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Abstract: To safeguard user privacy, critical Internet traffic is often transmitted using encryption.
While encryption is crucial for protecting sensitive information, it poses challenges for traffic iden-
tification and poses hidden dangers to network security. As a result, the precise classification of
encrypted network traffic has become a crucial problem in network security. In light of this, our
paper proposes an encrypted traffic identification method based on the C-LSTM model for encrypted
traffic recognition by leveraging the power of deep learning. This method can effectively extract
spatial and temporal features from encrypted traffic, enabling accurate identification of traffic types.
Through rigorous testing and evaluation, our system has achieved an impressive accuracy rate of
96.4% on the widely used ISCXVPN2016 dataset. This achievement demonstrates the effectiveness
and reliability of our method in accurately classifying encrypted network traffic. By addressing the
challenges posed by encrypted traffic identification, our research contributes to enhancing network
security and privacy protection.

Keywords: data security; encrypted traffic identification; distributed learning; artificial intelligence security

1. Introduction

The popularity of applications such as smart homes and smart healthcare systems
has led to an increasing volume of massive data generated by heterogeneous IoT devices.
Machine learning-based traffic identification technology can successfully detect traffic
anomalies on a network, thus revealing unknown network attacks and providing a basis for
deploying defense measures. With the spread of encryption technologies such as HTTPS
(Hypertext Transfer Protocol Secure) and VPN (Virtual Private Network), much critical
traffic on the Internet is transmitted in encrypted form. According to Google statistics [1],
95% of the sites visited by its users as of January 2021 are encrypted with HTTPS. Encryption
technology to preserve user privacy also creates further challenges in traffic identification
tasks and has evolved swiftly in recent years. Deep learning technology provides a solution
for encrypted traffic identification [2]. The neural network is trained using a large-scale
dataset and can be automated to extract features from the flow, enabling the implementation
of an end-to-end encrypted traffic identification method. This method can be utilized for
detecting anomalous traffic and managing service quality. Malicious traffic disguises itself
as normal traffic, making it challenging to effectively identify encrypted traffic without
complex feature engineering.

The contemporary traffic identification method is predominantly aimed at traffic
transmitted in the form of plaintext. However, encrypted traffic is traffic generated after
the content that needs to be transmitted on the network is encrypted using an encryption
algorithm [3–5]. Traditional traffic identification methods include identification methods
based on port matching and deep packet inspection [6], which are more effective for
nonencrypted traffic identification tasks. For encrypted traffic identification, it is necessary
to rely on statistical-based machine learning methods, and fast deep learning approaches
have been developed in recent years. The identification method based on port matching
is to identify the data packet through the service port number specified by the Internet
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Assigned Numbers Authority (IANA), which provides the ports corresponding to some
basic recognized services. The first 1024 ports are reserved as privileged ports, and the
ports after 1024 are allocated by the system as dynamic ports. The identification method
based on port matching only utilizes the information provided by the header field in the
transport layer, which is highly efficient in the identification process and could deal with
a single type of application traffic in the early Internet but cannot adapt to the current
network environment. Due to the widespread use of peer-to-peer (P2P) and network
address port translation (NAPT) technologies and the existence of virus programs using
port masquerading technology, the data packet ports in network traffic do not always
correspond to services. Numerous traffic types are identified with low accuracy.

The identification method based on DPI performs pattern matching by searching for
information in the entire IP data packet, including the header fields of the network layer,
transport layer, application layer, and application layer payload [7–9]. Pattern matching
algorithms include simple string matching and pattern matching based on hash functions.
For encrypted traffic in this method, the data packet load is theoretically randomly dis-
tributed. Although certain patterns and statistical laws depend on implementing specific
encryption algorithms, they cannot be used in DPI methods based on simple strings. Pattern
matching with hash operations is used for detection and identification.

