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Abstract: With the increasing complexity of production systems and manufactured products, opera-
tors face high demands for professional expertise and long-term concentration. Augmented reality
(AR) can support users in their work by displaying relevant virtual data in their field of view. In
contrast to the extensive research on AR assistance in assembly, maintenance, and training, AR
support in quality inspection has received less attention in the industrial context. Quality inspection
is an essential part of industrial processes; thus, it is important to verify whether AR assistance can
support users in these tasks. This work proposes an AR-based approach for quality inspection. For
this, pilot AR software was designed and developed. The proposed AR approach was tested with
end users. The task efficiency, the error rate, the perceived mental workload, and the usability of
the AR approach were analysed and compared to the conventional paper-based support. The field
research confirmed the positive effect on user efficiency during quality inspection while decreasing
the perceived mental workload. This work extends the research on the potential of AR assistance in
industrial applications and provides experimental validation to confirm the benefits of AR support
on user performance during quality inspection tasks.

Keywords: augmented reality; inspection; quality; welding; performance; analysis; efficiency; mental
workload

1. Introduction

This research explores the potential of combining Augmented Reality (AR) technology
and the visual inspection of weldments in manufacturing. AR is an advanced interactive
technology that augments the real world with virtual objects that seem to exist in the same
environment and works interactively in real time. With the use of AR technologies, people
can access digital data through a layer of information placed over the real environment. In
recent years, current hardware (HW) and software (SW) tools have significantly advanced,
making this technology more widely available. The rise in recent years in the volume of
scientific papers is also consistent with this trend. Due to its capacity to offer an interactive
interface for visually represented digital content, augmented reality has begun to find
applications in a number of industrial fields, proving the significance of this technology.
Augmented reality can provide functional tools that support users in performing tasks,
and facilitate data visualisation and interaction by linking physical real space and user
perception.

Quality inspection is an essential part of quality management in manufacturing. It is
demanding on operators, particularly their continuous attention to detail. Manufacturing
faces numerous obstacles as a result of global market developments. Companies are
constantly under pressure to increase their productivity, ensure flawless quality, high
flexibility, and yet with minimum costs to maintain their market position. One of the tools
to achieve this is, among other things, the in-depth monitoring of inspection processes and
the digitisation and analysis of available standardised data.
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The increase in complexity and variability in industry demands a corresponding
process adaptation, resulting in frequent changes in manufacturing inspection [1].

In order for companies to adapt to changes in the market, the necessary changes must
be introduced into production processes in a flexible and effective manner [2]. In modern
manufacturing processes, the importance of quality inspection cannot be underestimated.
Inspection procedures are crucial in production systems since no system is flawless [3]. In
the context of quality management, companies tend to use the quality control process to
find any deviations before delivering the product to the customer [4]. Ineffective or under-
qualified welding inspection can lead to the risk of serious failures due to low welding
quality. The consequences of such failures can be very severe, as described in several recent
studies [5,6].

In their study of reconfigurable production systems, Koren et al. [7] concluded that
quality gates for inspection can be inserted immediately during the various production
stages to guarantee product quality. Operators or inspectors undertake quality control
when they verify their work while it is being performed or when they check previously
completed work to ensure its quality. To maintain or increase productivity and save
costs, quality gates are used to stop the spread of defective items to other production
stages [8]. In general, the inspection procedure calls for a high level of expertise and
concentration. It must be carried out by an experienced worker with expert knowledge
and the ability to interpret even complex documentation. Generally, operators are able
to handle unpredictable situations well, adapt, and be flexible under different conditions
using, among other things, tacit knowledge [9]. However, despite the high qualifications of
these specialists, it is always based on the inspector’s subjective assessment and therefore
represents a relatively high mental workload for the inspector. The level of concentration
can thus fluctuate. Also, as in other industries, the generation of experienced workers
is aging, and new workers are hard to find and slow to train to the level required for
independent decision making. The inspection process in general does not add value to
the product. Moreover, conducting inspections by human operators is costly in terms of
human, financial, and time resources [10]. Traditional quality control techniques have
certain limitations in the context of modern highly variable small batch production. There
is thus a need for faster, more accurate, reliable, and flexible quality solutions [11].

The level of automation in today’s manufacturing companies is increasing [12]. Due to
the demands for high quality, speed, and repeatability, automation is also starting to develop
in processes that are highly dependent on manual work, such as quality control processes.
However, efforts to automate quality inspection are running into problems in some types
of manufacturing [13]. To improve quality and efficiency in inspection processes, ICT
(information and communication technology), artificial intelligence models, and dynamic
data need to be optimally integrated [14]. At the same time, there are many types of
production or tasks for which full automation is not suitable or possible for technological
or other reasons [15]. Emerging technologies, such as AR and intelligent systems, are
providing manufacturing companies with new opportunities to manage quality [16].

The principal aim of this work is to investigate the effects of AR support on the
weldment quality inspection process. To achieve this, the following research questions
(RQs) were formulated:

RQ1: Can AR be used by weldment quality inspectors to effectively support inspection
in an industrial environment?

RQ2: Can HHD (hand-held display) AR facilitate inspectors’ interaction with the
inspected product and the process of data interpretation and decision making?

RQ3: How can the AR approach affect user performance during weldment quality
inspection?

The main objective of the research is to propose an AR approach for weldment inspec-
tion in an industrial environment based on the theoretical research of general inspection
models and their experimental verification with end users.

To meet these main objectives, the following sub-objectives have been defined:
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• Conceptual design of a general AR approach for quality inspection;
• Design and development of a pilot AR software to support quality inspection;
• Conducting field experimental research with end users in a real working environment

with the developed AR approach to validate it;
• Evaluation of the impact of the AR approach on inspector performance in terms of

objective metrics compared to traditional paper-based inspection practices;
• Monitoring the impact of the AR approach on the perceived mental workload of users

compared to traditional paper-based inspection practices;
• Evaluation of the usability of the proposed AR approach;
• Comparative analysis of the impact of the proposed AR approach on two groups of

end users according to their experience in weldment quality inspection.

From the theoretical research, the following hypotheses were defined:

Hypothesis 1 (H1): Using the proposed AR approach will reduce the time to complete the weldment
inspection compared to conventional approaches based on printed documentation.

Hypothesis 2 (H2): Using the proposed AR approach will reduce the inspection error rate compared
to conventional paper-based approaches.

Hypothesis 3 (H3): Using the proposed AR approach will reduce the mental workload perceived when
inspecting a weldment compared to using conventional approaches based on printed documentation.

The first hypothesis, H1, defines the correlation between the performance of users
supported by the conventional approach and the proposed AR approach in terms of task
completion time. It investigates whether, with the innovative AR approach, users can
complete the inspection task in less time.

