
Citation: Porto, S.M.C.; Calì, M.;

Bonfanti, M. Eco-Design and

Additive Manufacturing of an

Innovative Double-Casing

Pedometer for Oestrus Detection in

Dairy Cow. Appl. Sci. 2023, 13, 11725.

https://doi.org/10.3390/

app132111725

Academic Editors: Jesús Montero

Martínez and Jorge Cervera Gascó

Received: 25 September 2023

Revised: 24 October 2023

Accepted: 24 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Eco-Design and Additive Manufacturing of an Innovative
Double-Casing Pedometer for Oestrus Detection in Dairy Cow †

Simona Maria Carmela Porto 1 , Michele Calì 2 and Marco Bonfanti 1,*

1 Department of Agriculture, Food and Environment, University of Catania, 95100 Catania, Italy;
simona.porto@unict.it

2 Department of Electric, Electronics and Computer Engineering, University of Catania, 95125 Catania, Italy;
michele.cali@unict.it

* Correspondence: marco.bonfanti@unict.it
† This paper is an extended version of our published papers “Proposal for a Double-Casing Prototype of a

Pedometer for Dairy Cows, Made to Be Interchangeable, Through Numerical Investigation and 3D Modeling
of Geometry”—International Conference on Flexible Automation and Intelligent Manufacturing FAIM 2022
(FAIM 2022) and Flexible Automation and Intelligent Manufacturing: “The Human-Data-Technology Nexus”
Proceedings of FAIM 2022, 19–23 June 2022, Detroit, MI, USA, Volume 2.

Abstract: The analysis of motor activity has been revealed to be essential for monitoring dairy cows’
behavior, with the main aim of identifying the onset of oestrus in time. Pedometers used for oestrus
detection have a current average working life on the market of about 5 years. At the end of that
period, devices are disposed of, posing a relevant question regarding environmental sustainability.
The present work proposed a method to achieve an eco-design of pedometers compliant with the
guidelines of the Green Deal. Specifically, a new thermo-plastic organic compound made of polyamide
66 reinforced with organic hemp fibers (trade name SDS Nylon) was adopted. The feasibility, benefits,
and performance of this material were assessed with a major emphasis on strength, lightweight, and
surface finish. The material in addition to ensuring adequate chemical and mechanical resistance
is biocompatible and recyclable. It assures better animal welfare and reduces both environmental
impacts and management costs for farmers. Other innovations introduced in this study consisted of
the adoption of a double casing. An external case was conceived with a protective function of the
measurement system and fixed to a cow’s foreleg by an easy anchor system. An internal case was
specifically designed to house the electronic components and to be moved from one cow to another
after the pregnancy diagnosis. The solutions proposed in this research will contribute to guaranteeing
pedometers a longer lifetime and better recyclability than existing commercial ones, consequently
limiting the environmental load derived from their disposal.

Keywords: stand-alone smart device; custom design; digital product optimization; tolerances
assignment; biocompatible materials for FDM

1. Introduction

New technologies to support farm management date back to the second half of the
last century when the first automated milking systems were installed in intensive livestock
systems for dairy cows. Such systems were introduced because of the importance of an
early and accurate determination of oestrus events that became crucial to improving farm
production. To the authors’ knowledge, the first automatic systems for the electronic
recording of milk production were developed in the 1970s, while the first attempts at
automatic oestrus detection had to wait until the 1980s [1].

Particular attention was paid to the variation of some physiological parameters. For
example, the average skin temperature of cows was found to increase during oestrus [2],
mainly in some anatomical parts such as the muzzle and vagina [3]. Milk production was
also found to be linked to the oestrus cycle, undergoing a decrease in proximity to the
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oestrus event [4,5]. Additionally, the milk produced showed variations in both temperature
and conductivity [6,7]. Moreover, during the oestrus event, the motor activity of cows
increases by nearly 400% in 93% of the observed cases [8,9]. This cow behavioral activity
suggested the use of electronic devices attached to the cow body, such as pedometers
and collars.

