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Abstract: Anomaly detection has gained increasing attention in recent years, but detecting anomalies
in time series data remains challenging due to temporal dynamics, label scarcity, and data diversity
in real-world applications. To address these challenges, we introduce a novel method for anomaly
detection in time series data, called CL-TAD (Contrastive-Learning-based method for Times series
Anomaly Detection), which employs a contrastive-learning-based representation learning technique.
Inspired by the successes of reconstruction-based approaches and contrastive learning approaches,
the proposed method seeks to leverage these approaches for time series anomaly detection. The
CL-TAD method is comprised of two main components: positive sample generation and contrastive-
learning-based representation learning. The former component generates positive samples by trying
to reconstruct the original data from masked samples. These positive samples, in conjunction with the
original data, serve as input for the contrastive-learning-based representation learning component.
The representations of input original data and their masked data are used to detect anomalies later
on. Experimental results have demonstrated that the CL-TAD method achieved the best performance
on five datasets out of nine benchmark datasets over 10 other recent methods. By leveraging the
reconstruction learning and contrastive learning techniques, our method offers a promising solution
for effectively detecting anomalies in time series data by handling the issues raised by label scarcity
and data diversity, delivering high performance.

Keywords: anomaly detection; time series; reconstruction-based learning; contrastive-based learning;
representation learning

1. Introduction

Anomaly detection in time series data has been a significant research topic for a
number of applications such as intrusion detection in cybersecurity [1], fraud detection in
finance [2], and damage detection in manufacturing [3]. Anomalies in time series data can
be classified into point-wise and segment-wise anomalies [4]. Point-wise anomalies refer to
unexpected events that occur at individual time points, typically having extreme values
compared to the rest of the time points, or relatively deviated values from their neighboring
points. In contrast, segment-wise anomalies typically are anomalous subsequences.

The time series anomaly detection task is to identify where a given time series (a
sequence of real values) X = (x0, x1, x2, . . . , xi, . . . , xT−1), where T is the length of X,
contains any anomalous events. This is commonly carried out by producing an output
label sequence Y = (y0, y1, y2, . . . , yi, . . . yT−1), where yi ∈ {0, 1} indicates whether its
corresponding value xi is anomalous or not.

Various methods have been developed for the task, which can be categorized into
five approaches: statistical [5–9], signal analysis (SA) [10–12], system-modeling-based [13],
machine learning (ML) [14–19], and deep learning (DL) [20–43]. The statistical approach
involves the creation of a statistical model by calculating distributions and measures
such as mean, variance, median, quantile, and others. The SA-based approach utilizes
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time–frequency domain analysis techniques like the Fourier transform, to identify anoma-
lies. The system-modeling-based approach constructs a mathematical model such as a
Bayesian dynamic linear model [13] that simulates the latent process to produce the time
series of interest. The ML-based approach constructs a trained model for anomaly detec-
tion using unlabeled and/or labeled data. The DL-based approach, which has recently
gained significant attention, makes use of DL models for anomaly detection, and has found
widespread adoption, achieving numerous successes across diverse application domains.
Despite the successes of DL models in various applications, the performance of DL-based
anomaly methods in the time series domain has not yet been as convincing as expected. To
date, DL-based anomaly methods still suffer from the data scarcity problem caused by rare
anomalous events and rare labeled data.

Instead of using supervised learning techniques based on labeled data, the DL-based
anomaly methods usually employ one of three unsupervised or self-supervised techniques:
forecasting-based, reconstruction-based, or one-class classifier techniques. Forecasting-
based techniques involve forecasting the value for the next time point from the preceding
data. Any significant deviation between the predicted and actual value suggests an anomaly.
Reconstruction-based techniques build a model to reconstruct the output similar to its input;
discrepancies between the model’s output and the actual data can indicate anomalies. One-
class classifier techniques construct a classifier model for only normal data and leverage
this model to determine if a given value of interest belongs to the normal class or not, thus
enabling anomaly detection.

Contrastive learning on unlabeled data has emerged as an effective technique for
learning representations useful to downstream tasks. The learning technique has shown
potential in anomaly detection task for time series data [44–46], especially when available
training data does not include anomaly events. The performance of contrastive learning
is strongly affected by the approach used to generate positive and negative samples from
available unlabeled data. In time series data anomaly detection, it is also challenging to
find out an appropriate sample generation method.

Motivated by the successes of reconstruction-based learning techniques and the po-
tential of contrastive learning for unlabeled data, we propose a novel method for anomaly
detection in time-series data, called CL-TAD (Contrastive-Learning-based method for Times
series Anomaly Detection). The key aspects of the proposed method are as follows:

• The CL-TAD method is comprised of two main components: positive sample gener-
ation and contrastive-learning-based representation learning. The first component
plays role of generating positive samples from normal time series data. This is ac-
complished through a reconstruction process that tries to recover the original data
from masked data. This reconstruction-based sampling is expected to augment a
scarce original dataset into a robust and large training dataset that retains the essential
information of normal patterns. The second component applies a contrastive learning
technique to both the generated samples and the original data to produce their repre-
sentations. Instead of directly producing the representations for generated samples,
a transformation function with learnable parameters is applied to those samples to
extract more meaningful information. The employed learnable transformation is
attributed to learning more effective representations for anomaly detection.

• The CL-TAD method employs a temporal convolutional network (TCN) [47] for
temporal feature extraction within time series data. The TCN is used in both positive
sample generation and representation learning components.

• The proposed method uses a reconstruction-based data augmentation for the normal
time series dataset to generate a sufficient amount of training data. On training the
model for anomaly detection, it uses only the original data and their augmented data,
and hence it is a nonsupervised learning approach that does not require the labeling
task over the training data.

• To evaluate the effectiveness of our proposed method, we conducted some experiments
on the following well-known nine benchmark datasets for time series anomaly detec-
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tion: Power demand [21,27], ECG and 2D-Gesture [21,27], UCR and SMD [43], PSM [42],
MSL [43], SWaT [42], and WADI [42]. The performance of the proposed method
has been compared with those of 10 recently developed anomaly detection meth-
ods: MAD-GAN [32], DAGMM [22], MSCRED [36], CAE-M [28], OmiAnomaly [30],
TranAD [42], GDN [29], Anomaly Transformer [42], MTAD-GAT [38], and USAD [39].
The experimental results have demonstrated that the proposed method achieved com-
petitive performance on all of these datasets. Notably, the proposed method achieved
the best performance on the following nine benchmark datasets: Power Demand,
UCR, ECG, 2D-Gesture, PSM, SMD, MSL, SWaT, and WADI.

The remainder of the paper is organized as follows: Section 2 describes some related
works on time series anomaly detection. Section 3 presents the proposed anomaly detection
method in detail. In Section 4, we present the experimental results of the proposed method,
comparing it with several recent anomaly detection methods using nine benchmark datasets.
Finally, Section 5 draws conclusions about the proposed method.

2. Related Works

This section first briefly describes the deep-learning-based approaches to time series
anomaly detection. Then it delves into how contrastive learning techniques can be used in
time series anomaly detection. After that, it presents the temporal convolutional network
(TCN) that is used in the proposed method.

2.1. Deep-Learning-Based Approaches to Time Series Anomaly Detection

As illustrated in Figure 1, the existing anomaly detection methods for time series
data can be categorized into three primary approaches: one-class-classification-based,
reconstruction-based, and prediction-based. One-class-classification-based methods em-
ploy a one-class classifier to identify anomalies. These methods define a latent hypersphere,
where points falling inside the hypersphere are considered normal, while anomalies reside
outside of it. The one-class classifier learns to differentiate between normal and anomalous
data points, enabling the detection of anomalies in the time series data.