The second hypothesis, H2, also compares the conventional and the proposed AR
approach, this time in terms of the quality of task execution, which is monitored in terms
of the error rate observed during the inspection task.

The third hypothesis, H3, addresses the mental workload perceived by users during
the inspection task and compares this workload depending on the approach used. It inves-
tigates whether a difference in perceived workload can be traced between the approaches
used for inspection.

This research brings a new approach to operator support in industrial quality inspec-
tion with AR HHD. It examines the potential impact of AR assistance on the efficiency of
inspection task completion through a designed and developed pilot AR software and end-
user experiment. It follows the authors´ recommendations to explore AR-based decision
support for inspectors [17–19] and to address the importance of human factors in defect
detection and prevention [20].

2. Related Work

This section presents the results of the theoretical research related to the topic. With
the new industrial revolution, production systems are evolving, and so should inspection
systems. The development of new technologies and the transformation of the industrial
environment result in increasing efficiency, higher quality, and reduced costs [21–23].
Technological research focuses on adapting quality control to the new industrial revolution
by providing faster, more accurate and reliable decision support systems [24]. To support
the flexibility of inspectors, it is necessary to increase the availability of information and
to link relevant quality characteristics as a basis for product quality assessment. The
rising availability of holistic data, such as product and process specifications, historical
measurement data, and production efficiency, should be used not only to assess geometric
characteristics but also to strategically manage the manufacturing and inspection process
in a closed loop [25,26]. This technological transformation will have a significant effect on
the nature of work in the industrial environment, as the new working environment has a
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direct impact on the operator by creating new interactions between people and machines,
as well as between the digital and physical worlds [23,27–29]. In this perspective, the
worker becomes a skilled smart operator whose physical, sensory, and cognitive skills
can be enhanced and complemented by new systems and tools equipped with advanced
technologies [23,30,31].

According to Refs. [32,33], AR is one of the most promising techniques for enhancing
the transfer of information between the digital and physical worlds. With its ability to
integrate virtual information into the user’s perception of the real world, AR can support
operators directly in their workplace. It can support operators in real time during manual
operations and enable them to reduce the risk of human error caused by dependence on
the operator’s memory, printed workflows, or printed technical drawings that must be
interpreted in advance by the supervisor or technologist [32,33].

AR can improve operators’ skills by providing relevant data in the users’ field of view.
Thus, it can play an important role in various industrial applications to support operators,
including the following:

• Assembly [34–37];
• Maintenance [38–42];
• Training [43–47];
• Monitoring and quality assessment [48,49].

The link between inspection models and the Industry 4.0 concept was first identified
by Imkamp et al. [50]. The authors have identified five main development areas of quality
inspection that must respond to the trends and challenges of the fourth industrial revolution.
The first three are mainly related to technological advances. The last two also involve a
change in the methodological approach. These challenges include the following:

• Speed;
• Accuracy;
• Reliability;
• Flexibility;
• Holistic approach.

The authors evaluate the use of information systems capabilities, specifically AR, as
part of the Industry 4.0 concept as a technological opportunity that has the potential to
increase process efficiency and reduce errors by supporting the operator’s attention to the
activity being performed by providing visual support [16,51]. By using AR, the operator
can focus on the task at hand while receiving visual feedback. By displaying relevant
information, AR tools can support workers in less routine tasks or relatively complex
operations [31,52]. Augmented reality allows for the display of digital information in a
real situation. This presents the potential for quality control processes by, for example,
providing instructions or other related data. It can also lead to reduced costs, errors, and
inspection time [53,54].

AR is a suitable method to support inspectors in performing internal company tasks
due to the following capabilities, as presented by [16,55–57]:

• Sharing and disseminating expertise;
• Providing training and incentives to make their work more effective;
• Reducing errors caused by lack of experience, distractions, or other constraints.

From the available literature, it was found that there are prototypes in the early stages
of development for augmented reality quality-inspection research. These applications have
mostly been tested only under laboratory conditions. Despite the many potential benefits,
AR tools that are ready for application are relatively unavailable on the market, and their
real benefits in industrial production have not yet been demonstrated [58].

In the field of quality inspection, several systems and tools have been developed in
recent years with AR support for many applications. For example, the available works
address the following areas:

• Remote monitoring and control of industrial robots [59];
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• Support of quality inspectors in the approval of product samples [60];
• Support of assembly operations and subsequent inspection of assembled mechanical

components [61];
• Assistance in machine maintenance and inspection by displaying historical and current

data of the inspected machine or workplace [62,63].

In the welding process, AR has been investigated as a tool to support the control of
spot welding. The inspection was performed using a tablet mounted on a welding gun to
display useful instructions for performing operations using AR [64]. Using AR projectors,
virtual information was projected onto the metal parts of cars to highlight the location of
the spot welding [65]. Other applications of AR technology for inspection activities include
the inspection of reinforcement structures and the inspection of the correct positioning of
tunnel segments [66,67].

Inspection operations include the detection of manufacturing and assembly errors and
design discrepancies between the final physical products and the conditions prescribed by
the engineering and design department. As the complexity of the product being inspected
increases, the difficulty of the inspection operation rises, which may lead to a reduction in
the efficiency of the inspector or risk of error. The correct execution of complex welding
operations has a significant impact on the correct functionality and performance of the
product and any error must be detected before the product is released to the end customer.
In such a case, the aspect of annotating and formalising the detected errors and then sharing
the information with other teams or the engineering department is also crucial.

The results of the research show that to adapt quality control to the needs of modern
manufacturing, ICT plays a crucial role in the interaction between value-added manufactur-
ing processes, monitoring systems, and control systems. Decision making, interdependence,
and the seamless collaboration of quality control resources must be enabled to support
compliance. Various studies have focused on investigating the development of ICT to
ensure the integration of connectivity into quality control systems [68,69]. Cloud computing
is mainly used to achieve this. Making the quality control system accessible to all actors in
the product life cycle can allow for greater transparency and enable adjustments based on
new control system needs.

In today’s industrial environment, the pressure to produce parts ever faster and
with better quality is evident. In general, inspection processes are becoming increasingly
important. It must be ensured that these processes are carried out in the shortest possible
time and the most efficient manner. Failure to detect defects in a product can lead to
significant time and financial losses. Currently, the human factor plays a major role in
inspection processes. Responsibility is mainly placed on specialists in inspection activities.
In this context, distraction, fatigue, or the lack of practice can lead to errors that jeopardise
the effectiveness of the activity. The mental workload perceived by the user during the
checking task impacts the productivity level and the consistency of performance. It is
therefore an important part of this research.