Usually, pedometers are used as step counters. When the step count exceeds a prede-
termined threshold defined by the direct observation of the farmer, the cow is considered
to be in a state of oestrus. The main variables involved in this process are, therefore, the fre-
quency of the total step count and the multiplier used to set the aforementioned oestrus alert
threshold. Over the years, various scientific methods have been proposed to detect oestrus
by pedometer: exceeding the average value by 1 or 2 standard deviations [5,10]; exceeding
a scale value [11] and defining a confidence interval [12,13]. The most popular methods
were based on relative increase thresholds compared to previous measurements [14].

These methods were based on a moving average and compared the current value with
that obtained by averaging the data coming from a moving window containing a prefixed
number of previous observations of the same cow [15,16]. Alternatively, other methods
were based on the analysis of the exponential smoothing, according to which different
weights could be assigned to the previous observations [17]. The main investigations in
the scientific literature concerning the use of pedometers [18–20] have found an associated
sensitivity (percentage of ovulating cows detected) well below 70%. This is because about
20% of the cows show no noticeable changes in the overall number of steps.

Thanks to research projects that are still in progress at the Department of Agriculture,
Food and Environment of the University of Catania (Italy), a prototype of a pedometer
for monitoring dairy cow oestrus was developed. The pedometer is characterized by
an eco-design casing developed taking into account cow foreleg anatomy and an elec-
tronic device able to perform non-invasive measurements of cow activity through specific
firmware for data acquisition and transferring [21]. Firstly, the research activities for the
development of the pedometer prototype [22,23] were focused on the determination of
cow behavioral algorithms based on accelerometer thresholds defined by processing data
coming from uniaxial accelerometers. These algorithms are easily implemented within
firmware that can be executed by microcontrollers installed on the mainboards of devices
worn by animals. This feature is crucial in real-time monitoring of animal behavior and
physiological states, such as the estrous event [23], because it allows the use of Low Power
Wide Area telecommunications Network (LPWAN), i.e., LoRa, LoRaWAN, and Sigfox.
These networks allow for the connection of numerous devices and low energy consumption
which guarantees a longer life of the power supply units, reducing over time the costs of
replacing and disposing of the batteries. The pedometer prototype is a stand-alone smart
device (SASP), equipped with a triaxial accelerometer, a rechargeable power supply system,
a microcontroller and a communication module for working by using LPWANs.

Once the hardware and firmware were defined, the research focused on the implemen-
tation of the SASP inside of an innovative biocompatible and recyclable casing. Preliminary
results relating to the design of the protection case of the prototype electronic devices
were published by the authors in a short note at the Flexible Automation and Intelligent
Manufacturing Conference (FAIM 2022) [24]. In this extended research article, some aspects
regarding three-dimensional modeling from an industrial manufacturing perspective were
explored in depth. Therefore, the project models were described in detail, starting from the
preliminary phase of acquiring the geometries up to the choice of tolerances necessary for
industrial production.

The main elements of novelty are the adoption of a double casing and the design of a
more suitable and functional anchor system for the cow leg. The SASP is equipped with
an external case, with a protective function of the measurement system and fixed to one
foreleg, and an inner case, specifically designed to be moved from one cow to another
after the pregnancy diagnosis. This aforementioned feature makes it possible to reuse
the pedometer, after being recharged, for detecting another oestrus event. This solution
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reduces drastically the number of pedometers to be used in a dairy farm with a consequent
reduction in management costs. Concerning the anchor system, a fastening strap able to
provide a gradual increase in the locking force was developed for an easy fix to the cow
leg. The pedometer shape and its geometrical sizes were optimized by the Topological
Optimization (TO) method integrated with Finite Element Analysis (FEA) performed with
e ANSYS Mechanical® version 18.0 commercial software.