Current network applications mostly use encryption methods such as HTTPS, SSH,
and VPN to encrypt the data that need to be transmitted in the public network [10].
During the encryption process, only the initial session establishment process will use
plaintext communication to complete certificate verification and key generation. In the
actual communication process, the payload in the data packet will be encrypted using
a symmetric cipher and deep packet inspection technology cannot be used to identify
the traffic type corresponding to the data packet, but it can be further analyzed. The
identification task of encrypted traffic can be conducted to some extent by using machine
learning methods to adapt a series of statistical features, or spatial and temporal features of
a single data packet, during the transmission of a data stream.

With the development of deep learning technology, convolutional neural networks
(CNNs) [11] and recurrent neural networks (RNNs) [12] have provided numerous ma-
ture solutions for computer vision and natural language processing. Using deep learning
techniques, features in traffic can be automatically extracted without feature engineer-
ing through multiple nonlinear fully connected layers of artificial neural networks with
excellent generalization capabilities.

This study proposes a deep learning-based solution for encrypted traffic identification
and clarifies the subject background and purpose of the proposed deep learning-based
encrypted traffic identification system. The aim of this research is to design and implement
a deep learning-based system for accurately identifying encrypted traffic. Initially, we con-
struct a CNN model to learn spatial characteristics from the training and then evaluate its
performance in identifying encrypted traffic using the testing dataset. Next, we introduce
an enhanced LSTM model that utilizes the feature generated by the convolutional layer
of our one-dimensional CNN model as input. This allows us to utilize high-level spatial
features and extract temporal characteristics among them. These modifications enable us to
develop a comprehensive model for accurately identifying encrypted traffic. This system
effectively accomplishes end-to-end encrypted traffic identification by automatically ex-
tracting temporal features from packets. The contributions of this work can be summarized
as follows.

(1) This paper aims to develop a deep learning-based encryption traffic identification
system that automatically extracts spatial and temporal features from data packets to
achieve end-to-end encryption traffic identification.

(2) The overall framework of the encrypted traffic identification system based on
deep learning is proposed, and the relevant details of the data flow are analyzed. We also
optimize the efficiency of storage space and running time for data preprocessing.
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(3) The implementation of a comprehensive model for identifying encrypted traffic
was conducted, and a quantitative comparison with traditional detection was carried out
This study validates the proposed C-LSTM model for extracting spatial and temporal
features from data packets.

This paper is organized as follows: We illustrate the introduction, contributions,
and related works in Section 1. Section 2 illustrates the preliminaries of the work. The
system framework is described in Section 3. Section 4 describes the proposed scheme and
performance analysis, respectively. Finally, the paper is concluded in Section 5.

2. Related Work

The port matching identification method only uses the header field of the transport
layer, which is efficient but not adaptable to current network environments. This is because
recent P2P applications use random port policies to avoid detection and blocking [13].
Strict firewalls prohibit access to unknown ports by default, but viruses can exploit port-
masquerading techniques to hack into systems. For example, DNS tunnel Trojans hide
information using the domain name returned by port 53 during DNS queries [14,15], while
WannaCry spreads through SMB protocol port 445 [16]. Based solely on port matching,
computer systems can be compromised.

The Knuth–Morris–Pratt algorithm, which improves the right shift rule of the brute-
force algorithm, uses the previously saved pattern-matching information to move the
detected string farther to the right, thereby improving the time efficiency of the algo-
rithm [17]. For functions commonly used in the web field, such as URL filtering, the BM
(Boyer–Moore) algorithm is also widely used. Compared with the KMP algorithm, it
increases the distance of each right shift and performs actual tasks. It is relatively helpful
and simple to implement. It can handle large-scale URL filtering tasks and can also perform
deep packet inspection on the data packets in the traffic.

Recently, there have been attempts to apply deep learning in traffic identification.
Wang et al. [18] proposed using a simple one-dimensional convolutional neural network
(1D-CNN) for traffic identification, which is the first time end-to-end encrypted traffic
detection has been realized. Ramakrishnan et al. [19] applied standard RNN, long short-
term memory (LSTM), and gated recurrent units (GRU) in recurrent neural networks to
network traffic prediction, and their accuracy was better than that of the traditional method.

