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Abstract: Deep learning-based automatic modulation recognition networks are susceptible to adver-
sarial attacks, posing significant performance vulnerabilities. In response, we introduce a defense
framework enriched by tailored autoencoder (AE) techniques. Our design features a detection AE
that harnesses reconstruction errors and convolutional neural networks to discern deep features,
employing thresholds from reconstruction error and Kullback–Leibler divergence to identify adver-
sarial samples and their origin mechanisms. Additionally, a restoration AE with a multi-layered
structure effectively restores adversarial samples generated via optimization methods, ensuring
accurate classification. Tested rigorously on the RML2016.10a dataset, our framework proves robust
against adversarial threats, presenting a versatile defense solution compatible with various deep
learning models.

Keywords: adversarial examples; sample detection; sample restoration; autoencoder

1. Introduction

The Internet of Things (IoT) has rapidly advanced, leading to intelligent connectivity
and massive data generation via numerous sensors [1,2]. Modulation signal recognition,
a pivotal IoT technology, ensures physical security and has seen deep learning-based
improvements in sensitivity and accuracy [3,4]. The adoption of convolutional neural
networks (CNNs) and deep neural networks (DNNs) in signal recognition, as noted in [5],
reduces reliance on prior knowledge, mitigates manual feature extraction subjectivity, and
delivers enhanced recognition and generalization.

Deep learning models, particularly those developed in recent years, have exhibited
vulnerability to adversarial attacks. While Szegedy [6] notably spotlighted that specific
imperceptible perturbations can dramatically increase a network’s prediction error, leading
to image misclassification, it is crucial to contextualize this within a broader history of
adversarial threats. The challenges associated with machine learning model security
have been highlighted earlier, indicating risks beyond the contemporary deep learning
models [7]. Moreover, adversarial attacks are rooted in the wider concept of “adversarial
learning”, a notion that predates the extensive study of neural network vulnerabilities.
For instance, adversarial classifications were explored in foundational works like those by
Dalvi et al. [8]. Outside the confines of machine learning, similar threats were considered
in domains such as biometrics, as seen in the works of Volchikhin et al. [9].

These adversarial concerns are part of a broader landscape of influences, each with
its historical lineage. The subsequent research, applications, and risks—such as those in
autonomous driving [10]—address these vulnerabilities specifically within the realm of
deep learning systems and gradient descent-based algorithms. Hence, while our focus is on
these contemporary issues, it is essential to acknowledge that the challenge of adversarial
attacks and the quest for solutions span a broader and more longstanding continuum in
the realm of machine learning and artificial intelligence.

Following this historical backdrop of adversarial threats in machine learning and arti-
ficial intelligence, contemporary research on adversarial attacks has significantly amplified,
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leading to the evolution of defense mechanisms [11,12]. Adversarial training, emerging
as a primary countermeasure, has harnessed the power of data augmentation to fortify
model robustness [13]. Another approach, defense distillation, focuses on attenuating the
sensitivity to adversarial perturbations by training sequential deep networks [14].

The rise of adversarial attacks in deep learning has ushered in innovative detec-
tion methods such as reconstruction error and Kullback–Leibler (KL) divergence. Tech-
niques harnessing reconstruction errors, like those using Generative Adversarial Networks
(GANs) [15], focus on comparing original inputs with their regenerated counterparts to
discern adversarial examples. Similarly, KL divergence [16,17], which measures the differ-
ence between two probability distributions, has proven instrumental in detecting classifier
inconsistencies. Notably, in computer vision, GAN-based methodologies are emerging as
frontrunners for restoring adversarial examples [15].

The unique nature of electromagnetic signal data sets them apart from traditional
image or speech data. Though techniques like reconstruction error and KL divergence
have proven valuable for image classification, their direct application to signal modulation
classification often falls short. This gap emphasizes a pressing need for a method tailored
to electromagnetic signals, harmoniously combining reconstruction error, KL divergence,
and adversarial restoration for heightened safety and classification resilience.

This study focuses exclusively on enhancing adversarial example detection and restora-
tion in electromagnetic signal modulation. We developed a framework using autoencoders
(AEs) to detect and fix adversarial examples. This framework identifies whether a signal is
adversarial and offers a reliable evaluation standard. Our design comprises two AE struc-
tures: one for detecting and another for restoring signals. The detection method can identify
different types of attacks, namely gradient-based and optimization-based. Optimization
attacks are subtle yet harmful. Our system can repair these tampered samples, ensuring
they are recognized correctly. Importantly, our method can identify the attack’s origin,
whether from gradient-based or optimization tactics. Knowing the attack type is crucial for
accurate defenses. Our framework can assist various models. Tests on the RML2016.10a
dataset show that our method improves the signal recognition against adversarial threats.

The contributions of this paper are as follows:

• Integrating the metrics of reconstruction error and KL divergence, we propose a refined
signal adversarial example detection framework based on AE. This approach uniquely
captures the deep features of input samples, marking the first-time identification of
the mechanisms behind adversarial examples, discerning whether they stem from
gradient-based methods or optimization techniques.

• We design an adversarial examples restoration method based on AE. Through a
carefully conceived AE architecture, we effectively restored the identified adversarial
examples generated through optimization techniques, thereby enhancing the model’s
ability to recognize and recover from adversarial perturbations.

• All proposed frameworks and techniques were rigorously validated on the RML2016.10a
dataset. Achieving a comprehensive detection rate of up to 88% for five classical
adversarial examples, the model’s recognition rate improved by over 40% after the
recovery of adversarial examples. These results compellingly attest to the effectiveness
of the introduced framework.

The remaining sections of this paper are structured as follows: Section 2 reviews
related work. Section 3 details our research methods. Section 4 presents our proposed
framework. Section 5 validates the framework with results and discussions. Section 6
concludes with contributions, findings, and future directions.

2. Related Work

The electromagnetic domain faces notable challenges from adversarial attacks.
Sedeghi et al. [18] first identified adversarial impacts on signal recognition. Subsequent
studies highlighted the reduction in communication efficiency in IoT systems due to these
attacks [19] and vulnerabilities in RF fingerprinting [20–22]. Practical implications were
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explored by Flowers et al. [23] who proposed BER as an evaluation metric. Research also
delved into the influence of gradient-based attacks on modulation recognition [24] and the
vulnerabilities in CNN-based device identification [25].