Nowadays, commercial pedometers have a working life of nearly 5 years. After
this period, all the devices are disposed of, worsening the sustainability of intensive
livestock farming because of the non-recyclable and non-biocompatible materials. The
eco-design proposed could contribute to limiting the environmental burden derived from
the disposal of pedometers by reducing the number of pedometers to be used as well
as adopting biocompatible and recyclable material. This manuscript was structured as
follows: in Section 2 the materials and methods adopted were described; in Section 3, the
preliminary testing and the results of implementation on cows were reported; in Section 4
the main results obtained were discussed, while in Section 5 the conclusions of the research
were drawn.

2. Materials and Methods

The analysis of the data available in the scientific literature and those that were
collected in a previous research project “Smart dairy farming: innovative solutions to
improve herd productivity” (CUP: E64I18002270001, PRIN 2017) which was carried out at
the Department of Agriculture, Food and E nvironment of the University of Catania (Italy)
allowed the authors to establish an effective strategy for the eco-design of the SASP.

A step forward achieved in the study reported in this paper concerned the improve-
ment of the SASP casing geometry by using innovative material for its manufacturing with
Fusion Deposition Modeling (FDM), taking into account the anatomy of the cow leg.

2.1. Cow Foreleg Anatomy Acquisition

The accurate acquisition of the cow foreleg surface was the first step to developing
a bio-compatible pedometer. This was obtained by using Einscan pro HD (SHINING 3D,
Hangzhou, China), a structured light portable 3D scanner, which is easy to use in natural
outdoor environments (Figure 1).
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However, the 3D acquisition of surfaces with mobile sensors around the foreleg in
protracted periods of time can cause acquisition errors and artifacts since maintaining
the cow fixed may be very difficult. Thus, the issue was resolved by also proposing an
alternative way that would allow real-time cow foreleg surface acquisition by synchronizing
three scanner sensors. A series (daisy) configuration that allows synchronization of a master
device with two subordinate devices was adopted (Figure 2). Proper software compiled
by the authors made it possible to synchronize the activation times of the sensors after
a preliminary calibration. Figure 3 shows a 3D model of cow forelegs acquired by using
three Microsoft Kinect DK sensors (Redmond, WA, USA) in-series configuration.
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Figure 3. 3D CAD model of cow foreleg surface.

2.2. Pedometer Shape Design

To ensure the comfort of the cow, a cylindrical parametrical geometry was chosen for
the casing eco-design of the pedometer (Figure 4). By analyzing an appropriate number of
foreleg anatomies acquired from different species of cows, it was found, through a linear
regression of the acquired surfaces, that the double-curved cylindrical surface guarantees
that the contact of the pedometer to the leg has with highest adhesion and anatomical
comfort. In addition, a low surface roughness average value of Ra = 0.8 µm was imposed
during FDM pedometer manufacturing. Finally, pedometer surfaces are free of sharp edges
that could constitute highly mechanically stressed areas and security risks (Figure 5).
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In the first version of the casing developed within PRIN 2017, the mainboard em-
bedding the electronic components was placed along the longitudinal axis of a cylindric
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hole closed at the top as in Figures 4 and 5. In this version of the pedometer, however,
the mainboard was subject to both rapid oxidation due to the bad sealing of the cap and
vibrations caused by the gaps between the casing and the battery. Moreover, the thickness
of the fins modeled to follow the anatomy of the leg was insufficient to ensure adequate
mechanical resistance.

In a second version of the casing, the side in contact with the cow’s leg was reinforced
by varying the thickness and the anchor system. The main board was housed inside the
cap and then filled with resin to avoid oxidation. Moreover, the cap was connected to the
casing by a thread system. In this version, since the fins were reduced in order to test the
robustness of the case when worn by the cows, the double curvature surface was avoided
(Figure 6).
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2.3. Finite Element Analyses

A Finite Elements Analysis (FEA) was performed by using ANSYS 2018 commercial
software. It was applied to the last version of the casing prototype (Figure 7).
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Figure 7. (a) Assembly mesh; (b) impulsive force application; (c) distributed force application
(Reproduced from [24] with permission from Springer Nature Switzerland AG).