To the best of our knowledge, no research or experiments have yet been conducted,
which test the industrial weldment AR-based inspection process in terms of user perfor-
mance efficiency, error rate, and also the impact on user mental workload. This research
gap motivates our research to contribute to the development of AR technology in industrial
applications.

Based on the conducted theoretical research, an AR approach to the control process
was proposed by linking general models concerning the objectives of the work. This
approach was tested in an experimental user study. For this study, AR software was
designed and developed to guide the end user interactively through the inspection process
and display all relevant data in a virtual scene in the user’s field of view. This reduces
the need to divide attention between the scene being inspected and the drawings, and
simplifies the interpretation of the required specifications.
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3. Materials and Methods

This section describes the methodological approach that was chosen to answer the
research questions and meet the defined objectives. The purpose of this research is to
develop valid and value-based knowledge, both from a practical and a general theoretical
perspective. The choice of methodological approach was based on the pragmatic view that
more research on real industrial problems is needed in a collaborative environment between
the academic and industrial world. The research presented in this article was initiated by
an industrial need associated with a research gap and was conducted in close collaboration
with industrial practice. To reduce the gaps between quality research, augmented reality,
and industrial practice, the aim of this manuscript is to increase the understanding of
how even partial forms of automation, specifically AR support and AR visualisations,
can be used for the industrial quality control of weldments to achieve flexible advanced
manufacturing with minimal or zero defects. After identifying the research gap, the main
effort was to look for a link between the incorporation of AR in the inspection methodology
and the effective work performance of the users.

Theoretical research was conducted to investigate general models and methodologies
of inspection processes in industrial environments concerning the Industry 4.0 concept. It
showed that many authors agree on the necessity of methodological changes to the quality
inspection process, which could contribute to removing limitations in industrial practice.
These constraints include the flexibility, speed, and reliability of decision-making processes.
Modern emerging technologies, including the use of ICT, AI models, and effective data
handling, can be used to facilitate methodological changes.

3.1. AR Pilot Software

For the experimental study, pilot AR software was designed and developed to support
users in the inspection of welded products using AR. In this section, the design and
development of this tool is briefly presented.

One of the first steps in the design of this tool was to collect experiences in the field
of quality control of welded products from industrial practice. At the same time, the
characteristics and approaches to inspection processes and their support were investigated
in the context of practical experience. After examining the practical characteristics of
inspection operations, a search for suitable tools for the actual design and development of an
AR-supported technological solution was conducted. Attention was paid to game engines,
with the help of which it is possible to design AR applications with an interactive user
environment. Furthermore, the research focused on methods of tracked object recognition.
For data storage, the possibilities of linking the proposed AR solution with a suitable
database were investigated. The research also included the possibilities of using CAD
software and graphics programs (see below) to design the necessary models and create
visualisations and user interfaces. Last but not least, research on the available hardware
devices and their possibilities when used in the experiment was carried out.

The proposed approach assumes efficient data management and communication
between users. Google’s Firebase Database was chosen for this function. It is a powerful
cloud-based database system that provides interfacing with Unity 3D and offers several
features for data storage, synchronisation, and management. Firebase enables real-time data
synchronisation and instant updates across devices and users, supporting the interactivity
of connected applications. Firebase provides a cloud-based database that allows for data to
be stored and managed on servers in a remote data centre. With the help of this database,
user identity authentication is also performed.

SolidEdge (ST10) and Blender (3.6.4 LTS) software were used to work with 3D CAD
models. SolidEdge is a professional powerful software tool that was used to create the
necessary models for the experiment. Blender was used to create visualisations of the
3D models. GIMP (2.10.32) and Adobe Illustrator (CS2) were used to create and edit 2D
graphics and visualisation elements and the user interface. An example of data creation is
shown in Figure 1.
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Figure 1. An example of data creation in Blender and Unity (Czech dimension style).

A combination of Unity 3D and Vuforia Engine was chosen. Vuforia was chosen as
an AR-dedicated extension for Unity 3D that works with real-time visual recognition and
tracking of markers and objects. It allows objects to be identified and to react to virtual
elements to create interactive and realistic AR scenes. In this research, an object recognition
method is investigated, which makes it possible to recognise an object without artificially
added markers. The tracked object itself then acts as a marker, which Vuforia detects and
recognises, then tracks it in space and anchors the programmed visualisation to the real
scene. For this method to work properly, a database of parts was created in the Vuforia
Model Target Generator extension, for which the prepared models were configured to work
properly in AR visualisations. Examples of this configuration are shown in Figure 2.
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Unity 3D is an integrated development environment that offers a wide range of fea-
tures and tools for creating simulations and applications. It was used to create a tool that
interfaces with both the Vuforia and Firebase databases to guide the inspector interactively
through the inspection process to support them in identification, the interpretation of pre-
scribed specifications, and the process of deciding whether the inspected product conforms
to the quality objectives. Unity and Vuforia are integrated within Unity to create an AR
experience. Vuforia’s functionality is accessed and controlled through Unity’s scripting
interface, allowing interactive AR experiences to be built within the Unity environment.
Unity and Firebase are also integrated within the Unity development environment but are
not directly linked in the same way as Unity and Vuforia. Firebase is a separate cloud-
based service provided by Google. Unity and Firebase are linked through Firebase’s SDKs
(software development kits) and APIs (Application Programming Interface) for Unity. This
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integration enables data storage, synchronisation, and user authentication features within
a Unity application using Firebase services.

The developed tool is then compiled as an application for Android portable devices.
It can also be built as an application for iOS devices. The hand-held device (HHD) variant
was chosen considering the advanced familiarity of users with these devices. The nature of
the task being performed and the design of the experiment do not place demands on the
freedom of both hands, and therefore, the use of the HHD is not significantly limiting as,
e.g., in assembly operations. The tablet used for the experiment was a Samsung Galaxy
Tab8 (11” LTPS LCD display, 5G, 2.99 GHz, 2.4 GHz, 1.7 GHz processor). The choice of
tablet resulted from an initial pilot study in which users agreed on a preference for using
a larger display. Once the application is launched, the identity of the registered user is
verified in the linked database, or a new user identity is created and uploaded to the
database. After the user logs in, the AR module of the developed software automatically
starts the live camera recording of the real scene, which is the input source to the tracking
and detection module. This video recording along with the functions of Vuforia SDK
performs object recognition and detection. After this module detects the object, orientation
in the scene is provided with the help of the tracking module. That is, the position of the
device relative to the object being tracked is determined, and the programmed visualisation
and infographic is displayed in the real scene, which is spatially anchored to the object.
This AR scene also includes an interactive checklist that represents the inspection plan
and guides the inspector through the inspection with a colour visualisation. A preview
of the scene with the checklist is shown in Figure 3. The results filled in the checklist are
sent and stored in a linked database. If an error is detected, the inspector can enter an
annotation on the form sent to the database about this deviation from the planned quality
and disposition of the part. At the same time, this AR scene shows a visualisation of the 3D
CAD model overlaid with the real part being inspected. This allows for the quick initial
orientation of the inspected object and a fast comparison and evaluation of the quality of
the inspected part.
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3.2. Participants

A total of 40 probands from industrial practice participated in the main user exper-
iment and were divided into two groups of 20 participants depending on the level of
experience they had with weldment inspection.

