNet/CinC 2016 Challenge Dataset and
PASCAL Classifying Heart Sounds Challenge Dataset for PCG heart sound classification.
For feature extraction, WST and CWT were used based on wavelet analysis technology.
The features extracted by WST were used to design a 1D-CNN model and a deep learning
model suitable for the two datasets, and the images converted to time-frequency expression
through CWT are using the 2D-CNN model. Classification performance was checked
using Accuracy, Precision, Recall, F1-Score, Sensitivity, and Specificity. Table 5 shows the
performance results of classifying the features extracted based on the WST into the 1D-CNN
model using the PhysioNet/CinC 2016 Challenge Dataset and PASCAL Classifying Heart
Sounds Challenge Dataset. The PhysioNet/CinC 2016 Challenge Dataset divided the data
into 70% training and 30% testing and showed the highest accuracy when split with the
following settings: QualityFactors of Waveletscattering [4 2 1], Filter size 5, number of
filters 32, InitialLearnRate 0.001, MaxEpochs 200, and MiniBatchSize 64. Dataset A of the
PASCAL Classifying Heart Sounds Challenge Dataset split the data into 80% training data
and 20% test data and showed the highest accuracy when split with the following settings:
QualityFactors of Waveletscattering [4 2 1], Filter size 9, Number of filters 64, InitialLearn-
Rate 0.0001, MaxEpochs 300, and MiniBatchSize 128. Dataset B of the PASCAL Classifying
Heart Sounds Challenge Dataset splits the data into 90% training data and 10% test data
and showed the highest accuracy when split with the following settings: QualityFactors
of Waveletscattering [4 2 1], Filter size 4, Number of filters 128, InitialLearnRate 0.0001,
MaxEpochs 200, and MiniBatchSize 32.

Table 5. Performance results of WST-based 1D-CNN Model for each dataset.

1D-CNN Model
Accuracy

Average for Each Class

Dataset Precision Recall F1-Score Sensitivity Specificity

PhysioNetCinC 2016 Challenge Dataset 96.1% 0.95 0.95 0.95 0.95 0.95

PASCAL Classifying Heart
Sounds Challenge Dataset

Dataset A 89.66% 0.9 0.88 0.89 0.88 0.97

Dataset B 86.49% 0.84 0.86 0.85 0.86 0.93

Table 6 shows the performance results of classifying the features extracted based
on CWT into a 2D-CNN model using the PhysioNet/CinC 2016 Challenge Dataset and
PASCAL Classifying Heart Sounds Challenge Dataset. The three datasets used the 2D-
CNN transfer learning models GoogleNet, ResNet50, and ResNet101; when the results
were confirmed, the model with the highest accuracy was used. The PhysioNet/CinC
2016 Challenge Dataset split the data into 70% training data and 30% test data, similar to
the 1D-CNN, and confirmed that the ResNet50 model, which was set to MiniBatchSize



Appl. Sci. 2023, 13, 11942 17 of 25

64, MaxEpochs 30, and Validation Frequency 10, had the highest accuracy. Dataset A of
the PASCAL Classifying Heart Sounds Challenge Dataset split the data into 80% training
and 20% testing and confirmed that the GoogleNet model set to InitialLearnRate 0.0001,
MiniBatchSize 64, MaxEpochs 30, and Validation Frequency 50 had the highest accuracy.
Dataset B of the PASCAL Classifying Heart Sounds Challenge Dataset was divided into
90% training data and 10% test data, and it was confirmed that the GoogleNet model set to
MiniBatchSize 64, MaxEpochs 20, and Validation Frequency 50 had the highest accuracy.

Table 6. Performance results of CWT-based 2D-CNN model for each dataset.