The mesh of the CAD model was made by using solid tetrahedral elements according
to the Voronoi-Delaunay algorithm with 16 Jacobian points per element. A selective set of
mesh controls resulted in a finer mesh at the threads and thinner parts. Figure 7 shows the
assembly mesh (Figure 7a) and load distributions (Figure 7b,c).

Any possibility of penetration between the surfaces in contact was excluded to better
simulate the mechanical behavior of the pedometer subjected to the possible load configu-
rations. The overall mesh counted a total of 16,458 nodes and 11,112 tetrahedral elements
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for the top cap, 23,606 nodes and 12,262 tetrahedral elements for the inner case, and
16,111 nodes and 8079 tetrahedral elements, respectively.

Boundary conditions were applied as fixed constraints along the generatrix of the
external cylindrical part of the pedometer to simulate the anchor system to the cow leg.
Two load configurations were analyzed:

• An impulsive force of 3000 N acting on the side opposite the constraints, to simulate
an accidental impact, i.e., against a fence post, a cow kick, or a cow tipping by other
cows [25]. The application area of the impulsive force was assumed to be circular with
a radius of 25 mm (Figure 7b).

• A force distributed on the upper surface of the cap equal to 1.75 MPa, to simulate
a possible laying of the animal above the leg. This value came from considering a
maximum value of half of the weight of an adult Friesian cow and should not exceed
300 kg [26] (Figure 7c).

Figures 8 and 9 show elastic strains and the maximum values of von Mises stress under
both load conditions. The values of maximum equivalent stresses, evaluated according
to the von Mises criterion, were found to be equal to 42.11 MPa in the impulsive force
configuration and 54.63 MPa in the distributed force configuration, respectively. Both
values are sufficiently lower than the yield tensile strength of the material considered
(σy = 62.5 MPa). In addition, the elastic strains found in both conditions (1.68 mm and
0.64 mm) fall within the elastic range of the material. Indeed, the worst value, found
in the application area of the impulsive force where the overall thickness of the resistant
material is 6 mm = 3 + 3 mm (Table 1), corresponds to an elongation of 27.9%, which is lower
than the elongation at yield (ξy = 50–70%). This is a confirmation that, even in extreme
conditions, the design proposed for the casing of the pedometer prototype proves adequate
mechanical resistance.
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Table 1. Main geometrical dimensions of double-casing pedometer (Reproduced from [24] with
permission from Springer Nature Switzerland AG).

External
Casing

Inner Casing
(Central Body)

Top
Cap Assembly

External
diameter [mm] 1 45 45

55 (Upper part)
51 (Central
body)

Thickness [mm] 3 3 10 -
Length [mm] 95 80 - 110
Thread [mm] M45 × 4.5 * M39 × 4 **

Separator

Thickness [mm] 1.5
Length [mm] 50

* Screwing to the external casing; ** Screwing to the inner casing.

A set of seven modified prototypes, ready to be tested in the barn, has been proposed
(Figure 10). The printing of these two versions of the prototype casing was carried out by
a 3D PRUSA i3 MK3s FDM printer using a new thermo-plastic organic compound made
of polyamide 66 reinforced with organic hemp fibers (hereinafter SDS Nylon), which was
developed by one of the authors in previous studies.
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Despite these changes, problems of interruption of the signal continued to occur,
mainly due to disconnections between the mainboard and the battery.