To continue to enhance the recognition accuracy of the model for the convolutional
neural network, the structure of the network needs to be widened and deepened, which
will confront the problem of increasing the amount of training or overfitting. For net-
works, continuing to increase the accuracy of the model with the same input sequence
also requires increasing the depth of the network, which leads to the problem of van-
ishing or exploding gradients, making the training process of the model impossible to
continue. Chawla et al. [20] combined a convolutional neural network with a recurrent
neural network and applied it to a host-based intrusion detection system, achieving an
anomaly-based intrusion detection system with high computational performance. In the
field of traffic anomaly detection, Xu et al. [21] proposed the HBiRNN method, which
combined two-dimensional RNN and LSTM to realize a hierarchical learning method of
spatial and temporal features for session flows in network traffic. This approach has a
higher detection rate and a lower false alarm rate.

The traditional methods for traffic identification primarily focus on plaintext traffic,
while encrypted traffic is generated by encrypting the transmitted content using encryption
algorithms. Consequently, these conventional methods exhibit limited effectiveness when
dealing with encrypted traffic. Matching and deep packet inspection are techniques that
perform well in identifying unencrypted traffic. To effectively identify encrypted traffic,
machine learning, and deep learning techniques are now employed. These approaches
have the ability to capture patterns and characteristics of encrypted traffic more effectively
without requiring excessive manual feature engineering. The advantage of such methods
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lies in their capability to automatically detect algorithms and traffic patterns, thereby
enhancing the accuracy of identifying encrypted traffic.

3. System Framework of Encrypted Traffic Identification

The input to the system is the raw traffic dataset. All steps of the data preprocessing
module, training, and test sets suitable for deep learning model processing are generated.
The training set contains packet information from traffic and its corresponding labels, which
are used for training deep learning models. Spatiotemporal features are automatically
extracted by concatenating CNN models and LSTM models. After completing the optimiza-
tion and verification of the training set, the trained deep learning model is obtained. Finally,
it is evaluated through the test set. The model output is transformed by the softmax layer,
the output label is obtained, it is compared with the real label, and the model’s accuracy
and additional indicators are calculated as a reference. The overall system framework is
illustrated in Figure 1.
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Figure 1. The framework of an encrypted traffic identification system based on CNN.

3.1. Preprocessing Methods for Encrypted Traffic Datasets

This paper uses the ISCXVPN2016 dataset [22] published by researchers at the Univer-
sity of New Brunswick, which contains a set of PCAP (packet capture) files, including six
different types of application traffic and their corresponding OpenVPN. In total, there are
12 types of encrypted traffic.

The traffic types and specific network applications or protocols included in this dataset
are listed in Table 1 [18]. Protocols such as SMTPS use SSL/TLS protocols at the transport
layer for encryption. Applications such as BitTorrent and Skype use customized encryption
methods at the application layer. In addition, there are six traffic types that use OpenVPN to
encrypt the aforementioned application traffic at the network layer, which are implemented
based on the SSL/TLS components provided by the OpenSSL library.

The content of the PCAP file provided by the dataset is a file organized according to
the standards specified by the application programming interface (API) of the same name.
In the Windows system, it corresponds to the WinPcap and Npcap libraries, which are used
to monitor and capture the traffic in the network in real time. Each data packet contains
the header fields and payloads of layers 2–7 in the OSI model. The exported PCAP file
structure is shown in Figure 2.
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Table 1. ISCXVPN2016 dataset traffic content [18].

Traffic Type Application or Protocol

Email (VPN-Email) SMTPS, POP3S, IMAPS
Chat (VPN-Chat) ICQ, AIM,

Streaming (VPN-Streaming) Vimeo, YouTube
File Transfer (VPN-File Transfer) Skype, FTPS, SFTP

VoIP (VPN-VoIP) Facebook, Skype, Hangouts
P2P (VPN-P2P) uTorrent, Transmission
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In PCAP files, the initial 24 bytes represent the global header, which provides essential
details about the file version, timestamp, and the network’s data link. Following the global
header, there are multiple packet records. The packet header contains metadata pertaining
to each packet, such as the capture time and packet length. Packet data refer to the actual
packet content.