2D-CNN Model
Accuracy

Average for Each Class

Dataset Precision Recall F1-Score Sensitivity Specificity

PhysioNet/CinC 2016 Challenge Dataset 95.29% 0.93 0.94 0.94 0.94 0.94

PASCAL Classifying Heart
Sounds Challenge Dataset

Dataset A 87.93% 0.9 0.93 0.94 0.93 0.98

Dataset B 86.49% 0.83 0.83 0.83 0.83 0.93

Figure 14 shows the confusion matrix results using the PhysioNet/CinC 2016 Chal-
lenge Dataset. Figure 14a shows the confusion matrix of 1D-CNN, Figure 14b shows the
confusion matrix of 2D-CNN, and Figure 14c shows the confusion matrix of the Ensemble.
The confusion matrix can visualize the actual and predicted values to observe the accurately
classified predicted values for each class; the rows of the confusion matrix represent the
actual values and the columns represent the predicted values. As a result of dividing the
entire data of the PhysioNet/CinC 2016 Challenge Dataset into 70% training data and 30%
test data, the test data used for classification included 947 in the abnormal class and 2957
in the normal class. As a result of visualization using a confusion matrix to analyze the
number of classified for each class, 1D-CNN classified 871 for the Abnormal classes and
2880 for the Normal classes, and 2D-CNN classified 868 for the Abnormal classes and 2852
for the Normal classes were classified. The result of ensemble of the two models is 915 for
the Abnormal classes and 2933 for the Normal classes, which shows that the number of
classified classes for each class has improved compared to a single model.
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Challenge Dataset. (a) the confusion matrix of 1D-CNN, (b) the confusion matrix of 2D-CNN, and
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Figure 15 show the confusion matrix results using Dataset A from the PASCAL Classi-
fying Heart Sounds Challenge data set. Figure 15a Shows the confusion matrix of 1D-CNN,
Figure 15b shows the confusion matrix of 2D-CNN, and Figure 15c shows the confusion
matrix of the ensemble. As a result of dividing the entire data of the PASCAL Classifying
Heart Sounds Challenge Dataset A into 80% training data and 20% test data, the test data
used for classification included 24 in the Artifact class, 7 in the Extrahls class, 13 in the
Murmur class, and 14 in the Normal class. As a result of visualization using a confusion
matrix to analyze the number of classified for each class, 1D-CNN classified 23 for the
Artifact class, 6 for the Extrahls class, 12 for the Murmur class and 11 for the Normal class.
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Figure 16 show the confusion matrix results using Dataset B from the PASCAL Clas-
sifying Heart Sounds Challenge data set. Figure 16a Shows the confusion matrix of 1D-
CNN, Figure 16b shows the confusion matrix of 2D-CNN, and Figure 16c shows the con-
fusion matrix of the ensemble. As a result of dividing the entire data of the PASCAL Clas-
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test data used for classification included 18 in the Normal class, 6 in the Extrasystole class 
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Figure 15. 1D-CNN, 2D-CNN, and ensemble confusion matrix results for PASCAL Classifying Heart
Sounds Challenge Dataset: Dataset A. (a) the confusion matrix of 1D-CNN, (b) the confusion matrix
of 2D-CNN, and (c) the confusion matrix of the ensemble.

2D-CNN classified 24 for the Artifact class, 3 for the Extrahls class, 10 for the Murmur
class and 14 for the Normal class. The result of ensemble of the two models is 24 for the
Artifact class, 6 for the Extrahls class, 12 for the Murmur class and 14 for the Normal class,
which shows that the number of classified classes for each class has improved compared to
a single model.

Figure 16 show the confusion matrix results using Dataset B from the PASCAL Classi-
fying Heart Sounds Challenge data set. Figure 16a Shows the confusion matrix of 1D-CNN,
Figure 16b shows the confusion matrix of 2D-CNN, and Figure 16c shows the confusion
matrix of the ensemble. As a result of dividing the entire data of the PASCAL Classifying
Heart Sounds Challenge Dataset B into 80% training data and 20% test data, the test data
used for classification included 18 in the Normal class, 6 in the Extrasystole class and 13
in the Murmur class. As a result of visualization using a confusion matrix to analyze the
number of classified for each class, 1D-CNN classified 15 for the Normal class, 5 for the
Extrasystole class and 12 for the Murmur class. 2D-CNN classified 16 for the Normal class,
4 for the Extrasystole class and 12 for the Murmur class. The result of ensemble of the
two models is 15 for the Normal class, 5 for the Extrasystole class and 13 for the Murmur
class, which shows that the number of classified classes for each class has improved com-
pared to a single model. It can be observed that the ensemble classification performance is
overall improved over the single model classification performance for the classes of each
dataset. It can be observed that the ensemble classification performance is overall improved
over the single model classification performance for the classes of each dataset.
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Figure 16. 1D-CNN, 2D-CNN, and ensemble confusion matrix results for PASCAL Classifying Heart
Sounds Challenge Dataset: Dataset B. (a) the confusion matrix of 1D-CNN, (b) the confusion matrix
of 2D-CNN, and (c) the confusion matrix of the ensemble.