To deal with the problem, while maintaining the pseudo-cylindrical shape of the
casing, as it conforms to animal welfare, a double-casing geometry was adopted, as shown
in Figures 11 and 12. The activity related to this new design was carried out thanks to
the funding of CowTech, a project financed by the European Union within the P.O. FESR
SICILIA 2014/2020 (CUP: G69J18001020007). In detail, the external part with the protective
function was to be fixed to the cow’s foreleg; while the inner one, which was used to
house the mainboard and the battery, was decided to be removable and interchangeable
(Figure 11). The assembly of the prototype was designed to obtain a battery compartment, a
mainboard compartment and a compartment for the battery charging terminal. The bottom
of the inner case, in the battery compartment, has a hole for the passage of the battery
terminal connector (Figure 13).
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The printing of this final version of the pedometer was carried out by FDM and
performed by a high-quality and high-performance 3D printer: Ultimaker S5 Pro Bundle.
The high quality and performance of this printer are ensured by the following technical
characteristics:

• Double extrusion ready for composites;
• Filtering capacity of ultrafine particles equal to 95%;
• Storage of the reels of material with controlled humidity;
• Compatibility with over 90 materials.

Once the battery and mainboard were connected and housed in the inner case, the
entire compartment was filled with a special bi-component gel with very high dielectric
and thermal characteristics (Magic Gel 1000 Ray Tech, Settimo Milanese, Italy). Such a gel,
commonly applied to connection systems (joint shells or enclosures) for power cables is
aimed at minimizing both the risk of accidental inner disconnections in the electronic circuit
and unwanted corrosion phenomena. Table 1 shows the main geometrical dimensions of
the prototype components, assumed based on the battery and mainboard sizing.

The double-casing design proposed in this paper makes it possible to remove the
inner case from the monitored cow after the pregnancy diagnosis. After recharging the
battery, the inner case can be plugged into another external case attached to the leg of
another cow that would be monitored for oestrus onset. This solution drastically reduces
the number of pedometers to be used in a dairy farm. As an example, in a typical barn
of 100 cows with an average oestrus window of 22 days and considering that the average
period of oestrus is about 18 h, the average number of cows simultaneously in oestrus is 3.5.
Therefore, to identify the oestrus cycle in time, it will be necessary to attach the pedometer
to those cows that are believed to be close to oestrus, which is equal to about ten. This
means that, by adopting the concept of double-casing, it will be sufficient to purchase just
10 devices, i.e., 10 inner cases, to be exchanged between the cows according to their oestrus
cycle, in contrast to the purchase of 100 units of commercial pedometers. At the same unit
cost, it is logical to foresee an overall average savings of 90% on the company purchase of
pedometers (net of the negligible cost of external case, without onboard electronics and
equal to the total number of cows).

Nowadays, each cow housed in a dairy barn is equipped with a commercial pedometer
with a non-rechargeable battery that, after about 5-years lifetime, is disposed of, worsening
the sustainability of intensive livestock farming because of their non-recyclable and non-
biocompatible materials. Indeed, as found by Henriksen and Munksgaard [27], widespread
devices such as AFITAG can cause sensitive skin lesions in cows, demonstrating limited
biocompatibility over time.

2.4. Pedometer Material Choice

The printing material to be used for the casing was chosen to ensure, in addition to
biocompatibility and recyclability [28–30], adequate resistance to both the chemical agents
used in the barn environment (CO2, NH3, CH4) and the hard-physical impact due to the
behavioral activities of the cows. Especially during the oestrus status, cows’ mounting
activities could result in hard impacts on the external case.

SDS Nylon supplied by Ultimaker Company was chosen because of the mechanical
and physical-chemical properties reported in Table 2. Moreover, this material combines low-
density materials, which makes the finished product light with easy printing workability.
The eco-sustainable aspect of the design is further supported by specific thermal and
manufacturing features of the material. In detail, in addition to being non-degradable,
SDS nylon undergoes thermal decomposition for temperatures above 300 ◦C, reaching
the flash point over 400 ◦C. Its components are compliant with REACH (an acronym
for “Regulation concerning the registration, Evaluation, Authorization and restriction of
Chemicals”), which is the European regulation for chemicals. Entered into force in 2007
with numbering 1907/2006, this regulation standardizes the law on chemical substances in
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Europe and at the same time serves as a searchable database on the potential dangers and
risks deriving from various chemical products.