3.2. Data Cleaning for Encrypted Traffic

Data collected in real-world network environments often include packets that are
irrelevant to a particular application. If there is an excessive presence of such irrelevant
packets within a particular traffic type, and their statistical properties significantly deviate
from those of normal packets, it may hinder the convergence of the deep learning model
and hinder the accurate identification of the corresponding traffic type. After analyzing
the pcap files in the data set using the Wireshark tool, it was found that the collected
data consisted of packets from ARP, DNS, NBNS, and LLMNR protocols. These protocols
are used in networked environments to establish routing and resolve domain names and
physical addresses. However, they do not provide information pertaining to specific
application packet characteristics. Therefore, filtering operations should be performed
during the traffic cleaning procedure. The traffic associated with the TCP protocol also
encompasses packets for the initiation and termination of TCP connections. These data
packets can enable the normal establishment and termination of the link and complete
congestion control on the link. The integrity of the payload is checked but it does not
carry information related to specific applications, which is not helpful for the deep learning
model to extract traffic characteristics. After filtering, the size of the dataset can be reduced
without losing information related to the recognition task. It can speed up the convergence
rate of the model loss function during the training process. The algorithm for the encrypted
traffic cleaning step is shown in Algorithm 1.
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Algorithm 1: Traffic Cleaning Algorithm

Input: Structured Packet Object,packet
Output: Boolean,Determines whether the packet object needs to be filtered

1 function PACKET-FILTER (packet)
2 if packet.protocol in (ARP, DNS, NBNS, LLMNR) then
3 return true
4 else if packet.protocol = TCP then
5
6

if packet.payload.length = 0 or packet.flag & 0x07! = 0 then
return true

7 return false

3.3. Anonymization of Encrypted Traffic

Since the traffic monitoring tools used in this dataset are Wireshark and TCP dump,
both of which collect data packets on the data link layer, the output PCAP file contains all
the packet headers above the data link layer, including the MAC address and IP address of
the network adapters in the computers of both communicating parties. Considering that
this information is only related to the actual network devices, such as the network adapter
and router configurations, specific network applications usually do not configure these
properties, and the dataset authors used the same devices when collecting the same traffic
type. As a result, these attributes directly determine the type of data packets and the neural
network tends to fit these features, resulting in the problem of high recognition accuracy
but poor generalization ability. Therefore, to prevent the neural network from fitting these
features, it is necessary to anonymize the data link layer and the network layer.

For the transport layer, since many network applications develop their own commu-
nication modules based on the socket protocol, information related to specific types of
applications will be in the transport layer header, such as the TCP source port number
and the destination port number, which should be reserved. In traffic anonymization, for
performance reasons, the data link layer and network layer headers of the data packets
are directly deleted, and only the transport layer header and the upper layer payload are
retained. The traffic anonymization algorithm is as Algorithm 2.

Algorithm 2: Traffic Anonymization Algorithm

Input:Packet Object, packet
Output:Anonymized Packet Object, packet

1 function PACKET-ANONYMIZATION(packet)
2 packet.remove_head(L2, L3)
3 return packet

3.4. Data Padding and Truncation for Encrypted Traffic

The protocols at the transport layer include TCP and UDP protocols. The length of
the header is 20 bytes and 8 bytes, respectively. The payload starts from the 21st and 9th
bytes of the packet. The corresponding input vectors of the same part cannot be aligned
in dimensionality, which affects the recognition effect of the model for different protocols.
Therefore, to align the dimensions of the feature vectors corresponding to the application
layer loads of the two protocols so that the convolutional neural network can extract the
correct spatial features, the UDP header fields can be processed with zero padding, as
shown in Figure 3. As shown, 12 bytes of all-zero data are filled after the header field
of the UDP data packet so that the sum of the header length of the original data packet
and the zero-filled content is 20 bytes, which is the same length as the header field of the
TCP protocol.
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The maximum length of an IP datagram should be 1500 bytes. After removing the
network layer header in the traffic anonymization step, the packet length will decrease
by 20 bytes, so the total length of the packet should be 1480 bytes for only the transport
layer and all layers above it. Finally, in implementing the padding and truncation steps,
the data packets are padded with insufficient length and the data packets that are too long
are truncated so that the length of all data packets is 1480 bytes. The pseudocode is shown
in Algorithm 3.