Group 1 (G1) consisted of 20 workers who have experience in weldment inspection. It
was composed of 15 males and 5 females. Their mean age was 40.4 years with a standard
deviation of 10.3. The minimum age was 22, and the maximum age was 54. All the workers
stated that they had at least 1 year of weld inspection experience.
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Group 2 (G2) was composed of 20 workers who had no experience in weldment
inspection. But at the same time, all of them have more than 1 year of experience in
industrial production. This group consisted of 13 men and 7 women. Their mean age was
41.8 with a standard deviation of 8.46. The minimum age was 29, and the maximum age
was 61.

All participants reported having experience with smartphones or tablets. A total of
five of them stated that they had used AR at least once, and two of them stated that they
had used VR at least once.

3.3. Experiment Design

This research works with two factors: one is the medium to support quality inspection
(AR-enabled or paper-based), and the second factor is the level of user experience. In the
AR variant, the instructions were displayed by the HHD variant, i.e., through visualisations
on portable devices.

The products to be inspected were divided into two sets. Each set contained a total of
five types of products in five pieces each; thus, each set consisted of a total of twenty-five
items for inspection. These products were chosen so that the dimensions would allow for
relatively easy handling during the inspection tasks. Due to the nature of the inspection
operations, there is not as much emphasis on the freedom of both hands as, e.g., in assembly
operations, during which both hands need to be free to move, and HHD is therefore more
limiting. The products were chosen so that they are relatively easy to handle on the
inspection board and do not require the use of other auxiliary equipment, such as a crane,
to move them. These parts ranged in size from 300 to 800 mm and weighed between 2 and
7 kg. The weldments consisted of 5–17 welded components.

As part of the experiment, a check on parts welded using the MIG method (metal inert
gas) was performed to verify the following points:

• All components are selected correctly and none are missing;
• All components are placed in the correct positions;
• All welds are placed in the correct positions in the correct number, size, length, spacing,

and quality.

The basic shape of each part is formed by a sheet metal plate with bends from a
bending press. Components such as welding nuts, pins, or bosses of various lengths and
diameters with different holes or threads are then welded onto this base sheet. In addition
to these components, other sheet metal components can be welded to the base sheet. The
parts for both sets were chosen to present the same challenge to the inspectors. In addition
to being very similar in design, the parts in both sets were chosen so that each set required
an inspection of the same number of total points. The detailed drawings of the parts tested
are subject to confidentiality and cannot be published in full. An illustrative example
is therefore provided to show the complexity of the parts in experiment. For simplicity,
only basic drawing views and dimensions (all in mm) are shown in Figure 4; they are not
complete production drawings.

Based on interviews with quality managers, these parts involve relatively complex
inspection tasks. Their inspection often requires going through several levels of drawings
and BOMs, navigating multiple sheets of very similar drawings, and correctly interpreting
auxiliary drawing details and sections. Some parts are very similar to each other, and it
is common in the manufacturing process for small batches of several types of such very
similar products to be rotated during a shift. This is why mistakes are made when a welder,
for example, selects a pin with the wrong length, omits a welding nut, or welds it in the
wrong position. It can happen that the welder chooses an incorrect weld layout that does
not correspond to the drawing documentation or omits a weld. Often, this type of error
does not occur in the entire production batch but occurs due to inattention only partially in
the batch. It is therefore challenging for inspectors to reliably detect this type of error, to
maintain maximum attention during the inspection of the entire batch, and to perform the
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inspection in the shortest possible time so that the value stream of the production process
is not interrupted.
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By the observation and analysis of the internally captured defect records, the following
defects were randomly placed in the control set:

• Missing welding component;
• Component welded in the incorrect position;
• Nut welded from the opposite side;
• Missing weld;
• Incorrectly spaced welds.

In the whole set of 25 products, 20 pieces were completely correct (80%) and 5 pieces
(20%) had one of the above errors. The same proportion of random distribution of errors
also occurred in the second set of control products.

All probands performed the control experiment in two scenarios. In one of them, they
inspected the control set using the proposed AR approach and the developed AR software,
and in the other they inspected the second control set using the traditional paper-based
approach.

3.4. Procedure

The first variant tested in the experiment was a conventional approach to weldment
inspection. In this approach, the inspector relied only on printed inspection documents
and performed the inspection in a situation of zero automation. After handing the product
to the inspector, the inspector started the identification process. Once the product had been
identified, a quality check of the product was performed using technical documentation
and control plans. First, the inspector needed to interpret the specifications and quality
characteristics prescribed by the designers or technologists. After interpreting these re-
quirements, the quality of the part was compared with the prescribed standards from the
technical documentation, and conformity or deviation was assessed. In case of conformity,
the part was released for further operations. If a deviation was found, it was returned for
repair. The results of this process were recorded in a printed checklist.

In this variant, instructions and information were conveyed to users in the traditional
manner of a printed drawing and control plan. Control plans and general inspection steps
that are commonly used for the parts used in the experiment are not suitable for inexpe-
rienced inspectors. In this research, the issue of AR-supported inspection approaches is
investigated in terms of, among other things, the experience of the workers with the process.
Therefore, participants with and without weldment inspection experience were part of
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the experiment. So, instead of conventional inspection documents, modified inspection
plans were created for the experiment for the parts in the inspection that are suitable for
less experienced participants. These plans were tested on a pilot group of probands who
do not have extensive experience in reading welding drawings. All confirmed that the
visual layout of the control plan was clear, and that they did not experience any difficulty
in navigating the plan.

From the control plans produced, a set of documentation was created for product
inspection in the experiment, which was the main basis for the implementation of the
conventional quality inspection methodology. The preparation of the workstation is shown
in Figure 5.
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The materials prepared in this way meant that the inspection process was carried out
during the experiment without significant downtime or time loss. With the help of the
prepared plans, the users were able to identify the part in a relatively short time, find the
relevant printed documentation, and start interpreting it. This interpretation was then
compared with the quality level found on the real piece.