From these observations, it is evident that the electromagnetic domain is severely
impacted by adversarial attacks, affecting communication processes, modulation recog-
nition, and reliable transmission. This jeopardizes regular communication security and
privacy protection. Adversarial examples have thus evolved into a widely acknowledged
threat within the electromagnetic domain. The threat posed by adversarial examples to
applications in the electromagnetic field is depicted in Figure 1.

Adversarial 

Perturbation
ERROR

IoT Threat Scenario

Deep

Learning

Figure 1. Threat scenarios of adversarial examples in the electromagnetic field.

To address the challenges posed by adversarial attacks, researchers in the signal
domain have introduced various defense techniques. Examples include the adversarial
training method proposed by Ren et al. [26], the multi-layer defense mechanisms by
Tian et al. [27], and the stochastic smoothing approach by Kim et al. [28]. Notably, these
techniques are largely aimed at enhancing model robustness. However, they often require
retraining or modifications to the model’s architecture, which could affect its performance
and practicality.

Recent advancements in adversarial example detection have leveraged AE, with
initial success in computer vision. Wójcik et al. [29] utilized intermediate layers of target
networks to detect adversarial examples using AE. Tong et al. [30] integrated Gaussian,
mean, and median filtering with AEs for image adversarial detection. Ye et al. [31] proposed
the FADetector using feature knowledge. In the realm of RF signals, Silvija et al. [22]
took a statistical approach toward adversarial detection, although with a constrained
experimental scope.

In essence, while AE-based techniques show promise, direct applications from the
image to signal domains are ineffective. There is an emerging need for AE structures
tailored to signals and broader validation across modulated signal datasets.

3. Description of Research Methods
3.1. Automatic Modulation Recognition

Automatic modulation recognition is a method that employs machine learning tech-
niques to classify and identify radio signals. In this task, deep learning can be used to
autonomously learn the features of modulation signals and classify them. The advantage
of deep learning is its ability to automatically extract features, eliminating the need for
manually designed feature extraction algorithms. The input data to the network can be the
raw signal data, and the deep neural network, acting as a combination of a feature extractor
and classifier, can self-learn patterns in the data. Based on these patterns, it can classify the
data, realizing an end-to-end modulation pattern-recognition process.

3.2. Adversarial Examples

Adversarial examples are samples that have been deliberately perturbed to induce
misclassification in a model. These carefully designed samples exploit vulnerabilities inher-
ent in the model to attack it, enticing the model to misclassify the sample into the wrong
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class with high confidence, thereby compromising the model’s security. The expression for
generating adversarial examples is as follows:

x̃ = x + δ, ‖δ‖∞ ≤ ε (1)

where x represents the original sample, x̃ denotes the adversarial example, δ is the pertur-
bation added to the input sample, and ε represents the maximum allowable perturbation to
the input, ensuring that the adversarial example does not deviate significantly from the
original sample.

3.2.1. Threat Model

Adversarial attacks can primarily be categorized into two types based on their genera-
tion methods: gradient-based attacks and optimization-based attacks [32].

Gradient-Based Attacks: These attacks exploit the gradient information of the neural
network’s loss function to generate adversarial examples. Such methods typically compute
the gradient of the loss with respect to the input data to craft the adversarial perturbations.
The main idea is to adjust the original input in the direction that maximizes the model’s loss,
making the model more likely to misclassify the perturbed input. Examples of gradient-
based attacks include FGSM, BIM, and PGD.

Optimization-Based Attacks: These attacks involve solving an optimization problem
to find the smallest perturbation that can lead to misclassification. Such methods do not
directly rely on the gradients of the neural network’s loss function but focus on other
optimization criteria to craft adversarial examples. The optimization process is generally
more computationally intensive than gradient-based methods but can produce highly
effective adversarial examples. The C&W attack and Deepfool algorithms are typical
examples of optimization-based attacks.

In this work, we focus on the white-box attack scenario. In the white-box model,
attackers have access to the complete structure and parameter information of the target
model. They can directly generate adversarial examples on the target neural network,
compute the true or approximated gradients of the real model, and adjust their attack
methods based on the defense mechanisms and parameters they encounter.

3.2.2. Adversarial Attacks

In this section, we classify adversarial attacks into two main categories: gradient-
based attacks and optimization-based attacks, providing a comprehensive overview of
each method.

Gradient-Based Attacks

These attacks leverage the gradient information of the model’s loss function with
respect to the input data to craft adversarial examples.

FGSM: The Fast Gradient Sign Method (FGSM) is a non-targeted attack method that
generates adversarial samples by constraining the L∞ norm of the original samples [11].
It operates by moving in the gradient direction of the adversarial loss function J(θ, x, y)
to maximize the loss. Specifically, the adversarial sample generation using FGSM can be
expressed as: {

x̃ = x + ρ
ρ = ε · sign(∇x Jθ(x, l))

(2)

where x denotes the original sample, l the target label, ρ the perturbation, and ε the
maximum allowed perturbation. The constraint ensures that the magnitude of ρ in the L∞
norm remains within ε.

BIM: Building on FGSM, the Basic Iterative Method (BIM) [33] enhances adversarial
example generation by repeatedly adjusting the gradient. This iterative process crafts more
potent adversarial examples with less discernible perturbations compared to FGSM.
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PGD: Projected Gradient Descent (PGD) [12] is a more refined gradient-based method
that aims to find the perturbations maximizing the model’s loss function, given certain
constraints. PGD optimizes the expected loss over potential perturbations in the input
space, producing notably robust adversarial samples.

Optimization-Based Attacks

These attacks solve optimization problems to find the least perturbation required to
misclassify a given sample.

C&W Attack: The C&W attack, proposed by Carlini and Wagner [34], crafts adversarial
examples across different distance metrics. While it predominantly uses the L2 norm, the
method’s optimization ensures that the perturbed input remains within a valid input space,
leading to high-confidence adversarial examples.