Reconstruction-based methods in time series anomaly detection often leverage the
effectiveness of encoder–decoder models or their variants, which have achieved notable
successes in solving reconstruction problems in computer vision. These methods aim
to reconstruct the input time series data using an encoder–decoder architecture, where
the quality of the reconstructed output serves as an indicator of anomalies. That is, the
deviations or discrepancies of the input and reconstructed data can be used to identify
anomalies, the larger difference, the higher the possibility of anomalies at the corresponding
time points.

Lastly, prediction-based methods aim to forecast future values by training a predic-
tive model. The predicted values are then compared with the actual values, allowing
the identification of anomalies based on the discrepancies between them. By detecting
significant deviations between the predicted and actual values, anomalies in the time series
can be identified.

In both reconstruction-based and prediction-based methods, a predefined threshold,
denoted as δ, is commonly employed to determine whether a specific time point is anoma-
lous. During the inference phase to identify anomaly events, the label ŷt of a new data
point at time step t is assigned to an anomaly if the corresponding anomaly score S(ŷt)
exceeds the threshold δ, as described in Equation (1).

ŷt =

{
1, if S(ŷt) ≥ δ.
0, otherwise.

(1)

where ŷt represents the label assigned to the t-th data point, S(.) quantifies the degree of
abnormality or deviation of a data point from the normal patterns, and δ is a prespeci-
fied threshold.
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(a)

(b)

(c)

Figure 1. Deep-learning-based approaches for anomaly detection in time series. (a) One-class-
classification-based approach; (b) Reconstruction-based approach; (c) Prediction-based approach.

DL-based approaches have significantly pushed up performance levels, yet they still
fall short of the benchmark required for deployment in various real-world applications.
One key reason for this unsatisfactory performance lies in the scarcity of time series
training data. In time series anomaly detection, the quantity of time series data illustrating
normal patterns is sometimes insufficient, let alone the severe lack of data representing
anomalous events.

To tackle the issue of data scarcity, data augmentation techniques have been employed
in deep learning, particularly in computer vision tasks. A reconstruction-based approach
can leverage a masking technique to augment the training data available for building a
reconstruction model. Deep-FIB [21] exemplifies such a method; it trains a reconstruction
model using masked time series data. As illustrated in Figure 2, this method utilizes
an encoder–decoder model to reconstruct the original time series from its masked series.
Once such a model is trained, it is used to reconstruct the given input and then the
reconstructed value is compared with its actual input to determine its anomaly. In the
reconstruction-based approach, the masking strategy is important in building a model
to extract meaningful characteristics for reconstruction. There are two main issues to be
considered in the masking strategy: The first issue involves determining the amount of
masking portion for input time series. Either overmasking or undermasking can cause a
negative effect on the reconstruction capability of the model. Striking the right balance is
crucial to ensure high performance. The second issue is about the masking value to be filled
in the masked locations. Normalization of input time series sometimes needs to be applied.
This normalization can affect the masking value for the normalized time series data.
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Figure 2. Deep-FIB method for time series anomaly detection.

2.2. Contrastive Learning for Unlabeled Data

Contrastive learning is a self-supervised approach that can be used for representa-
tion learning of unlabeled data. An early application of contrastive learning was to learn
representations of image data by contrasting similar and dissimilar samples [48]. Figure 3
shows how a contrastive learning method usually works for image data: The method
begins with generating positive images by applying predefined transformation functions
T to the original images in the initial dataset. Typical operations for transformation in-
clude color jitter, flipping, and rotation, as these operations are supposed to preserve the
characteristic information about the image label. Negative samples are chosen randomly
from the original image dataset, which are different from the anchor image. An encoder
module E is subsequently trained to make the representations of pairs of an anchor data
sample and a positive sample similar while creating a substantial difference between the
representations of pairs of an anchor data sample and a negative sample. However, in the
time series domain, finding suitable transformation functions for all types of time series
data is challenging as the transformation functions need to preserve the intrinsic temporal
properties of the data.

Figure 3. Basic contrastive learning scheme in the visual domain. First, transformation functions
are utilized to generate positive pairs. Subsequently, the encoder is trained to draw the representa-
tions of similar pairs closer together, while pushing away the representations of pairs consisting of
dissimilar ones.

Inspired by contrastive learning techniques that have been successful in computer
vision, several contrastive learning methods have been proposed for time series analysis
tasks (anomaly detection task [44–46,49] , classification task [50], and forecasting task [51]).
In time series anomaly detection tasks, contrastive-learning-based models are trained
typically on a normal dataset that does not include anomaly events. They might differ in
how to obtain similar (positive) and dissimilar (negative) samples from the dataset. It is
important to use a sampling method appropriate to the application domain.

TS2Vec [44] employs a contrastive-learning-based technique to obtain effective repre-
sentations for anomaly detection. It randomly samples fixed-length subsequences from a
time series dataset and projects them into a latent space using a learnable affine transforma-
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tion. The projected vectors are then randomly masked and fed to a TCN (temporal convo-
lutional network) [47] to produce their representations. TS2Vec samples the overlapped
subsequences and considers the adjacent subsequences as positive pairs. Additionally,
it considers pairs of samples, generated by applying different transformation functions
such as jitter, scaling, and permutation to a subsequence, as positive samples. Conversely,
it treats as negative samples, the non-overlapped and non-adjacent samples from a time
series instance and the pairs of subsequences from different time series instances. It trains
an encoder model to produce the representations in a way that increases the similarities of
the representations for anchor and positive pairs and decreases those of the representations
of anchor and negative pairs. Experiments showed that the performance of representation
learning is influenced by the employed transformation functions.

The COCA method [45] builds a one-class classifier model for time series anomaly
detection. It uses a contrastive learning technique to produce a latent space representation
for normal data. To augment a training dataset, it applies transformation functions like
jitter and scaling, the hyperparameters of which should be carefully chosen. It trains a
TCN and LSTM-based encoder–decoder model to produce representations of time series
data. On training the model, the pairs of original time series and their transformed series
are used as positive pairs to enforce their latent representations to be sufficiently close
with a contrastive learning technique. The COCA model is trained to minimize both the
reconstruction loss of the encoder–decoder model and increase the similarities among the
representations of the positive samples. It does not use negative pairs to train the model.
The model is basically a deep SVDD model for a one-class classifier, and hence, it inherits
the constraints of SVDD models.

Neutral AD [46] is another contrastive-learning-based method used for anomaly
detection in time series data. It employs learnable neural transformations to augment time
series data instead of predefined transformations like jitter and scale. The transformation
is implemented by a trainable feed-forward neural network. The original samples and
their transformed samples are then fed into an encoder to map them into a latent space.
The transformed samples are regarded as positive samples to their original sample, while
all other transformed samples are regarded as negative samples. The parameters of both
the transformation network and the encoder are trained to maximize the similarities
between an original sample and a positive sample and minimize those between an original
sample and a negative sample. The developers of Neutral AD have claimed that the
learnable transformations of original data are valuable for data augmentation in time
series applications.

In reconstruction-based anomaly detection for time series data, having an effective tool
for augmenting training data is crucial. Proper sampling and transformation techniques
play a significant role in enhancing the performance of time series anomaly detection. In
our proposed method, we introduce a novel strategy to address this challenge and improve
the overall process.

2.3. Temporal Convolution Network

Motivated by the successes of CNNs in high-level feature extraction for image data,
1D-CNNs have been employed in the time series domain [20,21]. It has been observed
that 1D-CNNs are not good enough to extract long-dependency features [47]. To address
this issue, the Temporal Convolutional Neural Network (TCN) [47] has been introduced;
it is shown in Figure 4. A TCN model consists of stacked residual blocks, each of which
is a block of dilated and causal 1D convolutional layers with a skip connection. In a TCN
model, higher layers have large dilation steps, so that higher layers receive more global
features than lower layers. It is worth noting that TCN uses causal 1D convolutions that do
not refer to future information. Our proposed method uses the TCN architecture to extract
features from time series data.
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Figure 4. A TCN architecture for feature extraction of time series data: (a) shows hierarchical 1D con-
volutions, which are used to extract long-dependency features from the data. (b) displays the building
block of a TCN architecture, which is comprised of residual, causal dilated convolutional blocks.