Algorithm 3: Data Padding and Truncation Algorithms

Input:Packet Object, packet
Output:PADDING Packet Object, packet

1 function PADDING-AND-TRUNCATION(packet)
2 if packet.protocol = UDP then
3 packet←packet.head/0x00 * 12/packet.payload
4 if packet.length < 1480 then
5 packet←packet/0x00 * (1480 − packet.length)
6 else if packet.length > 1480 then
7 packet←packet[1:1480]
8 return packet

3.5. Anonymization of Encrypted Traffic

Normalization makes the input vector conform to the deep learning framework stan-
dard and speeds up the optimization process of neural network training. As is known, a
byte has 8 bits that can represent 256 values (0 to 255). The input vector should be normal-
ized. Package P can be thought of as a byte array of length n of 1480: (p1, p2, . . . , pn). We
convert the data to a float, as a float is more suitable for CPU or GPU calculations. Through
normalization, the range of feature values of different dimensions is adjusted to a similar
range, and a large learning rate can be uniformly used to accelerate learning. The value
range of element pi is

[
0, 28). When we divide the data by 255, we obtain a value in the

range of 0 to 1. We express the normalization operation as the following formula.

xi =
pi

pmax − pmin
=

pi
255

(1)

The normalized vector X = x1, x2, . . . , xn ∈ [0, 1]n is obtained, and the pseudocode of
the normalization step is shown in Algorithm 4.
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Algorithm 4: Traffic Normalization Algorithm

Input:Packet object, packet
Output: NormalizedPacket Object, packet

1 function PACKET-NORMALIZATION(packet)
2 for i = 1 to 1480 do
3 packet[i]←packet[i]/255
4 return packet

After preprocessing all the packets in the dataset, we obtain an array of input vectors
suitable for the deep learning framework. Next, we construct a suitable deep learning
model to complete traffic feature extraction. The algorithm reads each PCAP file in the
dataset online. Additionally, the packets are read into memory individually, and the
protocol of each layer is parsed. Normalization conforms the input vectors to the standard
of deep learning frameworks and speeds up the optimization process of neural network
training. The input vector should be normalized.

3.6. Split Training Sets, Validation Sets, and Test Sets

To mitigate the issues of overfitting and underfitting during the training process, we
partition the data into three subsets: training set, validation set, and test set. The purpose
of the training set is to facilitate parameter and weight optimization for our model, while
the test set serves as a means to assess its final performance and generalization capability.
As for the validation set, it plays a crucial role in providing an unbiased evaluation of how
well our model fits tuning. We stratify the preprocessed data by sample type, sampling
packets from each PCAP file in proportion to the corresponding traffic type, with the goal
of maximizing sample coverage. We allocated 20 percent of the data as the test set, while
the remaining 80 percent was split into a training and validation set. For training purposes,
we employed 10-fold cross-validation. This involves dividing the training set into ten
equal parts, where nine parts are used for training in each round, and one part is used
for validation. Following each validation round, we fine-tuned the model’s structure and
layer hyperparameters. The final optimized model was determined by selecting the best
hyperparameters, after which a final evaluation was conducted on the test set, yielding
various performance metrics.

4. Encrypted Traffic Identification Method Based on Deep Learning

For encrypted traffic identification tasks, a single data packet in the collected network
traffic can be regarded as a byte array. This array includes the header field of the packet
and the payload, which conforms to the encoding rules of a particular network protocol
or application. It is suitable for extracting spatial features using a one-dimensional CNN
model. In this paper, we first build a one-dimensional CNN model to train and test the
preprocessed dataset to verify the feasibility of the deep learning model for the task of
identifying encrypted traffic.