Table 7 shows the ensemble results of the 1D-CNN and 2D-CNN for Datasets A and B
of the PhysioNet/CinC 2016 Challenge Dataset and the PASCAL Classifying Heart Sounds
Challenge Dataset. Accuracy, Precision, Recall, F1-Score, Sensitivity, and Specificity for
each class indicate the average value. The PhysioNet/CinC 2016 Challenge Dataset used
two wavelet-based analysis techniques, and the ensemble accuracy of the deep learning
model was improved by 1.9% compared to the single feature extraction method. In the
PASCAL Classifying Heart Sounds Challenge Dataset, Dataset A improved by 6.89%, and
Dataset B improved by 2.7%.

Table 7. The final result of an ensemble of 1D-CNN and 2D-CNN using wavelet analysis technique.

Ensemble Result
Accuracy

Average for Each Class

Dataset Precision Recall F1-Score Sensitivity Specificity

PhysioNetCinC 2016 Challenge Dataset 98.57% 0.98 0.98 0.98 0.98 0.98

PASCAL Classifying Heart
Sounds Challenge Dataset

Dataset A 96.55% 0.97 0.95 0.95 0.95 0.99

Dataset B 89.19% 0.86 0.89 0.87 0.89 0.95

Figure 17 shows the accuracy results of the ensemble 1D-CNN and 2D-CNN, and the
classification performance is overall improved in terms of ensemble accuracy compared to
the single model classification performance.
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Table 8 shows the results of comparing the existing feature extraction method and
deep learning model-based heart sound classification for the PhysioNet/CinC 2016 Chal-
lenge Dataset and the PASCAL Classifying Heart Sounds Challenge Dataset and heart
sound classification using the proposed ensemble. By extracting features through the two
proposed wavelet analysis techniques, the ensemble accuracy of 1D-CNN and 2D-CNN is
improved over the accuracy of existing feature extraction methods and deep learning-based
heart sound classification.

Table 8. Performance comparison for existing heart sound classification.

Authors Dataset Feature Extraction Classifier Accuracy

D. S. Park (2021) [19] PASCAL Dataset MFCC
Lightweight model using

CNN-based Inverted
Residual structure

Dataset A: 77%

Dataset B: 83%

N. Mei (2021) [18]

PhysioNet/CinC
2016

Dataset

Wavelet scattering SVM 92.23%

Y. Al-Issa (2022) [20] - CNN-LSTM 93.76%

S. K. Ghosh (2022) [21] Time-Frequency
entropy SAE-DNN 95.43%

S. Chowdhury (2022) [22] - SpectroCardioNet 97.77%

Proposed Method PASCAL Dataset WST,
CWT

1D CNN + 2D CNN
Ensemble

Dataset A: 96.55%
Dataset B: 89.19%

PhysioNet/CinC 2016 98.57%

5. Conclusions

In this study, we propose a method to extract features using the WST and CWT
methods based on wavelet analysis technology, classify cardiac abnormalities and heart
sounds using a deep learning model, and ensemble the two models. In the medical field,
accurate diagnosis and results must be derived, so the ensemble of deep learning models is
used to improve accuracy by combining the powerful features of different models, and to
reduce overfitting and improve reliability through results from various models. Because
the PCG appears differently depending on the structure, size, and location of the heart
as well as its physiological characteristics, PCG signal analysis is necessary for a detailed
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and accurate diagnosis. For cardiac function analysis in PCG signals, early prediction and
diagnosis of heart-related diseases can be made through the information on transformation
invariance and the features of S1, S2, S3, and S4 of PCG. The features extracted through the
WST design a 1D-CNN suitable for the dataset and check the classification performance.
The features extracted through CWT were converted into time-frequency expressions, and
the classification performance was checked using the transfer learning model GoogleNet
and ResNet50 models, which are 2D-CNN models. Precision, Recall, F1-Score, Sensitivity,
and Specificity were used to evaluate classification performance. The ensemble results of
the predicted values classified through each model confirmed that the PhysioNet/CinC
2016 Challenge Dataset improved by 1.9%, Dataset A of the PASCAL Classifying Heart
Sounds Challenge Dataset improved by 6.89%, and Dataset B improved by 2.7%.
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