The second scenario was the proposed AR inspection approach. In this case, the
participant was guided interactively through the process from the beginning with the
support of the developed AR software.

Once the AR scene was started, a video recording of the real scene began as the input
for the AR module of the software used. It processed the AR scene with the help of the
Vuforia Engine SDK functionalities. With the Vuforia extension, the tracked object acts as
a target without the need to add an artificial marker. After the detection and recognition
module recognised the tracked object, it deployed the programmed 3D visualisation and
user interface created in Unity 3D into the real scene with the help of the tracking module.
This environment interactively guides the user through the inspection plan, projects an
ideal CAD model onto the real part for an easy comparison of the basic features, and
displays the interpretation of the parameters in space on the inspected piece. Conformance
decisions are dependent on the judgment of the inspector, who records conformance or
deviation from the quality objectives on an AR checklist. This interactively marks the
already checked characteristics in an AR scene anchored above the real product being
inspected. Once the inspection is complete, the results of the checklist are uploaded to the
Firebase database, and if a deviation from the quality is captured, an annotation describing
the deviation is added to the checklist before uploading. An example of the AR approach is
shown in Figure 6.
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Both the G1 and G2 groups performed the control experiment using the described
conventional approach and the proposed AR approach. In total, 50 pieces were inspected
in the experiment, which included 10 types of products. One inspection set of 25 products
was used for each tested approach. Both control sets included products comparable in
complexity, design, and dimensions. They contained the same number of parts with the
same error ratio. Group G1 first inspected one set with the AR approach, then the other
set in the context of the conventional approach. Group G2 inspected the first set with
the support of the conventional approach and then the second set using the proposed
AR approach. Thus, all probands eventually inspected all parts, eventually using both
inspection approaches. The individual parts came to the probands for inspection randomly.

A brief training session was conducted at the beginning of each phase of the experi-
ment. The participant was first briefly introduced to the process and the operation of the
AR application or the structure of the paper-based inspection documentation. Subsequently,
the user was given time to test the functions of the AR software. It was explained to the
probands how the experiment would proceed, and they were instructed to perform the
checks in the shortest possible time while being as accurate as possible with the least
number of errors. This phase lasted 5–10 min.

The main phase of the experiment, i.e., the inspection of the two control sets, was then
carried out. The results from the AR application were continuously uploaded directly to
the Firebase database, while paper results were collected at the end of the process. Time
was tracked, and feedback and comments from probands were collected during the control.
After completing the review of the first 25 pieces, probands were asked to complete the
NASA TLX (Task Load Index) questionnaire to rate the mental workload they perceived
during the process. They then proceeded to check the second set of 25 parts. After com-
pleting this part, they again completed the NASA TLX. In addition, probands completed
the SUS (System Usability Scale) questionnaire, in which they rated the usability of the
proposed approach, and an anonymised questionnaire, in which they provided information
about their age, gender, work experience, their relationship with IT and technology, and
their experience with AR and VR. Subsequently, an interview was conducted with each
proband to find out their opinion about the experiment conducted, which method they
would prefer in their daily work, how they rate the clarity and potential of each approach,
and what they see as the advantages, disadvantages, and limitations of each approach.

3.5. Data Collection

Users were monitored for the total time taken to complete the inspection of the full
set with the AR approach and the second set using the conventional approach described
above. In the measured times, only the times from the initiation of the piece check to the
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completion of the check were considered. The time required for manipulation between
checks was not included in the total time.

In addition to task completion time, the error rate was also monitored for users. Errors
were randomly placed on the inspected parts, and probands were asked to detect them.
The same number and types of errors were distributed in both sets. For each participant in
both inspection scenarios, the number of errors they made while inspecting the parts was
recorded. In most cases, this was an error where the proband missed a defect on the part.
In one case, there was an error where the proband marked the correct part as defective.

In addition to the overall task completion time and error rate, the level of mental
workload perceived by users during the experiment was evaluated. The NASA TLX
standardised method was used to assess this workload. Specifically, a variant of the RTLX
(Raw Task Load Index) was used. This mental workload assessment questionnaire was
rated by probands after the completion of each of the two phases.

Last but not least, users also evaluated the usability of the proposed solution. The SUS
questionnaire was used for this evaluation. This is a standardised method of evaluating the
usability of a solution. In this experiment, this method was used to obtain feedback from
probands regarding the usability of the proposed AR approach.

4. Results

During the experiment, the task completion time of the AR-based control set and the
second set using the conventional approach described above was monitored. In addition
to the task completion time, the probands’ error rate was also monitored. Furthermore,
the level of mental burden perceived by the participants and the usability rating of the
proposed AR solution were evaluated.

The data obtained from the experiment were then statistically analysed to identify
significant associations between the factors studied. Statistical tests used a significance
level of α = 0.05. For all data sets, the normal distribution of the data was first verified. A
combination of the computational Shapiro–Wilk test, and graphical interpretation of the
data using the normal distribution bell curve and Q-Q plot provided a comprehensive
approach to assessing the normality of the distribution of the observed data. Figure 7 shows
an example of the graphical interpretation of the data for the total control completion time
with AR support of all probands’ data analysis.
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Figure 7. Tests of data normality from inspection using AR approach.

4.1. Efficiency

To evaluate the effectiveness of the task performance in the experiment, a two-way
analysis of variance, abbreviated as ANOVA, followed by an analysis of residuals [70,71]
and a post hoc Tukey test [72] was performed. ANOVA is a form of statistical analysis that
divides the total variance in a set of data into sections that are connected to certain factors
causing variance in order to test hypotheses related to the model´s parameters [73–75].
Figure 8 shows a graph with the means and standard errors for the ANOVA analysis. The
graph shows three pairs of bars, with each pair representing one group of data. The first
column in each pair represents the G1 group, while the second column represents G2. The
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columns are divided depending on the approach used, namely the AR approach (first
group of columns) and the traditional paper-based approach (second group of columns).
The third set of columns includes the inspection time with the conventional approach,
which, unlike the second set of columns, also includes the documentation handling time.
The standard error is reported in the graph as a measure of the variability of the means
between the groups, along with the standard error in this graph, which allows for a visual
comparison of the stability and precision of the averages.
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Figure 8. Average task completion time and standard error.

The graph of averages shows that G1 using AR achieves the lowest average task
completion times. G2 with AR support shows the second-lowest average. The results
from G2 show a higher value of standard error, indicating some variability in the results.
With the support of traditional paper-based methods, both groups show longer average
completion times. The difference between the average completion time of the control task
for G1 and G2 is higher for the traditional paper-based methods than for AR.