Deepfool: Deepfool [35] is an optimization-based attack that operates under the L2
norm. Its goal is to determine the minimal perturbation required to have an input sample
misclassified by crossing the decision boundary to another class. In comparison to FGSM
and BIM, Deepfool is particularly efficient in achieving high misclassification rates with
minimal perturbations.

3.3. Reconstruction Error

Reconstruction error is a measure used to quantify the difference between the original
version of data and their reconstructed version. For many models, especially AEs, the
objective is to learn an encoding function and a decoding function such that the input data,
after being encoded and subsequently decoded, can approximate their original form as
closely as possible. Let us assume that we have an input data x and their corresponding
reconstruction x̂. The reconstruction error E is typically defined as the difference between
them. For continuous data, the most common reconstruction error is the Mean Squared
Error (MSE), which can be defined as:

E(x, x̂) =
1
N

N

∑
i=1

(xi − x̂i)
2 (3)

where N represents the dimensionality of the data. For discrete or categorical data, other
types of error functions, like cross-entropy loss, can be employed. In any form, the recon-
struction error offers us a means to quantify the discrepancy between the original data and
their reconstructed version.

3.4. Kullback–Leibler Divergence

KL divergence is a measure used to quantify the relative entropy between two prob-
ability distributions. It provides us with a means to quantify the information lost when
approximating one probability distribution (usually the true distribution) with another
(usually the model distribution). Mathematically, for the discrete probability distributions
P and Q, the KL divergence is defined as:

DKL(P ‖ Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
(4)

For continuous distributions, it can be expressed as:

DKL(P ‖ Q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx (5)

where p(x) and q(x) are the probability density functions of distributions P and Q, re-
spectively. It is important to note that KL divergence is not symmetric, meaning that
DKL(P ‖ Q) 6= DKL(Q ‖ P). Thus, it is not a true distance metric, but offers us a powerful
tool for measuring the similarity or difference between two distributions.
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3.5. Adversarial Example Restoration

Adversarial example restoration is a process whose goal is to recover the original,
unperturbed data from the tampered adversarial example. Given a known adversarial
example xadv, our objective is to find a close, untampered data point. This can be repre-
sented as an optimization problem where we attempt to minimize some distance measure
between xadv and its corresponding original sample x. A common approach is to use the
Euclidean distance as the metric and recover through the following optimization problem:

min
x′
‖xadv − x′‖2

2 (6)

here, x′ is the unperturbed data sample we are attempting to recover. The crux of the
restoration lies in finding an efficient method or algorithm to solve the above optimization
problem, yielding x′, which should be very close to the original sample x and distinctly
different from the adversarial example xadv.

4. The Proposed Detection and Restoration Framework

Our designed framework focuses on detecting and restoring adversarial examples
for the automatic modulation classification model. The framework workflow begins with
detection using the reconstruction error, proceeding to KL divergence-based detection if
the error is below a threshold. If the reconstruction error surpasses a predefined limit,
the sample is flagged as an adversarial example; otherwise, it is deemed clean and sent
for classification. KL divergence measures the difference between output probability
distributions of the sample and its reconstructed version, determining adversarial examples
produced via optimization. Those exceeding the KL divergence threshold are restored
before classification, while others are directly classified. We proposed two novel AE designs:
one for detection, leveraging a hybrid encoder for precise feature extraction, and another for
restoration, employing an intricate decoder to revert adversarial examples to their original
state. The detailed architecture and workflow are illustrated in Figure 2.

Figure 2. Flowchart of the proposed adversarial example detection and restoration framework for
automatic modulation classification.

4.1. Detector Design

The encoder designed in this paper for detection is a hybrid AE that combines both
CNN and Long Short-Term Memory (LSTM) networks. The CNN component is primarily
employed to process input data and extract their spatial features. Once the input data are
processed by the convolutional encoder, the original input is fed into an LSTM layer. After
both the convolutional encoder and LSTM layers have processed the data, their outputs
are concatenated along the channel dimension. The concatenated data are then passed to
the decoder, which consists of several transposed convolutional layers. These transposed
convolutional layers can be viewed as the inverse operations of the convolutional layers
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in the encoder. They gradually increase the spatial dimensions of the data and decrease
the number of channels to restore the shape of the original input data. The AE structure
designed for the detector is illustrated in Figure 3.
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Figure 3. Designed detection AE.

As evident from Figure 3, the encoder segment comprises both a convolutional encoder
and an LSTM layer. The convolutional encoder is responsible for extracting spatial features
from the input data, while the LSTM layer handles the sequential nature of the input data.
The outputs of these two components are then concatenated, forming a richer representation
that encompasses both the spatial and sequential features of the input data. This design
holds potential positive implications for adversarial example detection, particularly in terms
of its capacity to learn complex patterns. The CNN and LSTM structures in the encoder part
can learn features from both spatial and temporal dimensions, enabling the AE to capture
more intricate patterns, thus enhancing its capability to detect adversarial examples.

4.2. Restorer Design

The designed AE for restoration also comprises two parts: an encoder and a decoder.
The structure of the encoder part follows a standard CNN architecture. The decoder part
is primarily responsible for reconstructing the output of the encoder back to the shape of
the original input. The design of the decoder is closely related to that of the encoder, but
it incorporates batch normalization and dropout layers at each step. Batch normalization
accelerates training and enhances model generalization, while dropout prevents overfitting
and increases model robustness. The AE structure tailored for restoration is illustrated in
Figure 4.

The primary role of the decoder in the AE designed for restoration is to learn how to
recover the original high-dimensional data from the hidden low-dimensional representation.
Through this process, the decoder acquires the high-level features of the data and is capable
of generating new data that resemble the input data. By utilizing convolutional transpose
layers, the decoder can convert the low-resolution features from the encoder output into
high-resolution outputs. In this process, the decoder learns how to recover fine-grained
details from low-resolution features. With multiple levels of upsampling, convolution,
batch normalization, and dropout operations, the decoder can capture features at different
scales, enabling it to better restore the original data. Therefore, the design of this decoder
allows the AE to effectively learn and generate high-quality data that closely match the
input, facilitating the restoration of adversarial signal samples to their original forms.
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Figure 4. Designed restoration AE.