3. The Proposed Method for Time Series Anomaly Detection: CL-TAD

This section starts with the problem definition of interest in time series anomaly
detection. It then provides an overview of the architecture of our proposed method and
presents its components in detail. Finally, it describes the training and testing strategy
employed by the method.

3.1. Problem Definition

A time series data can be expressed in a sequence X = (x0, x1, . . . , xi, . . . , xT−1) of
length T, where xi ∈ Rd is the d-dimensional data point at time step i. If d = 1, this indicates
that X is univariate, whereas if d > 1, this implies that X is multivariate. The time series
anomaly detection task aims to produce a new output sequence Y = (y0, y1, . . . , yi, . . . , yT−1),
where yi ∈ {0, 1} indicates whether the corresponding input value xi is an anomaly event.
This means that we are concerned with point anomalies in time series data.

Similarly to many other deep-learning-based methods, we create a training dataset
comprising subsequence samples W of length L from the time series data X. This is
achieved by sliding a window of size L over X with a step size of 1, as depicted in Figure 5.
The generated sequence samples are denoted by W = (W0, W1, . . . , WL−T), where L is the
length of samples and T is the length of the input time series data.

Figure 5. Generation of a set of subsequence samples W from a time series data X: the subsequence
samples are generated by copying the overlapped segments while sliding a window of length L with
the step size 1 over the given time series data X.

3.2. The Architecture for Representation Learning of CL-TAD

We propose a novel contrastive-learning-based anomaly detection method for time
series data, which first augments the training data with an encoder–decoder-based recon-
struction module using randomly masked samples, and then trains a contrastive-learning-
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based representation learning module using those samples and original data. For anomaly
detection, the anomaly scores are evaluated by calculating the differences between the
representations of the original data with those of their corresponding reconstructed data.
We refer to this proposed method as CL-TAD (Contrastive-Learning-based Time series
Anomaly Detection).

CL-TAD is conducted in two sequential stages: the representation learning stage and
the anomaly scoring stage. In the representation learning stage, latent representations for
fixed-length subsequences of time series and their augmented subsequences are generated
by a contrastive-learning-based representation learning module. In the anomaly scoring
phase, the anomaly score for each time step is calculated by comparing the representations
of two subsequences: The first is the original subsequence that ends at the time step, and the
second is the subsequence that is reconstructed from the first subsequence of which the last
time step is masked. Figure 6 illustrates the architecture used for representation learning in
CL-TAD, which consists of two main components: reconstruction-based positive sample
generation and contrastive-learning-based representation learning.

Figure 6. CL-TAD: Contrastive-Learning-based model for Time series Anomaly Detection.

The first component plays the role of generating positive samples by leveraging a
reconstruction-based encoder–decoder network, which recovers masked samples of the
original time series data. Its reconstruction-based learning approach with a masking
strategy facilitates the generalization of a robust and large positive training dataset. The
representation learning component then uses both the created positive samples and the
original samples for training. The whole network for sample generation and representation
generation is trained in an end-to-end manner.

Some contrastive-learning-based methods [44,45] employ pre-defined transformation
functions to augment original time series data. Conversely, a method discussed in [46]
adopts a learnable transformation function for the same purpose. In our approach, we
integrate a learnable transformation module that pre-processes the augmented data prior
to feeding them into the contrastive learning module.

3.3. Generation of Positive Samples

The component for positive sample generation is designed to create positive samples
corresponding to each input subsequence sample. It consists of the masking module γ
and the reconstruction-based encoder–decoder module Φ. From a given time series data
X, the set W of the original subsequence samples is generated, as depicted in Figure 5. In
each learning iteration of the component, we first randomly choose from X a batch of S
subsequence samples, each having a length of L. This batch is represented as B = {Bi}S−1

i=0 .
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The masking module γ produces a new batch of N masked samples, M = {Mj}N−1
j=0 where

N = S× L, from the batch B. For each i-th subsequence of length L in {Bi}S−1
i=0 , a collection

of L masked samples is created by masking the value at each time step individually. Let
Mj=iL+k denote the data produced by masking the value at the k-th time step of the i-th
sampled sequence Bi.

Figure 7 illustrates the process of creating a batch of 10 masked data, {Mj}N−1
j=0 , from a

batch of two subsequence samples {B1, B2}, each with a length of L = 5. Please refer to
Algorithm A1 in Appendix A for the detailed implementation.

Figure 7. Generation of 10 masked samples {Mj}9
i=0 from two original subsequence samples {B1, B2}

of length 5. Masked data are generated by masking the value at each time step one at a time.

The batch of generated masked samples {Mj}N−1
j=0 is then fed into the module Φ for

the reconstruction of its original sample, as shown in Figure 8. For the reconstruction task,
the module Φ uses an encoder–decoder architecture to reconstruct original input samples
Bbj/Lc from masked samples Mj. Specifically, the batch of masked samples {Mj}N−1

j=0 is fed

into the module Φ to generate reconstructed samples {Rj}N−1
j=0 , each of which is expected

to be similar to Bbj/Lc. In the module Φ, we use a TCN network for the encoder and a linear
layer for the decoder.

To train the module Φ, we use the average difference between the reconstructed
samples and their original samples as the loss function Lrc, as shown in Equation (2). Please
refer to Algorithm A2 in Appendix A for a detailed implementation of the reconstruction
learning procedure.
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Figure 8. Illustration of reconstruction learning with module Φ.

Lrc =
1
N

N−1

∑
j=0

1
L

L−1

∑
t=0
||Bbj/Lc[t]− Rj[t]|| (2)

where N is the number of output samples, L is the length of each sample, b.c represents
the floor function, Rj is the j-th sample in {Rj}N−1

j=0 , and Bbj/Lc is the original sample of the
reconstructed sample Rj.

3.4. Contrastive-Learning-Based Representation Learning

To generate the representations for anomaly evaluation, the proposed method uses a
contrastive-learning-based component that consists of a learnable transformation module
ψ and its following encoder module Ω, as shown in Figure 9.

Figure 9. The architecture of the contrastive-learning-based representation learning module.

Both the original samples {Bi}S−1
i=0 and the reconstructed samples {Rj}N−1

j=0 serve as
the training data for the contrastive-learning-based component. The original samples
{Bi}S−1

i=0 are processed directly by the encoder module Ω. Conversely, the reconstructed
samples {Rj}N−1

j=0 go first through the transformation module Ψ, with their outputs {Tj}N−1
j=0

subsequently being supplied to the encoder module Ω. The encoder module consists
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of an encoder and a projector. The input to the encoder module is first delivered to
the encoder and then the output of the encoder is passed to the projector to create its
corresponding representation. The representations of the original samples {Bi}S−1

i=0 are
denoted by {Ui}S−1

i=0 = Ω({Bi}S−1
i=0 ), while those of the reconstructed samples {Rj}N−1

j=0 are

denoted by {Ej}N−1
j=0 = Ω(Tj

N−1
j=0 ). In the representation learning component, we employ a

linear layer network for the learnable transformation module Ψ, a TCN for the encoder of
the encoder module Ω, and a fully connected network for its projector.

The contrastive-learning-based representation learning component is trained to gen-
erate similar representations for pairs of an original sample and its corresponding similar
sample (i.e., positive example), and dissimilar representations for pairs of an original sample
and a different sample (i.e., negative example). For any given original sample, its associated
reconstructed samples are regarded as positive examples, while both other original samples,
as well as the reconstructed samples derived from them, are regarded as negative examples.
For a sample Bi within {Bi}S−1

i=0 , the representations of its corresponding reconstructed
samples, denoted as {Ri

k}
iL+L−1
k=iL , thus form a set of L positive examples associated with Bi.