In paper-based inspection, the user is forced to divide their attention between the
documentation, the part to be inspected, and the inspection and measurement tools. This
division of attention leads to increased time for the completion of the inspection, distraction,
and the relatively poorer or slower orientation of the inspected piece. In this scenario,
higher demands are also placed on the user’s measurement and metrology knowledge. It
is therefore a task demanding the time, concentration, and expertise of the worker. In the
case of the proposed AR approach, the augmented reality interface supports the user in a
quick basic orientation of the product. By comparing it with the ideal state of the model,
the user gets a quick idea of the desired layout of subassemblies and welded joints, and
they are thus able to complete the inspection of the part in a relatively short time, possibly
finding an error. At the same time, thanks to the visualisations used, lower demands are
placed on the user’s professional qualifications or experience in reading and interpreting
welding drawings.

During the execution of the inspection task during the experiment, most participants
showed a gradual decrease in check times. The reason given was that they were able to
navigate the drawings and the part itself more quickly when repeatedly inspecting the
same type of product. At the same time, however, even the participants with the most
extensive experience and professional qualifications stated that, given the complexity of the
parts inspected, their similarity, and the total number of product types inspected, they did
not reach a state during the experiment where they were able to inspect the part by memory
without any supporting documentation. Thus, none of the participants reached a level of
part familiarity where the AR approach to inspection would in turn begin to slow them
down and negatively affect their performance. However, it is likely that with a different
experimental setup, i.e., a different duration for completing the control task or different
variability, this learning factor may influence the course and results of the experiment in a
different way than in this research.

The results of the two-way ANOVA analysis demonstrated a significant main effect be-
tween blocks of research data and suggested significant differences between G1 and G2, as
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well as between the use of the AR approach and traditional paper-based approaches. The F-
test values indicate statistically significant differences between G1 and G2 (F(1.36) = 468.90,
p < 0.001). Statistically significant differences were also observed between the user support
approaches (F(1.36) = 1696, p < 0.001). A significant interaction between the experience
factor and the support method factor was also observed (F(1.36) = 76, p < 0.001).

Based on the high F-test values compared to the critical F-value and the low p-values,
it is possible to reject the null hypothesis and accept the alternative hypothesis, which states
that the differences in performance between user experience and support approach are
statistically significant. G1 achieved a mean task completion time of 927.8 s using the AR
approach and 1238.3 s when using the paper-based support. G2 achieved a mean time
of 1051.5 s with the AR approach and 1528 s with paper-based support. These findings
suggest that using AR support significantly reduces task completion time compared to
the traditional paper-based approach. The interaction between experience level and the
method of inspector support suggests that the difference in the effectiveness of the AR
approach compared to the traditional approach is more pronounced for the G2 group, i.e.,
inexperienced participants, than for G1, i.e., experienced inspectors. This suggests that the
effect of AR support on user performance depends on the level of experience and may have
different effects on different users.

Figure 8, with means and standard errors, provides a clear visual comparison between
the different groups and the different approaches within the experiment. The results
suggest that the use of AR has the potential to reduce task completion time compared to
the use of traditional paper-based materials.

Next, Tukey’s post hoc test was performed after ANOVA analysis. The results of the
post hoc Tukey test showed that the absolute difference between G1 and G2 groups was
123.7, with a critical value of 27. This result confirmed a statistically significant difference
between G1 and G2 under the AR approach.

This experiment confirmed that there was a statistically significant difference between
the G1 and G2 groups. These results may provide important insights for the further investi-
gation of the effectiveness and efficiency of the AR-assisted user support methodology in
weldment control.

4.2. Error Rate

The experiment not only investigated the execution time of the task but also focused
on the evaluation of the error rate during this control process.

Figure 9 provides a graphical overview of the mean error rate and standard errors,
showing the error rate results for each group and how they compare between the AR
and traditional methodologies. This graph shows the average number of errors, where a
unit represents a single error, providing a visual representation of the frequency of errors
recorded by participants during the research. The lowest average error rate was recorded
in group G1 when using the AR method, indicating that this combination achieved the
best results. The second lowest average is observed in group G2 when using the AR
methodology. Group G1 using the traditional methodology shows a higher average error
rate than the previous two groups, while group G2 using the traditional methodology has
a relatively and significantly higher average.

For the error rate data, the Shapiro–Wilk test did not confirm the normal distribution of
the data. Therefore, a non-parametric Friedman test was performed instead of a parametric
ANOVA analysis. By calculating the Friedman test for the measured error rate data, a
significance value of 3.09665 × 10−11 was obtained. This value reflects the significance of
differences between groups. It indicates statistically significant differences between at least
one pair of datasets.
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Given these results, post hoc tests were subsequently conducted to identify specific
groups between which the differences were statistically significant. For this purpose, the
Mann–Whitney U test was used, which is appropriate for comparing two groups. Using the
Mann–Whitney U test, there were no statistically significant differences for any controlled
pair of data groups (p > 0.05). A possible explanation for this situation may be that the
Friedman test is sensitive to any form of differences between groups, whereas the Mann–
Whitney U test is primarily aimed at comparing two groups and may not be sensitive
enough to small differences between groups. Statistically significant differences between
pairs of groups may not be detected using the Mann–Whitney U test, but differences may
still exist.

4.3. Mental Workload

Another area monitored in the experiment was mental workload. The NASA stan-
dardised Task Load Index (TLX) questionnaire was used to assess the mental load of the
participants during the experiment. This questionnaire is used to measure perceived mental
workload and is often used in research involving human factors and ergonomics.

To understand the nature of the data collected, a graphical analysis of the average
level of perceived mental workload and standard errors was performed (Figure 10). This
analysis allows for a visual comparison of the average mental workload values between
the groups, while also providing information on the variance of the data within each group.
The figure illustrates the perceived mental workload components assessed using the NASA
Task Load Index method. The y-axis represents the subjective ratings for different workload
components. NASA TLX scores are not expressed in specific physical units, but rather
reflect participants’ subjective assessments of workload, effort, and frustration. The graph
is used to visually compare and analyse the relative differences in perceived workload
between different tasks or conditions, providing insight into the cognitive and perceptual
aspects of task demands.
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The graph shows that the lowest mean value of perceived mental workload was
achieved in G1 using the AR approach. The second lowest value was perceived in G2 when
using the AR approach. This analysis provides valuable information on the differences in
perceived mental workload between users depending on the inspection approach chosen
and the level of experience. The results suggest that the AR approach may yield a reduction
in perceived mental workload among users compared to the conventional approach. The
conventional approach shows significantly higher levels of mental workload in most of the
areas examined compared to the AR approach. The highest levels were observed using the
conventional approach in the areas of mental demand and effort. These areas also showed
the highest differences compared to the AR approach. The performance indicator showed
the smallest difference between the two approaches.