4.3. Detection Method Based on Reconstruction Error

Compared to supervised learning methods, the reconstruction-based detection ap-
proach eliminates the need for adversarial examples. This is because this approach does
not require labeled anomalous data or prior knowledge of the features of anomalous
data. Moreover, this method can capture implicit anomalies that have not appeared in the
training data, which contributes to enhancing the generalization capability of the detector.

Our framework utilizes an AE-based approach for detecting adversarial examples,
using only regular samples during modeling. Adversarial attacks introduce minor alter-
ations to original data, challenging accurate reconstructions by machine learning models.
To address this, we use an AE to reconstruct the input and compute the reconstruction
error. If this error exceeds a threshold, the data are identified as an adversarial example.
The AE, represented as ae = d ◦ e, comprises an encoder, which compresses input data into
a low-dimensional representation, and a decoder that tries to reconstruct the original data
from this encoded format.

When dealing with signal datasets consisting of In-phase (I) and quadrature (Q),
considering their characteristics, we propose a method that combines reconstruction errors
with signal features to enhance the performance of the AE. Specifically, we focus not only on
the reconstruction error but also introduce a signal feature measurement to better capture
the subtle perturbations in I/Q signals. To enable the model to better capture the properties
of I/Q signals, we introduce an enhanced loss function that optimizes the reconstruction
error separately for the I component and Q component. Specifically, our loss function is
defined as follows:

L(Xtrain) =
1

|Xtrain| ∑
x∈Xtrain

(
‖xI − ae(x)I‖2

2 + ‖xQ − ae(x)Q‖2
2

)
(7)

where xI and xQ represent the I and Q components of the input data, and ae(x)I and
ae(x)Q represent the reconstructed outputs of the AE for the respective components. This
decomposition allows us to calculate the reconstruction error separately for each component
and then compute a weighted average of the errors from both components. This ensures
that the model is optimized for both the I and Q components.
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Given an input sample x, the reconstruction error, derived from the I and Q channels,
is defined as:

E(x) =
1
N

N

∑
n=1

(
‖xI,n − ae(x)I,n‖2

2 + ‖xQ,n − ae(x)Q,n‖2
2

)
(8)

where N is the sample count per channel. This function gauges discrepancies in both
channels for each sample, ensuring comprehensive signal representation.

The AE learning comprises two stages:

• Encoder: Produces a compressed data representation.
• Decoder: Reconstructs the original data from this representation.

For adversarial examples, a high reconstruction error is anticipated, but it is minimal
for regular test samples. A threshold tre distinguishes normal samples. It is set as low as
possible to detect subtle adversarial perturbations, but not so low as to misclassify regular
samples. Typically, tre is set based on the error distribution within a validation set. The
method involves selecting a threshold. This threshold is determined by minimizing the
proportion of samples whose reconstruction errors exceed it, relative to the total number of
samples. This method can avoid overfitting and issues with model instability. Additionally,
the threshold can be adjusted according to the specific needs of the application. The
algorithmic process is outlined in Algorithm 1.

Algorithm 1: Reconstruction error-based adversarial detection.
Data: Training dataset Xtrain, Test sample x, Validation dataset Xvalidation
Result: Boolean indicating if x is adversarial

1 Initialize ae = d ◦ e
2 while not converged do
3 Xreconstructed ← ae(Xtrain)

4 L = 1
|Xtrain| ∑ ‖x− Xreconstructed‖2

5 Update ae parameters using backpropagation
6 end
7 Compute reconstruction errors for Xvalidation using ae
8 tre ← threshold based on error distribution of Xvalidation
9 E(x)← ‖x− ae(x)‖p

10 if E(x) > tre then
11 return True // Sample x is adversarial
12 end
13 else
14 return False // Sample x is not adversarial
15 end

4.4. Detection Method Based on KL Divergence

Signal processing involves the challenge of distinguishing genuine signals from adver-
sarial ones. Due to the inherent complexities, conventional methods often fall short. We
propose an innovative solution, harnessing KL divergence and deep learning, to detect
adversarial signals.

Given a genuine signal S, an ideal classifier outputs a probability distribution PC(S).
Adversarial perturbation shifts this to PC(Sadv), with the divergence quantified as:

DKL(PC(S)||PC(Sadv)) = ∑
i

PC(S)i log
PC(S)i

PC(Sadv)i
(9)
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Using an AE, signals transition to a latent space representation z, followed by a classi-
fier yielding Q(z|S). The KL divergence between this and the genuine signal distribution
P(z|S) is our key metric:

D[Q(z|S)‖P(z|S)] = EZ∼Q[log Q(Z)− log P(z|S)] (10)

We further refine the result by integrating the classifier parameters, θC, resulting in:

D[Q(z|S, θC)‖P(z|S)] = EZ∼Q[log Q(Z, θC)− log P(z|S)] (11)

This methodology underscores the classifier’s probabilistic boundary in the latent
space, using KL divergence to spotlight adversarial perturbations. Using an appropriate
prior distribution, typically Gaussian, enhances the method’s robustness. This synergy
between classifier probabilities and latent space representation empowers detection of
adversarial signal examples, merging mathematical rigor with practical efficacy. The
algorithmic process is outlined in Algorithm 2.

Algorithm 2: Detection method based on kl divergence with classifier integration.
Data: Training sample xi, testing sample yj, initial sample size N, random sample

size M, classifier C
Result: Classification results of the samples

1 1. Assume the original data follows a Gaussian distribution P(z).
2 2. Use P(z|X) to approximate P(z), where X is the output from the classifier C(x).
3 3. Introduce another distribution Q(z|X) to approximate P(z|X).
4 4. Calculate KL divergence:

D[Q(z|X)‖P(z|X)] = EZ∼Q[log Q(Z)− log P(z|X)]

5 5. Set the optimal threshold tre based on validation set.
6 6. for j = 1 to M do
7 a. Compute D[Q‖P] for yj.
8 b. if D[Q‖P] < tre then
9 yj is labeled as a normal sample.

10 else
11 yj is labeled as an adversarial example.
12 end
13 end

4.5. Adversarial Example Restorer Method

The detection method based on the reconstruction error has shown efficacy against
gradient-based adversarial examples in signal processing. Gradient-based methods sig-
nificantly alter a signal’s structure, causing adversarial waveforms to diverge from clean
samples. This divergence makes it challenging to restore the original structure.