Table 2. Mechanical and physical-chemical properties of SDS Nylon material (Reproduced from [24]
with permission from Springer Nature Switzerland AG).

Mechanical Properties

Poisson ratio 0.4
Elastic Modulus [MPa] 2230

Yield Tensile Strenght [MPa] 62.5
Elongation at Yield [%] 50–75

Physical-Chemical Properties

Density [g/cm3] 1.14
Solubility in water Insoluble

Solubility in other solvents 96% in sulfuric acid
Melting point [◦C] 185–195

Thermal decomposition [◦C] >300
Flash point [◦C] >400

REACH/EU Components compliant with
REACH

2.5. The Hardware of the Stand-Alone Smart Pedometer (SASP)

The hardware has been designed to obtain a stand-alone smart pedometer equipped
with firmware; which is easily upgradeable and developed to run algorithms based on
predetermined accelerometric thresholds. This feature will allow both plug-and-play
installation, avoiding the phase of adaptation to animals which is generally required in
other commercial systems and on-board computing of threshold values. Therefore, no other
IoT devices are required to be installed in the barn other than the stand-alone pedometers.

The basic components required to carry out the functions are a triaxial accelerom-
eter, a mainboard for microcontroller and sensor integration, a unity for power supply,
and a communication module. Detailed information on hardware components cannot
be provided because of the confidentiality clauses of the research projects that are still
in progress.

Based on the different arrangements of the hardware components as well as on ani-
mal comfort requirements, changes in progress to the pedometer geometry, which led to
different versions before the achievement of the final prototype, were necessary.

3. Functional Evaluation and Coupling Tolerances Assignment

Some changes and additions to the previous version were necessary to make the
prototype functional and ready for use in the barns. These are non-structural modifications
and, therefore, do not alter the overall mechanical resistance of the pedometer. However,
they improve the functionality of the device.

In the final version of the prototype, a cap was provided for the external case to
preserve the internal thread during the period of non-use; in which the internal case that
houses the onboard sensors is missing because it is mounted on another bovine. As shown
in Figure 12, the external cap is equipped with an ergonomic prominence to facilitate
manual screwing/unscrewing by the farmer.

On the inner case cap, a socket opening, suitable for inserting the tip of a flathead
screwdriver, was made (Figure 13).

The upper part of the inner case was given a hexagonal shape to facilitate manual
screwing and unscrewing by the farmer (Figures 14 and 15). Moreover, a horizontal
cantilever was added in the separator on the side of the mainboard compartment, to further
limit any movement of the mainboard during operation.
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Two symmetrical axial trapezoidal slots were obtained in the external case for the
insertion of a fastening strap (size 38 × 3 mm) (Figure 16). This belt was fixed inside one of
the two slots by means of a “drop” shaped wedge at the locking end, allowing a gradual
increase in the locking force (Figure 16a). Also, the wedge was made in SDS Nylon. The
external case was modeled on the side in direct contact with the cow body by following
the anatomy of the foreleg, as shown in Figure 16. The final version of the pedometer is
shown in Figure 16. All components of the pedometer are shown in Figure 16b. Figure 16c
shows the assembly of the pedometer during the monitoring of the oestrus event and
Figure 16d reports the assembly without the internal case adopted by the farmer after the
pregnancy diagnosis.
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4. Main Outcomes from Manufacturing Adoptions

Fused deposition modeling (FDM) is an innovative and widely used technology, which
is able to ensure the manufacturing of functional and accurate plastic prototypes over time.
As known from scientific literature, the main process parameters (layer thickness, part
build orientation, temperature and deposition speed and so on) could significantly affect
the dimensional accuracy, roughness and mechanical strength of the realized part [31,32].
Regarding the latter quantity, the numerical investigation performed in this paper has
proven the adequate mechanical resistance of the prototype, in terms of both static and
impact strength. In this specific application, the roughness of the piece has limited values
of Ra = 0.8 µm. The dimensional accuracy achieved by using an Ultimaker 3D printer
(Ultimaker, New York, NY, USA) is the most important parameter to be evaluated. Since
this depends on the maximum dimension error, the measurement of the main dimensions
was carried out on the 3D-printed prototype. For this purpose, a Vogel Germany digital
vernier caliper (Kevelaer, Germany) was used, with a full scale of 200 mm and an accuracy
of 0.01 mm.