Meanwhile, the representations of the other samples Bj, (j 6= i), as well as their reconstructed

samples {Rj
k}j 6={iL+L−1,...,k=iL}, constitute a set of negative examples for Bi.

The representation learning component is trained to draw the representation, Ui, of Bi
and its positive examples {Ri

k}
iL+L−1
k=iL closer, while simultaneously pushing the negative

examples further away from Ui. To evaluate the similarity between two representations,
a and b, we can use a similarity score function z(a, b) defined as follows:

z(a, b) = exp
(

aTb
τ‖a‖‖b‖

)
(3)

where a and b indicate vectorized representations for subsequence samples, while τ is the
temperature hyperparameter that controls the sensitivity of the loss function in relation to
the trained representations [52].

In practical applications, pinpointing an ideal value for τ could be complicated. To
address this challenge, we integrate the TaU method [53] to dynamically adjust the τ
parameter within the loss function. Previously proven effective in the visual domain, the
TaU method offers a solution to this issue. Leveraging the capabilities of the TaU method,
we propose a modified pairwise similarity score function, denoted as v(a, b), as follows:

v(a, b) = exp
(

aTb
‖a‖‖b‖ ∗

σ(u(a))
τ

)
(4)

where u(a) is the uncertainty parameter of a and σ(.) denotes the sigmoid function. It
should be noted that the uncertainty parameter u(a) is fine-tuned during the representation
learning phase.

Using the pairwise similarity score, the loss Lct(Ui, Ek) is computed between the
representation Ui of the original sample Bi and the representation Ek of a positive example
Rk from the set {Ri

k}
iL+L−1
k=iL as follows:

Lct(Ui, Ek) = − log
v(Ui, Ek)

∑N−1
j=0 1[j 6∈[iL,iL+L−1]][v(Ui, Ej)] + ∑S−1

m=0 1[m 6=i][v(Ui, Um)] + v(Ui, Ek)
(5)

where 1cond[val] signifies that val is used if the condition cond is satisfied; otherwise the
value 0 is applied. Lct(Ui, Ek) indicates the contrastive loss associated with an original
sample Bi.
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Next, the loss Lct(Ej, Uh) is defined between the representation Ej of a positive exam-
ple Rj and the representation Uh of its associated original sample Bh, where h = bj/Lc,
as follows:

Lct(Ej, Uh) = − log
v(Ej, Uh)

∑N−1
k=0 1[k 6∈[hL,hL+L−1]][v(Ej, Ek)] + ∑S−1

i=0 v(Ej, Ui)
(6)

Finally, the average loss Lct over all pairs is computed as follows:

Lct =
1
2

([
1
N

S−1

∑
i=0

iL+L−1

∑
k=iL

Lct(Ui, Ek)

]
+

[
1
N

N−1

∑
j=0

Lct(Ej, Ubj/Lc)

])
(7)

where the first term indicates the average loss between an input sample Ui and its corre-
sponding positive example Ek and the second term indicates the average loss between a
representation Ej and its corresponding positive sample Uh.

3.5. Training of Representation Learning Model for the CL-TAD Method

In the representation generation stage, the CL-TAD method follows a two-step process.
Firstly, it leverages the masking module combined with the reconstruction module Φ to
create positive samples. Secondly, it generates the representations of these samples using
the transformation module Ψ and the encoder module Ω. The modules Φ, Ψ, and Ω,
together with the loss function Lct, encompass the learnable parameters. Those modules
are implemented with neural network models.

These modules are jointly trained in an end-to-end manner using the combined loss
function L f inal . This function amalgamates the reconstruction loss Lrc from Equation (2)
with the contrastive learning loss Lct from Equation (7). Such integration facilitates holistic
learning and optimization of the modules throughout the training process.

L f inal = Lrc + Lct (8)

The CL-TAD method trains the representation learning model on a time series dataset
without any abnormal events. Original samples are generated by applying a sliding
window of length L across the given time series data.

For a particular batch of samples, each sample undergoes the masking process using
the module γ, resulting in masked samples. These masked samples are then reconstructed
via the reconstruction module Ψ. The original samples directly enter the encoder module Ω.
In contrast, the reconstructed samples are first passed through the transformation module
Ψ before being processed by the encoder module Ω. The subsequent original and recon-
structed samples are paired to form positive and negative samples for contrastive learning.

The optimization of the model is then driven by the loss function L f inal , which is
computed based on these paired arrangements. Such a comprehensive training approach
ensures that the model effectively learns and refines representations. For a detailed descrip-
tion of the training procedure, please refer to Algorithm A3 in Appendix A.

3.6. Anomaly Score Evaluation

For a given test time series data Z = {z0, z1, . . . , zS}, its anomaly score for each
time step is computed to ascertain its potential status. The CL-TAD method employs a
distance-based mechanism to determine these scores. The procedure begins by forming
subsequences Bi = (zi, zi+1, . . . , zi+L−1) with a length of L derived from the given data
Z. This is achieved by shifting a window of length L over Z. It is crucial to maintain this
window length L consistent with what was adopted during the training phase. To compute
the anomaly score associated with the last time step of Bi, the value at the last time step is
masked, yielding the masked subsequence denoted by MiL+L−1.

The original subsequence Bi is processed through the encoder module Ω to yield its
representation Ui. In parallel, the masked subsequence MiL+L−1 undergoes sequential pro-
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cessing through the reconstruction module Φ, transformation module Ψ, and the encoder
module Ω to derive its representation EiL+L−1.

The normalized Euclidean distance function is used to compute the distance
D(Ui, EiL+L−1) between the representation Ui of the original subsequence Bi and the repre-
sentation EiL+L−1 of the reconstructed subsequence MiL+L−1 as follows:

D(Ui, EiL+L−1) =

∣∣∣∣∣∣∣∣ Ui
||Ui||

− EiL+L−1

||EiL+L−1||

∣∣∣∣∣∣∣∣ (9)

The data point at the last time step in Wi, specifically zi+L−1, is designated as anomalous
only when the distance D(Ui, EiL+L−1) exceeds the pre-specified threshold δ. Figure 10
illustrates the process of generating and comparing the representations for the anomaly
score calculation.

Figure 10. Representation generation and score computation for sequences of length 3. Each subse-
quence’s final time step is masked to produce a corresponding masked subsequence, which is then
reconstructed. The trained model transforms both the original subsequence and its reconstructed
version into their respective representations. The difference between these two representations, as
measured by their distance, provides the anomaly score.

The selection of the threshold value δ is based on the examination of the F1 scores
across a set of potential threshold values, uniformly distributed from 0 to the maximum
representation distances observed on a held-out test dataset containing anomaly events.
The value that produces the highest F1 score is chosen as the threshold δ. It is noteworthy
that the distance distributions associated with anomalous events can differ depending on
real-world applications. Algorithm A5 in Appendix A describes how the list of candidate
thresholds is constructed.

This thresholding approach has been adopted in several anomaly detection methods,
including RAMED [27], OmniAnomaly [30], DeepFIB [21], MAD-GAN [32], and others.
The F1 score is derived from precision and recall, and is defined as follows:

F1 =
2× Precision× Recall

Precision + Recall
(10)
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Precision =
TruePositives

TruePositives + FalsePositives
(11)

Recall =
TruePositives

TruePositives + FalseNegatives
(12)

Refer to Algorithm A5 in Appendix A used to generate the list of thresholds. For
datasets consisting of multiple time series, the final performance is evaluated by computing
the average F1 scores over all sub-time series.