Despite the minimal waveform differences between optimized CW, Deepfool adver-
sarial examples, and their original counterparts, neural networks can discern in high-
dimensional spaces what human eyes cannot. When adversarial examples traverse the AE,
their latent variables adjust to resemble clean samples. In the low-dimensional latent space,
perturbations dissipate, enabling the AE to reconstruct normal signals from adversarial in-
puts. This restoration allows convolutional neural networks to accurately classify samples.
The restoration layers are represented as:

xhi+1
= T

(
Whi

xhi
+ bhi

)
(12)
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where the matrix Whi
and vector bhi

represent the weights and biases of the hidden layer hi,
respectively. Their dimensions depend on the size of the input data, such that if the input
data have dimensions m, then Whi

∈ Rm×r and bhi
∈ Rm. Conversely, if the input data

dimensions are r, then Whi
∈ Rr×m and bhi

∈ Rr. Within this context, x denotes the hidden
neurons, and the function T(•) acts as the restoration function. An important aspect to
note is that the initial input xho to the restorer corresponds to ht. Building on these details,
the computation for the output layer can be represented by the subsequent equation:

φ̃ = T(Wrxh + br) (13)

where Wr ∈ Rr×m and br ∈ Rm are the weight matrix and bias of the final hidden layer,
respectively.

The encoder of the AE maps the two-dimensional I/Q signal to a high-dimensional
feature representation z of size m× n using multiple fully-connected layers:

z = f
(
W ′ f (Wx + b) + b′

)
(14)

where x is the input signal, W, b, W ′, and b′ are weight matrices and bias vectors for
respective layers, and f is the nonlinear activation function.

The decoder, similar in structure, aims to reconstruct the input from the latent space z
and feeds the output to a classifier.

x̂ = g
(
W ′′′g

(
W ′′z + b′′

)
+ b′′′

)
(15)

where z is the output of the encoder, W ′′ and b′′ represent the weight matrix and bias vector
of a particular fully connected layer in the decoder, and W ′′′ and b′′′ correspond to the
subsequent fully-connected layer in the decoder. The function g is a nonlinear activation
function. Ultimately, x̂ is the output of the decoder, representing the reconstructed data.

An ideal decoder, in operation, should not introduce significant changes to normal
samples; for adversarial examples, it should induce sufficient alterations to revert them
to normal samples. However, these modifications should not exceed the divergence dis-
tribution range of normal samples. On this premise, our framework aims to enhance the
classification accuracy of adversarial examples while retaining the accuracy for normal
samples unchanged. To revert adversarial examples back to normal samples, we employ
an AE as the decoder. Leveraging the latent variable characteristics of AE in generative
models, we can amplify the divergence of the latent variables for adversarial examples,
reconstructing them back to normal samples. The formula for divergence minimization can
be expressed as:

min DKL(Qφ(z | X)‖Pθ(z))

s.t. DKI ≤ η
(16)

where DKL denotes the KL divergence, Qφ(z | X) represents the posterior distribution of the
observed data, Pθ(z) is the prior distribution, and η is a pre-defined threshold representing
the upper limit of the divergence. Using this approach, and capitalizing on the latent
layer properties of the AE, we can, in a controlled manner, augment the divergence of
adversarial examples and effectively restore them to their original state as normal samples.
Furthermore, we employ the stochastic gradient ascent optimization technique to ensure
the divergence of the adversarial examples remains within a certain range, preventing
it from exceeding the divergence of normal samples. The restoration methodology for
samples is detailed as shown in Algorithm 3.



Appl. Sci. 2023, 13, 11880 12 of 22

Algorithm 3: Adversarial example restoration.
1: procedure RESTORATION(x, AE)
2: Initialize: η, MaxIter, lr
3: iter← 0
4: z← Encoder(AE, x)
5: xhat ← Decoder(AE, z)
6: DKL ← Compute_KL_Divergence(Qφ(z|x), Pθ(z)) while DKL > η and iter

< MaxIter do
7:

end
z← z + lr×GradientAscent(DKL, z)

8: xhat ← Decoder(AE, z)
9: DKL ← Compute_KL_Divergence(Qφ(z|xhat), Pθ(z))

10: iter← iter + 1
11: return xhat
12: end procedure
13: procedure COMPUTE_KL_DIVERGENCE(Q, P)
14: return KL divergence(Q, P)
15: end procedure

5. Results and Discussion
5.1. Datasets

This paper employs the RML2016.10a dataset [5] for algorithm validation. The
RML2016.10a dataset is a renowned public dataset, frequently adopted for machine learn-
ing investigations within the wireless signal modulation classification domain. Introduced
by the DeepSig group in 2016, this dataset comprises over a million samples of radio signals.
These signals are I/Q-recorded, where “I/Q” stands for in-phase and quadrature. I and
Q components represent the real and imaginary parts of the complex samples of a signal,
respectively, which are essential for representing the amplitude and phase of a radio signal.
For our study, the dataset was partitioned into training, testing, and validation sets with a
distribution ratio of 0.8, 0.1, and 0.1.

5.2. Classifier Model

The deep learning classifier we utilized is the DeepConvNet, which is a high-
performance model capable of classifying the 11 modulation signals in the RML2016.10a
dataset. It serves as a standard benchmark model. The DeepConvNet architecture com-
prises four convolutional layers, each followed by batch normalization and ReLU activation
functions. Additionally, two of these convolutional layers apply max pooling operations
to downsample the inputs. The channel sizes across these layers increase from 2 to 256.
The model is concluded with a fully connected part that flattens the tensor outputs from
the convolutional layers, passing through a linear layer with dimensions ranging from
256 × 1 × 16 to 512, followed by a ReLU activation layer and a dropout layer for regular-
ization. The final linear layer reduces the size to the number of classes. During the forward
pass, the input tensor passes through each of these layers sequentially.

5.3. Comparative Experiments on the Degree of Difference in Reconstruction Errors under
Different Paradigms

In this experimental section, we will utilize adversarial examples as input to the
detection AE and simultaneously obtain their reconstructed samples. Subsequently, we
will calculate errors based on different norms to identify the most suitable norm for re-
constructing error analysis. The optimal reconstruction error norm should differentiate
between original and adversarial examples as much as possible. In other words, the recon-
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struction error for original and adversarial examples should be maximized to the greatest
extent possible.