The results of the two-way analysis of variance (ANOVA) indicated statistically sig-
nificant differences in perceived mental workload between the different combinations of
experience factors and the approach used. Within G1, it was found that the use of the
AR approach had a mean mental workload of 60.25, whereas the use of the conventional
method had a mean value of 149.75. The overall mean for the G1 group was 105. On the
other hand, in G2, it was found that the AR methodology had an average mental workload
value of 106.25, while the conventional method had an average value of 181.5. The overall
mean for group G2 was 143.88.

The F-value for the approach comparison was 25.20, which is significantly higher than
the critical value of Fcrit = 3.97. The p-value, on the other hand, is very low and is therefore
statistically significant, indicating that there is a significant difference in perceived mental
workload between the AR approach and the conventional approach.

Overall, the results can be interpreted to indicate that the use of the conventional
methodology shows a significantly higher mental workload compared to the AR approach.
The highest values were observed for time and effort when using the conventional method.
The smallest differences were observed in performance. These data support the conclusion
that the AR methodology may provide benefits in reducing perceived mental workload
compared to the conventional methodology. These findings have implications for the
further development and investigation of interactive systems, and can serve as a basis for
the design of user interfaces concerning user mental workload.

4.4. Usability

To conclude the statistical analysis, the level of usability of the proposed solution
was also examined. Testing was conducted using a standardised questionnaire called
the System Usability Scale (SUS). The SUS is a widely used tool for measuring subjective
perceptions of the usability of a system, methodology or tool.

The overall mean SUS score in the experiment was 94.69, indicating a high level of
applicability of the proposed solution and high satisfaction with the probands (Table 1).
When focusing attention on each group, the mean SUS score for G1 was 95.5, and for G2, it
was 93.88. The standard deviation was 4.94 overall, 4.97 for G1, and 4.67 for G2.

Table 1. SUS questionnaire results.

Group SUS Score Average Standard Deviation

G1 95.50 4.97
G2 93.88 4.67

G1 + G2 94.69 4.94

These results indicate that both groups of users rated the proposed solution as highly
usable. G1 achieved a slightly higher SUS score than group G2, which may indicate that
experienced workers reached a higher level of satisfaction and rated the usability of the
system positively.

Although most of the participants involved in the experimental study had no or
minimal practical experience with augmented reality, after familiarising themselves with
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the proposed AR approach, there was a positive attitude towards its potential use in the
context of weldment quality inspection in industrial processes. In particular, participants
highlighted the good availability of AR solutions to assist inspectors in the field. According
to the participants involved in the study, AR, as a flexible tool, can help workers focus more
directly on the product under investigation. They rate it as a useful way to obtain relevant
information directly on the object under investigation. AR available in this manner can
support users in different ways. Users positively evaluated the possibility of the immediate
availability of relevant data, including its visual interpretation, which eliminates the need
to first manipulate printed documentation to initiate inspection operations. Another
participant mentioned support for part identification, where automated recognition of
the part being inspected makes it impossible to confuse the part with other very similar
products.

At the same time, probands noted the high potential of using AR in complex inspection
processes in industrial applications. According to their comments, AR could become a
highly effective tool to support task solving. Specifically, one participant commented
on the benefits in the case of repeatedly alternating inspection of very similar parts in
rapid succession and mentioned that AR could be used as a powerful tool for interactive
visualisation and support for even less skilled or inexperienced users.

In several cases, participants also mentioned the fact that for inspectors with less
experience or expertise, the proposed approach could help to push the boundary of tasks
that these inspectors can assess and decide independently, as opposed to conventional
methods where the decision-making process in these cases is beyond their capabilities and
they have to seek support from a more experienced supervisor.

Most probands agreed that AR could be very beneficial for solving inspection tasks
due to its interactive visualisation capability. Several probands would welcome the use of
the AR approach not only as a final inspection but also as a tool for continuous self-control
of the welder during operation preparation, weld interpretation, weld layout on a real
piece, and continuous checking of the fulfilment of the prescribed characteristics.

One of the limitations was the ease of use. Some participants pointed out a concern
about inspecting larger and more complex products. The set of parts for the experimental
study was relatively easy to handle and easily accessible in terms of dimensions. This
likely contributed to the fact that there were no major problems with part recognition or
alignment of the digital visualisation to the real object during the study. Participants agreed
that due to the nature of the task at hand, i.e., quality control on the finished weldment,
they found that the need to hold the HHD did not limit their required hand movements.

One participant mentioned a concern about the lack of flexibility of an AR solution
that requires specialised knowledge of AR technology. This can make it tedious to make
even small adjustments to the AR visualisation.

Overall, the proposed solution achieved a high degree of usability, which is a positive
indicator of the efficiency and usability of the system from the users’ perspective. These
findings confirm the fact that the proposed solution has the potential to satisfy users and
contribute to a positive user experience.

5. Discussion

This section discusses the results of the experiment, the benefits to industry and
science, and recommendations for future research.

The research aims to evaluate the influence of the AR-based methodology of visual
quality control of weldments on the performance of this control and the mental load of
users in a real industrial workplace. The results of the experiment with users show that the
use of AR in the quality inspection of weldments leads to an increase in the efficiency of
the execution of this task, i.e., a reduction in the execution time of this inspection compared
to using printed paper documentation. These results are in line with similar studies that
observed an increase in the efficiency of task execution with AR support compared to paper
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instructions [76–78] and video instructions [48]. However, some studies have reported the
opposite trend, i.e., a decrease in task performance when AR support is involved [79].

The lower efficiency of execution of the assembly operation can be explained by the
spatial distribution of instructions and their longer search and orientation during the task.
Conversely, the increased efficiency of the control process may be explained by the nature of
the design of the experiment. In this experiment, users inspected weldments dimensionally
characterised from 300 to 800 mm and 2 kg to 7 kg. It was therefore relatively easy for them
to handle these weldments. In contrast to traditional instructions, the inspectors did not
have to divide their attention, and by comparing the ideal 3D model displayed over the
real weldment, even a less experienced inspector made a relatively quick initial orientation
of the part and checked the basic completeness and basic dimensions without having to
measure all the dimensions.

In this research, a relatively low average error rate, or failure to detect randomly dis-
tributed errors on parts, or incorrectly marking a defect-free part as defective, was observed.
A lower error rate was observed using the AR approach compared to conventional printed
documents. However, for the chosen α significance level of 0.05, there was no statistically
significant decrease in the error rate for the proposed AR solution. In similar studies in the
field of assembly research, a decrease in assembly errors was found [80–82].