The one-dimensional CNN model used in this paper contains two convolutional layers,
one maximum pooling layer (Max-pooling Layer), and five fully connected layers (Fully
Connected Layer or Linear Layer). The convolution transformation of the convolution
layer can extract the features of local adjacent bytes in the array, which is similar to the
n-gram model in natural language processing. Then, this layer abstracts the rules of the
protocol or encoding and stores multiple local features through a set of feature vectors.
A schematic diagram of the structure of the one-dimensional CNN model used in this
paper is shown in Figure 4. In the process of building the actual deep neural network, the
dropout operation is introduced into the fully connected network. When the parameters
are updated by the backpropagation algorithm, the iteration of some parameters can be
canceled with a certain probability to avoid overfitting. In addition, ReLU is chosen as
the nonlinear activation function at the output of the convolutional layer and the fully
connected layer of the last layer.
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Figure 4. One-dimensional CNN model structure diagram.

The dropout rate of the fully connected layer is set to 0.05 in the training process to
prevent overfitting the model. We chose the cross-entropy function as the loss function and
used the Adam optimizer, which has an adaptive learning rate, for iteration. The batch
size of the data is 32; that is, all 32 vectors in the batch are passed through the network in
one iteration. The output of the cross-entropy loss function was then calculated for the
whole batch, and the parameters in the network were updated accordingly. A total of three
iteration rounds were performed on the complete training set.

In Section 3, we introduce the overall framework of the encrypted traffic identifica-
tion system based on deep learning, providing an in-depth analysis of the role of each
module within the system by examining data flow details. We then derive the details of
the data preprocessing steps, offering a precise description in the form of pseudocode.
Additionally, we present an analysis of the adopted open-source encrypted traffic dataset
in this section, exploring the data structures and various traffic types within it. Moving
on to the deep learning model, we analyze the structure and principle of the existing
model, gradually building the detection model. Finally, we utilize softmax as the last layer
classifier for traffic identification, completing the construction of the entire encrypted traffic
identification system.

We perform statistical analysis on different traffic types in the ISCXVPN2016 dataset.
Consider the Email type, which corresponds to four PCAP files. We first sum up the file
sizes to count the quantity of data we need to process and provide a reference for later
preprocessing work. We count all available packets by filtering them according to the
traffic-cleaning steps described in Section 3. Figure 5 shows the traffic statistics for all
12 types.

The one-dimensional CNN model used in this paper contains two convolutional
layers, one maximum pooling layer, and five fully connected layers. ReLU is added to the
two convolutional layers and five fully connected layers as a nonlinear activation function,
and the specific hyperparameters are shown in Table 2.

On the basis of CNN, the LSTM model is further added to extract the temporal features
of the feature vector sequence. The CNN and LSTM (C-LSTM) model employed in this
study shares similarities with the aforementioned CNN, comprising two convolutional
layers and a max-pooling layer. Then, we utilize the output of the max-pooling layer as the
input for the subsequent LSTM layer, which has a hidden layer size of 50. The resulting
output is flattened and fed into a 3-layer fully connected network for fitting, with the
hyperparameters detailed in Table 3.
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Table 2. Temperature and wildlife count in the three areas covered by the study.

Layer Operation Kernel Size Step-Size Input Size Output Size

1 Conv1d + ReLU 5 3 1 × 1480 50 × 492
2 Conv1d + ReLU 4 3 50 × 492 50 × 163
3 MaxPool1d 2 2 50 × 163 50 × 81
4 Linear + Dropout + ReLU - - 1 × 4050 1 × 400
5 Linear + Dropout + ReLU - - 1 × 400 1 × 200
6 Linear + Dropout + ReLU - - 1 × 200 1 × 100
7 Linear + Dropout + ReLU - - 1 × 100 1 × 50
8 Linear - - 1 × 50 1 × 12

Table 3. Hyperparameters for the C-LSTM model.

Layer Operation Kernel Size Step-Size Input Size Output Size

1 Conv1d + ReLU 5 3 1 × 1480 50 × 492
2 Conv1d + ReLU 4 3 50 × 492 50 × 163
3 MaxPool1d 3 3 50 × 163 50 × 81
4 LSTM - - 50 × 81 50 × 50
5 Linear + Dropout + ReLU - - 1 × 2500 1 × 500
6 Linear + Dropout + ReLU - - 1 × 500 1 × 50
7 Linear - - 1 × 50 1 × 12

First, we evaluated the 1D CNN model constructed and trained in this paper, which
achieves 94.6 percent accuracy and can efficiently identify TLS and VPN-encrypted traffic.
The accuracy rates are depicted in Figure 6, whereas the recall rates are portrayed in
Figure 7.