In Table 1, we have documented the reconstruction error values based on L0, L1, L2,
and |x|∞ norms. The experimental results indicate that the reconstruction error based on
the L0 norm is nearly 1 for both the original samples and all adversarial examples, making
it unsuitable as a sample detection threshold benchmark. The threshold selection based on
the L1 norm is also not a good reference point.

Table 1. Reconstruction errors based on different norms.

Norm Original
Sample

FGSM
(ε = 0.15)

BIM
(ε = 0.15)

PGD
(ε = 0.15) CW Deepfool

L0 0.9999 1.0 1.0 1.0 1.0 1.0
L1 0.0387 0.0264 0.0327 0.0311 0.0387 0.0380
L2 0.0021 0.0012 0.0016 0.0015 0.0022 0.0021
L∞ 0.0530 0.0370 0.0449 0.0430 0.0530 0.0520

The more suitable norms are the L2 norm and |x|∞. Under these two norm bench-
marks, there is a significant difference in the reconstruction error between the original
samples and the three gradient-based adversarial examples, making them suitable as sam-
ple discrimination criteria. Under the L2 norm, the reconstruction error for the original
sample is 0.0021, differing by 33% from the 0.0012 error of the FGSM-based adversarial
example. In the |x|∞ measurement, the two error values are 0.0530 and 0.0370, differing
by 31%. Notably, regardless of the norm used for reconstruction error measurement, both
types of optimization-based attacks, CW and Deepfool, have the same reconstruction error
as the original sample. It can be observed that optimization-based attacks are very close
to the original sample in explicit representation, making them undetectable by the recon-
struction error-based detection method. Therefore, other methods are needed to detect
adversarial examples generated by optimization-based attacks. Considering that |x|∞
reflects the maximum value in a vector, it ensures that the perturbation of each element of
the signal does not exceed a specific upper limit. Thus, we use |x|∞ as a scale for measuring
the reconstruction error. The detection rates under various reconstruction error thresholds
based on |x|∞ are shown in Table 2.

Table 2. Detection rates based on ‖x‖∞ under various reconstruction error thresholds.

Sample
Type 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 0.002 0.005 0.01

Original 0.7064 0.3845 0.2918 0.1773 0.1082 0.0727 0.0009 0.0 0.0
FGSM 0.9036 0.8036 0.6609 0.5573 0.4373 0.3445 0.0109 0.0 0.0
PGD 0.8500 0.7300 0.5836 0.4409 0.3155 0.2191 0.0018 0.0 0.0
CW 0.6873 0.4709 0.2873 0.1727 0.1055 0.0699 0.0018 0.0 0.0

Based on the analysis above, we conducted comparative experiments for the adver-
sarial example threshold detection in Table 2. As shown in the table, both the FGSM and
PGD adversarial examples were generated under a perturbation strength of 0.15. We tested
thresholds from 0.0005 to 0.001 with a step size of 0.0001, and also conducted detection
experiments with larger thresholds such as 0.002, 0.005, and 0.01. The experimental re-
sults show that when the threshold is set very low, such as 0.0005, although the detection
rate of adversarial examples is high, the false positive rate of the detector is high as well,
with about 70% of the original samples being identified as adversarial examples. As the
threshold gradually increases, the false positive rate decreases, and the detection rates
for the FGSM and PGD adversarial examples also decrease accordingly. However, at the
threshold of 0.0006, the reconstruction error based on |x|∞ can effectively be used to detect
gradient-based adversarial examples. At this point, the false positive rate for original sam-
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ples is around 38%, but the detection rates for the FGSM and PGD adversarial examples
can reach up to 80% and 73%, respectively, making this threshold setting optimal. We
also tested C&W adversarial examples and found that their detection is consistent with
the original samples, demonstrating the subtlety of adversarial examples generated by
optimization methods. When the threshold continues to increase, the detector becomes
largely ineffective. Hence, appropriate norm measurements and threshold selection are
crucial elements in detecting adversarial examples.

5.4. Detection Experiments for Various Attacks Based on Reconstruction Error

From Figure 5, it can be observed that under the same perturbation strength, the
detection rates of adversarial examples generated by BIM and PGD attacks are lower
than those generated by FGSM attacks. For instance, when ε = 0.15, the detection rates of
adversarial examples generated by BIM and PGD attacks using the reconstruction error-
based detection method are 65.09% and 73.45%, respectively, which are lower than the
detection rate for adversarial examples generated by FGSM attacks. Since FGSM is a
one-step attack and is more direct and coarse in generating adversarial examples compared
to the iterative attacks of BIM and PGD, it causes more significant disruption to the sample
distribution, making it more prone to detection as adversarial examples.
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Figure 5. Detection accuracy against multiple adversarial attacks. (a) FGSM; (b) BIM; (c) PGD.

In this experiment, the reconstruction error is used to compare the differences between
original samples and reconstructed samples generated by the AE, as well as between
original samples and adversarial examples. The AE is an unsupervised machine learning
model that aims to preserve the information of the original input as much as possible during
the compression and decompression process. Therefore, if the AE is properly trained, the
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generated reconstructed samples should be very close to the original samples in terms of
visual appearance and features, resulting in a low reconstruction error.

However, adversarial examples are usually designed to make subtle but crucial mod-
ifications to the original samples, deceiving the machine learning model without being
noticeable to the human eye. Although adversarial examples may appear very similar to
the original samples visually, these subtle changes can lead to larger errors when the AE
attempts to reconstruct the adversarial examples. This is because these changes may cause
the adversarial examples to not accurately map to the position of the original samples in
the latent space. Therefore, the reconstruction error demonstrates the ability to differentiate
between original and adversarial examples. By setting a reasonable reconstruction error
threshold, we can to some extent distinguish between original and adversarial examples.
In general, if the reconstruction error of a sample exceeds this threshold when compared
to the original sample, we can consider that sample to be an adversarial one. This finding
provides an effective method for detecting adversarial examples.