From the comparison between the measured dimensions of the prototype and corre-
sponding nominal values set for the print (Table 1), the maximum error was found in the
measurement of the external diameter of the inner case. In detail, the measured value was
44.89 mm vs. the nominal value of 45.00 mm, committing an absolute error of 0.11 mm
which is an acceptable value for the current application.

The designed geometries were printed from a stereolithography (STL) file using the
mold parameters shown in Table 3. The FDM technique adopted allowed accurate printing
without support, avoiding the delicate phase of support removal, and also saving material
and time.
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Table 3. Main printing parameters adopted.

Parameter Working
Value Variation Range Parameter Working

Value
Variation

Range

Layer thickness [mm] 0.2 0.1–0.5 Print velocity [mm/s] 20 5–210
Initial thickness [mm] 0.3 0.1–0.6 Filling velocity [mm/s] 50 5–210

Perimeter threads 2 1–∞ Outer wall print velocity [mm/s] 20 5–210
Horizontal expansion % 0 0–100 Lower surface print vel. [mm/s] 30 5–210

N◦ upper layers 3 1–∞ Movement velocity [mm/s] 100 5–210

N◦ lower layers 3 1–∞ Lower layers
print vel. [mm/s] 25 5–210

Fill density 20 10–30 Print acceleration [mm/s2] 1000 0–1000
Fill configuration Zig Zag − Feedback distance [mm] 6 0–300

Print temperature [◦C] 230 180–240 Feedback velocity [mm/s] 40 30–60
Print bed temperature [◦C] 70 20–100 Fan speed % 100 0–100

Flow % 100 0–100 Print bed adhesion type Brim −
Initial layer flow % 105 0–100 Brim line number 3 1–∞

The structures were manufactured by enabling the control of the acceleration and
variability of the feedback of the head (nozzle). Z Hop was also enabled during print
retraction. These settings made it possible to print the prototypes without using support by
assigning only two parameters among those available, i.e., the “Layer thickness” and the
“Feedback velocity”, which are the most critical ones for the accuracy of the printed models
as the environmental conditions of temperature and humidity varied.

By using the printing parameters shown in Table 3, it was possible to optimize the
values of the “Layer thickness” and the “Feedback velocity” as temperature and humidity
changed (Figure 17). The values shown in Figure 17 allow us to print the structures with
considerable accuracy.
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5. Discussion and Conclusions

A novel methodology to implement the eco-design of a recyclable pedometer for
dairy cows was presented. Such methodology allowed housing the electronic components
required for monitoring cow motor activity during an oestrus event. SASP prototype
shape and geometrical dimensions were optimized by 3D Fusion Deposition Modeling
(FDP) techniques and numerically validated by a Finite Element Analysis (FEA). The main
elements of novelty consist of adopting a double casing and a more suitable and efficient
anchor system to the cow leg. In detail, the pedometer has an external shell fixed to one
foreleg, with a protective function, and a removable and interchangeable inner case for
housing onboard electronics. This feature allows the reuse of the same device on a different
animal considered next to the oestrus event, drastically reducing the overall number of
pedometers required on a dairy farm. The anchor system to the cow leg, representing one of
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the most critical parts of the prototype, was modified with a special system equipped with
a fastening strap in order to achieve a gradual increase in the locking force. In addition, the
part of the device in direct contact with the cow was restricted to the leg profile, respecting
the anatomical comfort.

An interesting further step could be represented by the development of a LCA (Life-
Cycle Assessment) on the whole prototype proposed, in order to assess the impacts on
human health, ecosystem health and natural resources.
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