Moreover, the proposed method incorporates the point adjustment technique [11]
after performing threshold-based anomaly determination. Following this technique, once
an individual time step within an anomalous segment is identified as anomalous, the
entire segment is then considered as anomalous. This modification has demonstrated
its effectiveness in practical scenarios, as recognizing an anomaly at a specific time step
typically signals an alarm, bringing attention to its corresponding entire anomalous window.
The point adjustment technique is visually presented in Figure 11. In this figure, the
Anomaly label represents the ground truth, with 1 signifying the presence of an anomaly
event at a given time step and 0 denoting regular activity. The Raw-predicted Output
displays the preliminary anomaly labels generated through threshold-based anomaly
identification. Meanwhile, the Adjusted Output portrays the results after applying the point
adjustment technique.

Figure 11. Illustration of point adjustment technique.

Algorithm A6 in Appendix A shows the entire procedure to conduct the best F1-score-
based performance evaluation.

4. Experiments and Discussions

This section outlines the results obtained from a series of experiments conducted to
evaluate the effectiveness of our proposed model. These experiments were conducted
on nine different datasets, widely recognized as benchmark datasets in the field. First, it
briefly presents the dataset used for the experiments. Next, it describes how the proposed
method has been implemented for the experiments. Subsequently, it shows the performance
outcomes achieved by our method. Finally, it presents the outcomes of an ablation study.

4.1. Benchmark Datasets

The proposed method was tested on a combination of two univariate datasets—UCR
and Power Demand—as well as seven multivariate datasets, namely ECG, 2D-Gesture,
PSM, SMD, MSL, SWaT, and WADI. Power Demand [21,27,54] is a univariate dataset that
records the yearly power demand at a Dutch research facility. The UCR (HexagolML)
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dataset [43,55] was a part of the KDD-21 competition and serves as a univariate anomaly
detection benchmark. It is divided into four subsets: 135_, 136_, 137_, and 138_.

The ECG dataset [21,27,54], consisting of two-dimensional electrocardiogram readings,
is further segmented into six sub-problems: chfdb_chf01_275 (ECG-A), chfdb_chf13_45590
(ECG-B), chfdbchf15 (ECG-C), ltstdb_20221_43 (ECG-D), ltstdb_20321_240 (ECG-E), and
mitdb_100_180 (ECG-F). The 2D-Gesture dataset [21,27,54] records two-dimensional X–Y
coordinates of hand gestures captured in videos. The PSM dataset [42,56], with 25 dimen-
sions, logs data from various application server nodes at eBay. The SMD dataset [43,57] is a
38-dimensional dataset capturing five weeks of resource utilization across 28 computers.
Only the non-trivial traces labeled as machine1-1, 2-1, 3-2, 3-7 were used in our experiments
as per [43,57]. The MSL dataset [43,58], 55-dimensional in nature, comprises soil samples
from the NASA Mars rover. Only the non-trivial trace, C2, was considered for anomaly
detection, consistent with [43,58]. The SWaT dataset [42,59] has 51 dimensions and was
gathered over a week of regular operations and four days of irregular operations at a real-
world water treatment plant. Lastly, WADI [42,59] is an extended version of SWaT, boasting
127 dimensions, and encompasses data from a broader array of sensors and actuators.
Table 1 presents the statistics of those datasets.

All datasets have been normalized to fit within the range [0, 1]. For datasets comprising
multiple time series, each series underwent independent normalization. The normalization
method is elaborated upon in Algorithm A7 located in Appendix A. Figure 12 offers a
visual representation of the normalization for a time series from the two-dimensional ECG
dataset. The green sections in the figure mark an anomalous event.

Figure 12. Normalization of a time series in the two-dimensional ECG data where each colored curve
shows a trace of a signal. Top left: an original normal time series; Top right: an original time series
with an anomaly; Bottom left: the corresponding normalized normal time series; Bottom right: the
corresponding normalized time series with an anomaly.
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Table 1. Statistics of the datasets used for evaluation.

Dataset #Dimension #Train #Test Anomaly (%)

Power demand 1 18,145 14,786 10.39%

UCR

135_ 1 1200 6301 0.19%

136_ 1 1600 5900 1.88

137_ 1 2300 5200 1.96

138_ 1 3000 4500 0.22

ECG

chfdb_chf01_275
(ECG-A) 2 1833 1841 14.61%

chfdb_chf13_45590
(ECG-B) 2 2439 1287 12.35%

chfdbchf15
(ECG-C) 2 10,863 3348 4.45%

ltstdb_20221_43
(ECG-D) 2 2610 1121 11.51%

ltstdb_20321_240
(ECG-E) 2 2011 1447 9.61%

mitdb__100_180
(ECG-F) 2 2943 2255 8.38%

2D-Gesture 2 8251 3000 24.63%

PSM 25 132,481 87,841 27.76%

SMD

machine1-1 38 28,479 27479 9.36%

machine2-1 38 23,693 23,694 4.94%

machine3-2 38 23,702 23,703 4.66%

machine3-7 38 28,705 28,705 1.51%

MSL C-2 55 764 2051 6.58%

SWaT 51 495,000 449,919 12.14%

WADI 127 1,209,601 172,801 5.7%

4.2. The Implemented Model Architecture and Its Training

For anomaly detection on the benchmark datasets, we implemented a deep neural
network model corresponding to the architecture shown in Figure 6. The reconstruc-
tion module Φ comprises an encoder, built using a six-layer TCN (temporal convolution
network), and a decoder realized with a linear layer. For the representation learning com-
ponent, the transformation module Ψ was implemented with a linear layer. In contrast,
the encoder of the encoder module Ω was implemented with a six-layer TCN, and the
projector was realized with a two-layer fully connected network.

Table 2 presents the hyperparameter values used in the experiments. For the training
of our designed network model, we employed the Adam [60] optimizer with the LARS
wrapper [61]. To adjust the learning rate, we utilized the cosine annealing technique with
a linear warmup of 10 epochs, starting with a learning rate of 10−3. Furthermore, the
hyperparameter τ was set to 0.05. The entire model was implemented using Pytorch 2.0.1
and executed on an NVIDIA Geforce RTX 2080 Ti GPU.
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Table 2. Training parameters.

Hyperparameter Set Value

Window size 16
Mask value 0.
Batch size 256
Initial lr 0.001

lr scheduling Consine annealing lr
Optimizer Adam

tau (τ) 0.05

4.3. Experiment Results and Comparison

To gain insight into how the proposed method forms the representations of samples,
the distribution of representations was visualized for some examples from the ECG and
2D-Gesture datasets. This was done for both pre-training and post-training, as depicted
in Figures 13 and 14. To ensure understandable visualization, we employed the PCA
technique to project these representations into a two-dimensional space. From the figures
to show post-training results, it is clear that the positive samples cluster closely together
while the negative samples are dispersed further away. This observation shows that our
proposed method can generate meaningful representations.

2D-Gesture dataset

Figure 13. Representation distributions before and after training for the 2D-Gesture dataset. Left: Pre-
training; Right: Post-training.

Table 3 presents the experimental outcomes achieved by our proposed method on
the benchmark datasets. We employed performance metrics such as precision, recall,
and F1 score for the evaluation. For datasets that are split into several sub-datasets, we
have provided an in-depth performance breakdown for each sub-dataset in Tables A1–A3
located in Appendix B. For datasets such as ECG, UCR, and SMD, which are divided into
multiple sub-datasets, the F1 scores were averaged across all the sub-datasets to give a
consolidated score.