5.5. Detection Experiments for Various Attacks Based on KL Divergence

While human eyes cannot discern the differences between normal samples and ad-
versarial examples, in the high-dimensional space, neural networks can distinguish them
with a high probability. To restore adversarial examples closer to normal samples, thus
enabling the classifier to classify correctly, adversarial examples undergo transformations
when passing through the AE. Disturbances are eliminated in the low-dimensional latent
space. The divergence of adversarial examples through the AE is then altered, achieving
the reconstruction of regular signals.

Figure 6 showcases the differences in KL divergence values between adversarial ex-
amples generated by various attacks and the original samples. The term “frequency” in the
figure refers to the number of samples falling within specific KL divergence intervals. From
Figure 6, gradient-based attacks like FGSM, PGD, and BIM yield adversarial examples
with a significant overlap in KL divergence value distribution with the original samples.
Especially, PGD-generated adversarial examples concentrate in almost the same KL diver-
gence value range as the original samples. By contrast, optimization-based attacks such
as CW and Deepfool produce adversarial examples with discernible KL divergence value
distribution differences from the original samples. Gradient method-based adversarial
examples might show apparent waveform differences from the original signal since they
are adjusted in the loss gradient direction of the model. Although humans can easily
observe this difference, it might not be the primary feature that the AE emphasizes. Hence,
the AE might face challenges in recovery and may only reconstruct waveforms resembling
adversarial examples. Consequently, calculating KL divergence values for samples proves
more apt for detecting adversarial examples generated by optimization-based attacks than
those generated by gradient-based attacks.

The method based on KL divergence is utilized for adversarial example detection
evaluation. To verify its efficacy, two notable adversarial attacks based on optimization
techniques, namely CW and Deepfool, were chosen, and the adversarial examples gen-
erated by them were tested. As shown in Figure 7, the KL divergence thresholds were
set in a range, with the values 0.00001, 0.0001, 0.0005, 0.002, 0.01, 0.05, and 0.2. Under
these thresholds, the observed detection rates for adversarial examples from CW ranged
from 6.09% to 91.81% and for Deepfool from 5.72% to 98.63%. The false-positive rates,
representing genuine samples incorrectly classified as adversarial, for CW varied from
0.07% to 14.46%, and for Deepfool ranged between 0.04% and 14.90%.

Analyzing the data, as the threshold decreased, the detection rates of the adversarial
examples generated by both CW and Deepfool witnessed a considerable decline. Specifi-
cally, at the highest threshold of 0.2, the detection rates for CW and Deepfool were 6.09%
and 5.72%, respectively, indicating a low detection performance. However, at the lowest
threshold of 0.00001, the rates reached 91.81% and 98.63%, respectively, showcasing a
significant improvement in detection capabilities. Furthermore, it is evident that, although
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the detection rate of Deepfool remained consistently higher than CW’s across all thresh-
olds, their overall trends were largely analogous. This highlights the effectiveness of KL
divergence as a detection measure for both types of attack methods.
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Figure 6. Multiple adversarial example detection based on Kullback–Leibler divergence. (a) FGSM;
(b) PGD; (c) BIM; (d) CW; (e) Deepfool.

Moreover, the false-positive rates are equally important for understanding the trade-
off between detection performance and misclassification of genuine samples. While the
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detection rates are higher at lower thresholds, the false-positive rates also tend to increase,
indicating a trade-off that needs consideration when setting the threshold.

In this experiment, KL divergence is employed to compare the differences between
original samples and the reconstructed samples generated by the AE, as well as the differ-
ences between original samples and adversarial examples. The observed results reveal that
the KL divergence between original samples and reconstructed samples is low, indicating
that the AE effectively learns and replicates the probability distribution of the original sam-
ples. Consequently, the proximity in probability space between original and reconstructed
samples is evident.

1e-05 0.0001 0.0005 0.002 0.01 0.05 0.2
Threshold

0

20

40

60

80

100

Ra
te

 (%
)

False positive rate of CW attack
False positive rate of DeepFool attack
Detection rate of CW attack
Detection rate of DeepFool attack

Figure 7. Detection rates for CW and Deepfool adversarial examples under different KL divergence
thresholds.

However, for adversarial examples, the KL divergence is notably higher. This discrep-
ancy may arise due to the intentional manipulation of features in adversarial examples
during their design to deceive machine learning models. These adjustments are made to
maintain a striking similarity to the original samples in human perception while induc-
ing significant discrepancies in machine learning models. Hence, the gap between the
probability distributions of adversarial examples and the original samples might widen.

Given this behavior of KL divergence, it reveals the distinctive representations of
original and adversarial examples in the probability space, providing a robust foundation
for detecting adversarial examples. By establishing an appropriate KL divergence threshold,
we can reasonably distinguish between original and adversarial examples. Generally, if
a sample’s KL divergence from the original sample surpasses this threshold, the sample
could be classified as an adversarial one.

5.6. Comprehensive Detection Capability

In our study, we evaluated five mainstream adversarial example attack methods and
provided associated detection parameters for each type of adversarial example. These pa-
rameters involve the detection methods used and their corresponding thresholds, as shown
in Table 3. First, for the FGSM, PGD, and BIM attacks, we employed the reconstruction
error as the primary detection tool. These three attacks yielded different detection rates
under the same threshold of 0.0006. The FGSM attack had a detection rate of 91.45%, which
is the highest among the three. In comparison, PGD and BIM had detection rates of 81%
and 71%, respectively, indicating certain challenges in detecting these two attacks under the
given parameters. For the CW and Deepfool attacks, we chose to use KL divergence as the
detection tool. At a threshold of 0.0002, the CW and Deepfool attacks had detection rates of
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99.09% and 99.90%, respectively, which are very encouraging. Particularly, the Deepfool
attack was almost entirely detected, suggesting that the detection framework exhibits very
high stability against this type of attack at high thresholds.