In the context of precision and recall, the one-dimensional CNN model developed in
this paper outperforms traditional machine learning algorithms, such as the C4.5 algorithm
and the KNN algorithm, both of which rely on manually selected data features. The model
constructed in this paper is compared with other methods for traffic identification based
on the ISCXVPN2016 dataset. The precision and recall rates of each model are shown in
Figure 8.
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The one-dimensional CNN-based encrypted traffic identification model effectively
detects TLS and VPN encrypted traffic. We compared the predicted labels with the true
labels obtained from the test set packets and the resulting matrix is shown in Figure 9. Each
row represents the actual traffic type, while each column represents the predicted traffic
type based on the one-dimensional CNN model. It is evident that the model demonstrates
excellent performance across most traffic types.
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The confusion matrix generated by the C-LSTM model, as depicted in Figure 10, allows
us to observe the classification results. In this matrix, each row represents the traffic type,
while each column corresponds to the predicted traffic type of the C-LSTM model. It is
worth noting that Chat-type traffic is misclassified as Email-type due to similarities in traffic
characteristics or the presence of similar application types within the actual traffic. This
poses challenges in accurately identifying carried traffic solely based on analysis. To further
enhance model accuracy, we can consider incorporating additional information beyond
individual packet analysis for multimodality-based traffic identification.

During the training of both the CNN model and the C-LSTM model, we closely
monitored the trend of the cross-entropy loss function values with each batch iteration.
As depicted in Figure 11, both models exhibited a gradual reduction in their loss function
values, indicating continuous learning and performance improvement. However, it is
worth noting that the C-LSTM model displayed a notably faster rate of convergence in
the reduction in the loss function. In comparison with the CNN model, it appeared to
converge to a lower loss value more swiftly. This observation suggests that the C-LSTM
model may possess certain advantages in leveraging sequential information and long-term
dependencies, resulting in quicker learning and adaptability.
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The proposed CNN model in this study achieved a commendable level of precision
and recall, highlighting its exceptional performance in accurately classifying and detecting
intricate patterns within the dataset. Moreover, it outperforms traditional machine learning
algorithms such as the C4.5 algorithm and the KNN algorithm, which rely on manually
selected data features. Furthermore, the performance of the C-LSTM model was found
to be superior to that of a single CNN model, as depicted in Figure 12. It shows better
performance on the file transfer type and VPN-encrypted traffic type, which validates the
effectiveness of the LSTM method in extracting packet temporal features.
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We present the hyperparameters used in the two deep learning models in Figure 12.
After training and testing on an open-source dataset, the accuracy rate achieved was 96.4%.
To verify the effectiveness of the C-LSTM model developed in this study for extracting
spatial and temporal features of data packets, we conducted a quantitative comparison
with other methods.

5. Conclusions

In this study, we delved deeply into the identification of encrypted traffic on the Inter-
net. We observed that while encrypted communication enhances user privacy protection,
it also presents challenges in traffic identification. Although mature traffic identification
techniques have performed well both domestically and internationally, including deep
packet inspection and traditional machine learning methods, they exhibit certain limitations
in effectively identifying encrypted traffic. To address this issue, we propose an encrypted
traffic identification method based on C-LSTM that can automatically preprocess traffic data
and effectively address the inherent issues in traditional methods. Initially, we constructed
recognition models based on CNN and achieved remarkable results. Subsequently, we
refined the model and developed a model based on C-LSTM. Our experiments demonstrate
that our proposed system significantly enhances the accuracy and efficiency of encrypted
traffic identification by effectively extracting spatial and temporal features from encrypted
traffic packets. In future research, we plan to further partition original traffic streams or
sessions to achieve higher granularity with the potential integration of a real-time traffic
collection assessment system’s generalization capability.
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