To further show the effectiveness of our proposed method, we have compared its F1
score performance with that of several state-of-the-art methods, as presented in Table 4,
for the identical benchmark datasets. We made comparisons with the following meth-
ods: MAD-GAN [32], DAGMM [22], MSCRED [36], CAE-M [28], OmniAnomaly [30],
TranAD [43], GDN [29], MTAD-GAT [38], and USAD [39]. The numbers in bold indi-
cate the top-performing results for each benchmark dataset. Each compared method has
achieved its best performance by using its curated optimal hyperparameters. We have
utilized superscripts to indicate the source from which each performance score was derived:
(1) refers to the model’s original paper, (2) is sourced from [21], (3) from [42], (4) from [43],
and (5) represents the performance scores that we obtained running the datasets through the
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models using codes available from the developers’ GitHub repositories [62–64]. Scores that
carry a (6) superscript represent performances derived from evaluating the entire dataset.

ECG-A

ECG-B

Figure 14. Representation distributions before and after training for two sub-time series within the
ECG benchmark. Left: Pre-training; Right: Post-training.

Table 3. Performances of our method on the benchmark datasets.

Datasets
Performance (F1)

Precision Recall F1

Power demand 100 96.12 98.02
UCR 100 95.335 97.57
ECG 100 96.825 98.35

2D-Gesture 100 99.86 99.93
PSM 92.94 98.73 95.74
SMD 90.975 77.61 81.835
MSL 74.07 97.08 84.03
SWaT 71.37 97.84 82.53
WADI 88.00 22.43 39.71

As seen in Table 4, our proposed method outperformed others in five out of the
nine benchmark datasets. It exhibited superior performance over both univariate datasets.
When examining multivariate datasets, our method took the lead in the 2D-Gesture, SMD,
and MSL datasets.

For the UCR dataset, which comprises four sub-datasets, detailed results of our method
can be found in Table A1 in Appendix B. The ECG dataset consists of six sub-datasets
and the performances on these sub-datasets are available in Table A2 in Appendix B.
Regarding the SMD dataset, all the performance scores in Table 4 were evaluated on the
sub-dataset ’machine1-1’ of the SMD dataset. For the performance of our method on the
entire SMD dataset, refer to Table A3 in Appendix B. For the MSL dataset, the performance
was evaluated on its sub-dataset ’C-1’. Finally, for the SWaT dataset, there are two versions
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of the training datasets as shown in Table 5. We tested our method on both versions,
resulting in similar performances across both.

Table 4. Performance comparison on the benchmark datasets (Performance score: F1).

Methods

Benchmark Datasets

Power
Demand UCR ECG 2D-Gesture PSM SMD MSL SWaT WADI

MAD-GAN [32] 65.75 (5) 91.65 (4) 48.81 (5) 42.47 (2) 36.17 (5) 91.50 (4) 91.69 (4) 77.00 (1) 37.00 (1)

DAGMM [22] 65.72 (5) 68.90 (4) 82.35 (5) 38.91 (2) 80.08 (3) 94.91 (4) 84.82 (4) 81.28 (4) 14.12 (4)

MSCRED [36] 42.50 (5) 69.76 (4) 85.37 (5) 60.17 (2) 84.64 (5) 84.14 (4) 93.63 (4) 80.72 (4) 37.41 (4)

CAE-M [28] 95.52 (5) 82.22 (4) 62.32 (5) 97.94 (5) 72.04 (5) 93.67 (4) 87.33 (4) 81.01 (4) 41.17 (4)

OmniAnomaly [30] 58.71 (5) 90.98 (4) 78.21 (5) 41.11 (2) 80.83 (3) 94.01 (4) 87.65 (4) 81.31 (4) 42.60 (4)

TranAD [43] 49.96 (5) 96.94 (4) 33.33 (5) 90.34 (5) 73.86 (5) 96.05 (1) 94.94 (1) 81.51 (1) 49.51 (1)

GDN [29] 95.70 (5) 81.58 (4) 77.68 (5) 91.68 (5) 72.92 (5) 83.42 (4) 95.91 (4) 81.00 (1) 57.00 (1)

Anomaly
Transformer [42] 96.06 (5) 79.29 (5) 94.47 (5) 98.47 (5) 97.89 (1) 92.33 (1,6) 93.59 (1,6) 94.07 (1) 69.24

MTAD-GAT [38] 58.78 (5) 87.61 (4) 79.19 (5) 88.87 (5) 82.06 (5) 86.83 (4) 87.68 (4) 81.01 (1) 41.69 (4)

USAD [39] 95.70 (5) 94.476 (4) 62.33 (5) 93.36 (5) 73.86 (5) 94.95 (4) 88.22 (4) 84.00 (1) 42.96 (1)

CL-TAD 98.02 97.57 97.00 99.93 95.74 99.62 95.38 82.53 39.71
(1): indicates the results are referred from the original papers; (2): indicates the results are referred from [21];
(3): indicates the results are referred from [42]; (4): indicates the results are referred from [43]; (5): indicates the
results are obtained from our self-assessment; (6): For SMD and MSL: (6) indicates the results that are evaluated
on the whole dataset, the remaining results are evaluated on the subset, as mentioned in [60].

Table 5. Performance of our model on the SWaT dataset.

Training Option Performance

Version Training Dataset Testing Dataset Precision Recall F1

Version 1 Normal_v.0 Attack_v.1 74.00 92.76 82.32

Version 2 Normal_v.1 Attack_v.1 71.37 97.84 82.53

The experiments on the nine benchmark datasets showed that the CL-TAD outper-
formed other compared methods on five datasets, and achieved competitive performance
on two datasets. It did not achieve excellent performance on high-dimensional multivariate
time series data like WADI. The CL-TAD produces effective representations on a feature
space by incorporating the transformation module and the TCN-based encoder into its
encoding process and making use of the contrastive-learning-based training. For high-
dimensional time series data like WADI of dimension 127, it appears to struggle in deriving
appropriate representations for anomaly detection.

4.4. Ablation Study

We undertook additional experiments to better understand the characteristics of our
method. Specifically, we tried to answer the following three questions: (Q1) Is our method
efficient on a limited-sized dataset? (Q2) How efficient is our method with different
transformation functions? (Q3) Is a TCN-based architecture the right choice for feature
extraction in our method?
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4.4.1. Q1: Is Our Method Efficient on a Limited-Sized Dataset?

To ascertain the performance of our method on constrained datasets, we undertook
evaluations using just 20% of the available training data for two benchmarks: 2D-Gesture
and ECG. The results were promising. As presented in Table 6, our method delivered an
F1 score of 99.93 on the 2D-Gesture benchmark and 90.64 on the ECG benchmark. Such
high scores, despite limited training data, suggest that our approach is resilient to data
scarcity and can be effective in real-world scenarios with limited training datasets.

Table 6. Performance on the 2D-Gesture and ECG benchmarks with 20% of the available training data.

Datasets
Performance

Precision Recall F1

2D-Gesture 100 99.86 99.93

ECG 100 85.27 90.64

4.4.2. Q2: How Efficient Is Our Method with Different Transformation Functions?

To explore the adaptability of our model to various transformation functions, we
assessed its performance on the 2D-Gesture benchmark using transformation functions
other than a linear transformation. As shown in Table 7, our model impressively achieved
F1 scores of 99.66 and 99.79 when leveraging a singular 1D-CNN and a TCN, respectively, as
the transformation functions. This underscores the flexibility and efficiency of our approach
across diverse transformation functions. Furthermore, Figure 15 visually compares the
accuracy across different transformation functions, further highlighting the performance of
a linear transformation in our model.

Figure 15. Performance of our model on 2D-Gesture benchmark with different transformation functions.

Table 7. Performance on 2D-Gesture with different transformation functions.