In addition to the effect on efficiency and error rate, the involvement of the AR
approach was also investigated in terms of the perceived mental workload on the users.
This workload was assessed by the standardised NASA TLX questionnaire. During the
experiment, users perceived a lower mental workload compared to the conventional paper-
based approach. This positive result confirms that the proposed AR approach can reduce
the mental workload in weldment quality control by reducing the division of attention
between the prescribed design requirements and the real part. This result confirms that it is
possible to reduce mental workload, increase user concentration, and promote the efficiency
of inspection task execution. Other available studies confirm similar results [81–85].

In addition to the effectiveness results, the usability and acceptance of the proposed
solution were rated positively in the final SUS questionnaires and the post-experiment
interviews. The probands preferred the AR solution to the conventional approach with
printed documents. The usability of the tool used was rated positively by the probands
with an average score of 94.7 on a scale of 0 to 100. This rating corresponds to an A+ level
and reflects high user satisfaction with the solution used. The available studies generally
agree on an acceptability threshold above 70 points [86,87]. The probands appreciated
the possibility of a quick comparison of the inspected part and the ideal model, and
fast orientation in interpreting the requirements. According to some available studies
dedicated to AR, experience with modern and innovative technologies may also influence
the effectiveness of AR-enabled task execution [81]. Close collaboration with industry
experts in the design of the AR approach and a pilot study to determine the limits of the
proposed solution may have contributed to the high degree of applicability. The use of the
HHD made it possible for the user to move freely at the workstation while inspecting the
part without any restrictions related to the hardware.

Three main hypotheses were defined and then tested during the experiment. The first
addresses the effectiveness of the execution of the control task and the influence of the
approach used on this effectiveness. The level of efficiency in the experiment was defined
by the total time to complete the task, i.e., the speed with which the proband inspected the
entire control set. This indicator was tested in two variants, namely with the support of
the conventional inspection approach and with the support of the proposed AR approach.
At the same time, the element of user experience was monitored. Statistical analysis
provided evidence of a statistically significant difference in user performance depending
on the weldment inspection approach. These results support the original hypothesis which
predicted that using the AR approach would lead to faster completion of the inspection task
compared to the traditional method supported by printed documentation. The findings
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suggest that the AR approach has relatively greater benefits for a group of inexperienced
probands than for experienced inspectors.

The second hypothesis investigates the effect of the methodology used on the error
rate. Overall, the results of the analysis can be summarised by stating that statistically
significant differences in error rates were found between the data groups, however, the
tests performed as part of the post hoc analysis failed to identify specific pairs of groups
with significant differences. This finding suggests that more extended statistical methods
or an increase in sample size would be appropriate for further research to obtain a more
accurate and comprehensive analysis of the error rate data.

The third hypothesis addressed the impact of the approach used on the level of
perceived mental distress. During the experiment, it was statistically confirmed that the use
of the conventional methodology showed a significantly higher mental workload compared
to the AR approach. The highest levels of mental workload were observed for time and
effort when using the conventional method. The smallest differences were observed in the
area of performance. These data support the conclusion that the AR approach may provide
benefits in reducing perceived mental workload compared to the conventional methods.

Users also evaluated the usability of the proposed solution in the experiment. The
usability scores were high, corresponding to the usability category rated as “excellent”.

The research presented here also has some limitations. The main one is related to the
object detection method used. Unlike the image detection method, it does not require the
use of additional markers in the scene, the inspected object itself serves as a target, and
therefore, this method has a very high potential for deployment in industrial applications.
However, unlike the image target method, it is not yet technologically possible to detect
more than one object in a scene. Therefore, it is still necessary to combine these methods
when recognising multiple objects.

Further limitations are related to lighting conditions and tracking of the object. During
the experiment, object target detection worked smoothly under standard lighting conditions
at the workplace without the need to supply an additional light source. During a prolonged
inspection or greater movement around the inspected part, at some points the visualisation
disconnected from the target, and the scene needed to be re-anchored.

The theoretical contribution of this research is the validation of the proposed method-
ology for AR-enabled inspection and its potential to increase the efficiency of control
execution by end users, to reduce the error rate of their work, and at the same time, to
neither increase nor, on the contrary, reduce the mental workload perceived by users.
The practical benefit is to bring AR technology closer to specialised areas of inspection in
industrial processes where full automation is not appropriate or not possible.

In general, it can be concluded that the proposed AR solution could be used by
inspectors and operators in industrial practice in weldment quality control to detect non-
conformities with the desired condition and to evaluate the quality of weldments.

6. Conclusions

The conducted research was devoted to the problem of weldment quality control in
industrial processes. Inspection tasks are generally among the activities that do not add
value to the product but are nevertheless an essential part of all industrial processes. There
is a trend in industry towards ever-increasing demands for an error-free quality level, so
industrial inspection needs to be carried out with the highest possible efficiency.

With the development of the fourth industrial revolution, the possibilities of automa-
tion are also gradually developing. While for some industries a higher degree of automation
is possible, for other types of production, a high degree of automation is not appropriate.
These include small batch production, products with short life cycles, or a high frequency
of technical changes or design modifications.

This research therefore focuses on investigating the possibility of introducing a lower
level of automation for these types of production. In the chosen level of automation, the
assessment and decision-making process is inspector-dependent. However, the process of
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requirements interpretation, part assessment, and decision making are supported by the
technological solution. In the case of this research, this technological solution is augmented
reality support.

The experiment, the statistical evaluation of the experiment data, and the results of
hypothesis testing confirmed that by using the proposed AR control approach, it is possible
to increase the efficiency of performing weldment inspection in an industrial process while
reducing the mental workload perceived by users. The results suggest that the use of an
AR solution may also lead to a reduction in error rates. However, more extensive research
would be required to allow for statistical confirmation.

A possible direction for future research is to look more closely at the potential for the
detailed visual inspection of individual welded joints. This research would focus on the
possibility of comparing quality requirements with inspected weld shape, which might
allow for the continuous detection of areas that do not fall within a given quality class. The
use of such solution would be particularly applicable to single-unit or large-scale structures,
as opposed to vision systems that can be installed on production lines.

Another potential direction for future research would be more detailed automated
weld inspection, requiring a combination of AR and advanced deep learning methods such
as localisation, detection, object classification, or image segmentation. The weld quality
could be assessed using a neural network trained on a large amount of image material to
detect, evaluate, and identify the type of defects in the material structure through image
segmentation and abnormal object detection. The classification of a sufficiently large
number of images containing texture anomalous welds would be essential for this research.
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