Considering all five attack methods, our detection framework achieved an impres-
sive average detection rate of 88.488%. This result not only reveals the efficiency of the
framework but also demonstrates its broad adaptability. First, achieving a comprehen-
sive detection rate close to 90% implies that in most cases, adversarial examples will be
effectively identified and blocked, thereby significantly enhancing the model’s security. In
practical applications, such a high detection rate can substantially reduce the success rate
of malicious attacks, ensuring that critical tasks maintain normal operation when faced
with adversarial attacks. Second, the framework exhibited a high detection capability
against five different attack methods, further highlighting its wide adaptability. In real-
world scenarios, attackers might attempt various attack strategies, so a comprehensive,
multi-strategy detection framework is of paramount importance. This not only saves time
and resources required to design separate detection strategies for different attacks but also
provides a unified defensive front, reducing the chances for attackers to find vulnerabilities.

Table 3. Assessment of adversarial example detection capabilities.

Attack Types Detection Rate Parameters Detection Method Threshold

FGSM 91.45% ε = 0.2 reconstruction error 0.0006

PGD 81% ε = 0.2 reconstruction error 0.0006

BIM 71% ε = 0.2 reconstruction error 0.0006

CW 99.09% confidence = 0 KL divergence 0.0002

Deepfool 99.90% overshoot = 0.005 KL divergence 0.0002

overall detection rate 88.488%

5.7. Sample Restoration Experiment Based on Autoencoder

A good reconstructor should be capable of reconstructing adversarial examples into
their corresponding normal samples while retaining the essential features of normal sam-
ples. This improvement aims to enhance the recognition accuracy of adversarial examples
without compromising the classifier’s accuracy in identifying normal samples. As illus-
trated in Figure 8, the recognition rate of original samples was 86.36%, while the recon-
structed recognition rate was 85.55%. It is evident that the reconstructed samples generated
by the reconstructor from the original samples preserved their fundamental characteristics
effectively. However, due to the nature of gradient-based attacks such as FGSM, PGD, and
BIM, they severely disrupted the data’s feature distribution during adversarial example
generation. Even if the reconstructor could restore them within the normal sample’s di-
vergence distribution range, the classifier struggled to perform well. Under the settings
of C = 0 and C = 0.5 for CW attacks, the recognition accuracy of adversarial examples
generated by CW attacks was 16.55% and 15.55%, respectively. After the reconstruction,
the classifier’s recognition accuracy improved by 43.54% and 26.27%, respectively. For
adversarial examples generated by Deepfool attacks, the recognition accuracy increased
from 3.82% to 36.27% after the reconstruction by the reconstructor. It is evident that the
reconstructor has a more pronounced effect on the reconstruction of adversarial examples
generated by optimization-based attacks such as CW and Deepfool.

Building upon this, further investigation was conducted into the reconstructor’s ca-
pability to handle adversarial examples generated by CW and Deepfool attacks under
different parameters. Figure 9a illustrates the recognition rates of adversarial examples
generated by CW attacks under various attack parameters, denoted as C, and the corre-
sponding recognition rates of the reconstructed samples. By analyzing the data in Figure 9a,
it is evident that as the parameter C increased, the recognition rate of the reconstructed
samples gradually decreased. It decreased from 60.09% at C = 0 to 29.36% at C = 1, resulting
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in a decrease of 30.73%. Similarly, Figure 9b presents the recognition rates of adversarial
examples generated by Deepfool attacks under different attack parameters, known as over-
shoot, and the corresponding recognition rates of the reconstructed samples. Consistently,
the data from Figure 9b indicate that as the overshoot parameter increased, the recognition
rate of the reconstructed samples progressively decreased. The value decreased from
36.27% with an overshoot of 0.00001 to 27.73% when the overshoot reached 0.1, marking a
reduction of 8.54%. This restoration in reconstruction efficacy is attributed to the higher
attack intensity associated with larger attack parameters in CW and Deepfool attacks,
leading to more severe disruption of the data distribution during adversarial example
generation, thus causing a decline in the reconstructor’s restoration effectiveness.
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Figure 9. Comparison of classifier accuracy before and after restoration for different optimization
attacks. (a) Comparison of classifier accuracy before and after restoration under different C parame-
ters for CW attack; (b) comparison of classifier accuracy under different overshoot parameters for
Deepfool attacks.

The experimental results indicate a significant improvement in the classifier’s recogni-
tion rate when dealing with adversarial examples that have been reconstructed by the AE.
This outcome could stem from two potential reasons. First, the AE might have successfully
learned the true underlying distribution of the original data and effectively removed the



Appl. Sci. 2023, 13, 11880 20 of 22

artificially introduced perturbations from the adversarial examples. Consequently, the
reconstructed adversarial examples are closer to the original samples in terms of their
features, allowing the classifier to make more accurate identifications. Second, the presence
of the AE could be exerting a regularization effect on the classifier, reducing its sensitivity
to perturbations and enhancing its ability to identify key features. Overall, this observa-
tion suggests that the AE can serve as an effective tool to assist the classifier in detecting
adversarial examples, thereby improving the model’s recognition accuracy.

6. Conclusions

In this research, we introduced an integrated adversarial example detection and
restoration framework for signal intelligent recognition using AE. Addressing the per-
vasive threats of adversarial attacks on deep learning, our framework effectively detects
gradient-based and optimization-based attacks. Through the reconstruction error and KL
divergence methodologies, we achieved a comprehensive detection rate of 88.48%. Beyond
detection, our design excels in restoration, particularly for optimization-based attacks.
Using AE, adversarial examples are reverted to their original state, leading to a recognition
accuracy boost of over 30% against CW and Deepfool attacks compared to an undefended
model. Validation on public datasets confirmed our method’s robustness, with FGSM and
PGD attacks detected at rates of 91% and 81%, and CW and Deepfool attacks detected
at a remarkable 99%. In essence, our approach provides a unified and efficient defense
mechanism, enhancing deep learning classifiers’ resilience against adversarial threats.

Looking ahead, we plan to delve deeper into understanding the distinct behaviors of
adversarial examples and original samples within model decisions. This will offer critical
guidance for further enhancing the accuracy of our detection framework. Concurrently,
we are committed to developing new and more efficient detection methods to bolster the
defensive capabilities of intelligent systems when faced with unknown attacks. Moreover,
we will undertake a profound exploration of signal data features, probing the impact of
adversarial perturbations on both shallow and deep signal characteristics. The goal is to
discern adversarial examples from signals based on a comprehensive understanding of the
data, without relying on model representations.
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