Transformation Function
Performance

Precision Recall F1

Single 1D-CNN 100 99.32 99.66

Single TCN 100 99.59 99.79

4.4.3. Q3: Is aTCN-based Architecture the Right Choice for Feature Extraction in
Our Model?

To explore the effectiveness of different architectures in the encoders of our model, we
employed a six-layer 1D-CNN as a substitute for our standard setup. The results, detailed
in Figure 16 and Table 8, show that the TCN-based encoders consistently outperformed
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the 1D-CNN-based counterparts, achieving higher F1 scores on datasets like 2D-Gesture
and PSM. Such findings suggest that the 1D-TCN architecture is more robust than the
1D-CNN architecture in the proposed method when it comes to temporal feature extraction
for anomaly detection.

Figure 16. Performance of our model on 2D-Gesture and PSM benchmarks with different encoders.

Table 8. Performance of our model with a six-Layer 1D-CNN used in Encoders on 2D-Gesture and
PSM benchmark datasets.

Encoder Module Dataset
Performance

Precision Recall F1

6Layer 1D-CNN
2D-Gesture 100 99.59 99.79

PSM 84.64 84.71 84.68

5. Conclusions

The time series anomaly detection task has recently gained increasing attention in
diverse sectors including manufacturing, banking, and healthcare. In this paper, we
introduced CL-TAD, a novel contrastive-learning-based method for time series anomaly
detection. In our method, we augment the normal data with a combination of a masking
technique and a TCN-based encoder–decoder module. Subsequently, a representation
generation network is trained using a contrastive learning technique for both the original
normal samples and the augmented samples. The training process relies solely on normal
time series data without any anomaly events. This characteristic is particularly beneficial for
anomaly detection, with the challenges associated with collecting datasets rich in anomalies.
For the determination of anomaly score thresholds, we deploy an approach that searches
for the value that maximizes the F1 score for a designated held-out dataset. The CL-TAD is
potentially quite useful in industries such as manufacturing, finance, and healthcare for
which it is time-consuming and expensive to label training time series data because the
CL-TAD does not require labeled data. To evaluate the performance of our method, we
applied it to the nine well-known benchmark datasets. It outperformed other approaches in
five out of the nine benchmarks in terms of F1 performance. In the experiments, the CL-TAD
achieved excellent performances on univariate time series data as well as multivariate time
series data of which the number of dimensions is not high. The experiments showed that
the effective representation could be found for time series data anomaly detection by the
proposed method only with normal data. It is practically useful in practical applications
for which it is hard to obtain labeled training data.

The reliance on normal data during the training phase renders our approach highly
applicable to situations with a scarcity of labeled data. Moreover, our empirical evaluations
demonstrated that CL-TAD maintained its robust performance even with limited training
data. This means that CL-TAD can be used as a valuable tool for time series anomaly
detection, showcasing its potential to address real-world challenges effectively.
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Appendix A. Algorithms in the Proposed Method

Algorithm A1: Masked data batch generation with γ

1 Input a batch of subsequences: {Bi}S−1
i=0 ; length of a subsequence: L

2 Output a batch of masked subsequences : {Mj}N−1
j=0 . N = S× L

3 begin
4 for i in range (0, S− 1) do
5 for j in range (iL, iL + L− 1) do
6 Mj = copy(Bi)

7 Mj[j− iL] = m . m: masking value
8 end
9 end

10 end

Algorithm A2: Reconstruction loss computation for the reconstruction module Φ

1 Input a batch of masked samples {Mj}N−1
j=0 ; Reconstruction module Φ

2 Output a batch of reconstructed samples {Rj}N−1
j=0

3 begin
4 # Forward pass
5 {Rj}N−1

j=0 = Φ( {Mj}N−1
j=0 )

6 # Minimize loss
7 Lrc = 1

N ∑N−1
j=0

1
L ∑L−1

t=0 ||Bbj/Lc[t]− Rj[t]||
8 end

https://github.com/nguhcv/cl-tad
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Algorithm A3: An update step in the contrastive-learning-based representa-
tion learning

1 Input a batch of subsequence samples: {Bi}S−1
i=0 ; masking module: γ;

reconstruction module: Φ; transformation module: ψ; encoder module: Ω;
similarity score hyperparameter: τ; length of a sample: L

2 Output {Ui}S−1
i=0 , {Ej}N−1

j=0
3 begin
4 # Forward pass
5 #Generate masking data batch {Mj}N−1

j=0 with module γ

6 {Mj}N−1
j=0 = γ ( {Bi}S−1

i=0 )

7 # Generate positive samples {Rj}N−1
j=0 for {Bi}S−1

i=0 with reconstruction module Φ

8 {Rj}N−1
j=0 = Φ ( {Mj}N−1

j=0 )

9 # Generate learnable augmented samples {Tj}N−1
j=0 of {Rj}N−1

j=0 with module ψ

10 {Tj}N−1
j=0 = ψ ( {Rj}N−1

j=0 )

11 # Captures information from {Tj}N−1
j=0 and map to a new space {Ej}N−1

j=0 for
contrastive learning with module Ω

12 {Ej}N−1
j=0 = Ω ( {Tj}N−1

j=0 )

13 # Captures the information from {Bj}N−1
j=0 and map to a new space {Uj}N−1

j=0 for
contrastive learning with module Ω

14 {Ui}S−1
i=0 = Ω ( {Bi}S−1

i=0 )

15 # Calculate the reconstruction loss Lrc based on {Bi}S−1
i=0 and {Rj}N−1

j=0

16 Lrc = 1
N ∑N−1

j=0
1
L ∑L−1

t=0 ||Bbj/Lc[t]− Rj[t]||
17 # Calculate the contrastive loss Lct based on {Ui}S−1

i=0 and {Ej}N−1
j=0 (line 18 ∼

31)
18 # Calculate pairwise similarity score between all positive (U,E) pairs based on

Equation 4
19 for i ∈ (0,S-1) do
20 for k ∈ (iL, iL+L-1) do

21 v(Ui, Ek) = exp( UT
i Ek

‖Ui‖‖Ek‖
∗ σ(u(Ui))

τ ) . σ: sigmoid function

22 end
23 end
24 # Calculate pairwise similarity score between all positive (E,U) pairs based on

Equation 4
25 for j ∈ (0,N-1) do

26 v(Ej, Ubj/Lc) = exp(
ET

j Ubj/Lc
‖Ej‖‖Ubj/Lc‖

∗ σ(u(Ej))
τ ) . σ: sigmoid function

27 end

28 define Lct(Ui, Ek) = −log v(Ui ,Ek)

∑N−1
j=0 1[j 6∈[iL,iL+L−1]]v(Ui ,Ej)+∑S−1

m=0 1[m 6=i]v(Ui ,Um)+v(Ui ,Ek)

29 define Lct(Ej, Ubj/Lc) = −log
v(Ej ,Ubj/Lc)

∑N−1
k=0 1[k 6∈[hL,hL+L−1]]v(Ej ,Ek)+∑S−1

i=0 v(Ej ,Ui)

30 # Calculate an average contrastive loss
31 Lct = 1

2 ([
1
N ∑S−1

i=0 ∑iL+L−1
k=iL Lct(Ui, Ek)] + [ 1

N ∑N−1
j=0 Lct(Ej, Ubj/Lc)])

32 # Calculate the final loss L f inal

33 L f inal = Lrc + Lct

34 Update weights in modules Φ, ψ, Ω to minimize the loss L f inal

35 end
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Algorithm A4: Anomaly score computation and anomaly detection

1 Input A set of subsequences for a testing time series: W, masking module: γ,
transformation function: ψ, encoder function: Ω, threshold: δ

2 begin
3 foreach sliding window Wi ∈W do
4 # Forward pass
5 #Generate L masking samples {Mj}L−1

j=0 with module γ

6 {Mj}L−1
j=0 = γ ( Wi)

7 # Generate L positive samples {Rj}L−1
j=0 for Wi with reconstruction module Φ

8 {Rj}L−1
j=0 = Φ ( {Mj}L−1

j=0 )

9 # Generate L learnable augmented samples {Tj}L−1
j=0 of {Rj}L−1

j=0 with module ψ

10 {Tj}L−1
j=0 = ψ ( {Rj}L−1

j=0 )

11 # Captures information from {Tj}L−1
j=0 and map to a new space {Ej}L−1

j=0 with
module Ω

12 {Ej}L−1
j=0 = Ω ( {Tj}L−1

j=0 )

13 # Captures the information from Wi and map to a new space Ui with module Ω
14 Ui = Ω ( Wi)

15 # Detect anomaly of Wi (line 16 ∼ 28)
16 if i = 0 then
17 # Detect anomaly at every time point of Wi
18 for j in range (0, L− 1) do
19 D(Ui, Ej) = ‖Ui/||Ui|| − Ej/||Ej||‖2

20 if D(Ui, Ej) > δ then
21 Wi[j] is an anomaly point
22 end
23 end
24 else
25 if i > 0 then
26 # Detect anomaly at the last time point of Wi
27 # Calculate distance between Ui and EL−1
28 D(Ui, EL−1) = ‖Ui/||Ui|| − EL−1/||EL−1||‖2
29 if D(Ui, EL−1) > δ then
30 Wi[−1] is an anomaly point
31 end
32 end
33 end
34 end
35 end
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Algorithm A5: Determination of the list of candidate thresholds

1 Input A set of subsequences for a test time series: W, masking module: γ,
transformation module: ψ, encoder module: Ω

2 Output a list of threshold ∆
3 begin
4 # Determine the maximum distance between a positive (U,E) pair (line 5 ∼ 28)
5 dmax = 0 . dmax : maximum distance between a positive (U,E) pair
6 foreach input data batch {Bi}S−1

i=0 ∈W do
7 # Forward pass (line 8 ∼ 17)
8 #Generate masking data batch {Mj}N−1

j=0 with module γ

9 {Mj}N−1
j=0 = γ ( {Bi}S−1

i=0 )

10 # Generate positive samples {Rj}N−1
j=0 for {Bi}S−1

i=0 with reconstruction module Φ

11 {Rj}N−1
j=0 = Φ ( {Mj}N−1

j=0 )

12 # Generate learnable augmented samples {Tj}N−1
j=0 of {Rj}N−1

j=0 with module ψ

13 {Tj}N−1
j=0 = ψ ( {Rj}N−1

j=0 )

14 # Captures information from {Tj}N−1
j=0 and map to a new space {Ej}N−1

j=0 for
contrastive learning with module Ω

15 {Ej}N−1
j=0 = Ω ( {Tj}N−1

j=0 )

16 # Captures the information from {Bj}N−1
j=0 and map to a new space {Uj}N−1

j=0 for
contrastive learning with module Ω

17 {Ui}S−1
i=0 = Ω ( {Bi}S−1

i=0 )

18 # Determine the maximum distance dmax (line 19 ∼ 28)
19 for i in range (0, S-1) do
20 distances =[]
21 for k in range (iL, iL+L-1) do
22 # Calculate distance between Ui and Ek
23 D(Ui, Ek) = ‖Ui − Ek‖2
24 distances.append( D(Ui, Ek))
25 end
26 dmax = max(dmax, max(distances))
27 end
28 end

29 # Generate a list of thresholds for testing dmax (line 30 ∼ 35)
30 ∆ = []

31 interval = dmax
1001

32 for c in range (0,1000) do
33 ∆.append((c + 1) ∗ interval)
34 end
35 end
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Algorithm A6: The evaluation of the best F1-based performance
1 Input A set of subsequences for a test time series: W; masking module: γ; reconstruction module: ψ;

encoder module: Ω; a list of candidate thresholds: ∆; ground true labels: Gt
2 Output The best F1 score and its threshold
3 begin
4 F1−best = 0; Precision f = 0; Recall f = 0; threshold f = 0;
5 foreach δ ∈ ∆ do
6 Os = [] # Initial empty output sequence Os
7 foreach a subsequence Wi ∈W do
8 # Forward pass
9 #Generate L masking samples {Mj}L−1

j=0 with module γ

10 {Mj}L−1
j=0 = γ ( Wi)

11 # Generate L positive samples {Rj}L−1
j=0 for Wi with reconstruction module Φ

12 {Rj}L−1
j=0 = Φ ( {Mj}L−1

j=0 )

13 # Generate L learnable augmented samples {Tj}L−1
j=0 of {Rj}L−1

j=0 with module ψ

14 {Tj}L−1
j=0 = ψ ( {Rj}L−1

j=0 )

15 # Captures information from {Tj}L−1
j=0 and map to a new space {Ej}L−1

j=0 with module Ω

16 {Ej}L−1
j=0 = Ω ( {Tj}L−1

j=0 )

17 # Captures the information from Wi and map to a new space Ui with module Ω
18 Ui = Ω ( Wi)
19 # Detect anomaly of Wi
20 if i = 0 then
21 # Detect anomaly at every time point of Wi
22 for j in range (0, L− 1) do
23 D(Ui , Ej) = ‖Ui − Ej‖2

24 if D(Ui , Ej) ≤ δ then
25 Os.append(0)
26 else
27 Os.append(1)
28 end
29 end
30 else
31 if i > 0 then
32 # Detect anomaly at the last time point of Wi
33 # Calculate distance between Ui and EL−1
34 D(Ui , EL−1) = ‖Ui/||Ui || − EL−1/||EL−1||‖2
35 if D(Ui , Ej) ≤ δ then
36 Os.append(0)
37 else
38 Os.append(1)
39 end
40 end
41 end
42 end
43 point-adjustment ( Os, Gt)
44 Calculate F1, Precision, Recall ( Os, Gt)
45 end
46 if F1−best < F1 then
47 F1−best = F1; Precision f = Precision; Recall f = Recall; threshold f = δ

48 end
49 return F1−best; Precision f ; Recall f ; threshold f

50 end
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Algorithm A7: Normalization of the dataset

1 Input original training time series: Xtrain; original test time series: Xtest;
dimension of data point: d

2 begin
3 # Calculate maximum value vmax and minimum value vmin on Xtrain
4 vmax = max(Xtrain)
5 vmin = min(Xtrain)
6 # Normalize values on both Xtrain and Xtest
7 for i in range (0, d− 1) do
8 Xtrain[i][:] = (Xtrain[i][:]− vmin/(vmax − vmin))

Xtest[i][:] = (Xtest[i][:]− vmin/(vmax − vmin))
9 end

10 end

Appendix B. Detailed Performance of Our Method on the Sub-Datasets of Some
Benchmark Datasets

Table A1. Detailed Performance on the UCR benchmark.

UCR
Sub-Time Series

Performance

Precision Recall F1

135_ 100 92.31 96.00

136_ 100 99.10 99.55

137_ 100 99.03 99.51

138_ 100 90.90 95.23

Average 100 95.335 97.57

Table A2. Detailed Performance on the ECG benchmark.

ECG
Sub-Time Series

Performance

Precision Recall F1

ECG-A
chfdb_chf01_275 100 99.62 99.81

ECG-B
chfdb_chf13_45590 100 99.37 99.68

ECG-C
chfdbchf15 100 79.68 88.69

ECG-D
ltstdb_20221_43 100 90.20 94.85

ECG-E
ltstdb_20321_240 100 98.58 99.28

ECG-F
mitdb_100_180 100 99.47 98.35

Average 100 94.48 97.00
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Table A3. Detailed Performance on the SMD benchmark.

SMD
Sub-Time Series

Performance

Precision Recall F1

machine1-1 99.51 99.74 99.62

machine2-1 80.13 98.28 88.29

machine3-2 98.09 64.40 77.76

machine3-7 86.17 48.01 61.67

Average 90.975 77.61 81.835
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