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Abstract: Container-based deep learning has emerged as a cutting-edge trend in modern AI ap-
plications. Containers have several merits compared to traditional virtual machine platforms in
terms of resource utilization and mobility. Nevertheless, containers still pose challenges in executing
deep learning workloads efficiently with respect to resource usage and performance. In particular,
multi-tenant environments are vulnerable to the performance of container-based deep learning due
to conflicts of resource usage. To quantify the container effect in deep learning, this article captures
various event traces related to deep learning performance using containers and compares them with
those captured on a host machine without containers. By analyzing the system calls invoked and
various performance metrics, we quantify the effect of containers in terms of resource consumption
and interference. We also explore the effects of executing multiple containers to highlight the issues
that arise in multi-tenant environments. Our observations show that containerization can be a viable
solution for deep learning workloads, but it is important to manage resources carefully to avoid
excessive contention and interference, especially for storage write-back operations. We also suggest a
preliminary solution to avoid the performance bottlenecks of page-faults and storage write-backs
by introducing an intermediate non-volatile flushing layer, which improves I/O latency by 82%
on average.
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1. Introduction

As deep learning is widely used in various IoT (Internet-of-Things) services [1,2],
the demand for AI (artificial intelligence) technologies in the mobile edge environment is
continuously increasing [3,4]. Specifically, there is an increasing trend to run deep learning
workloads using virtualized environments such as virtual machines and containers. This is
because virtualization has the effect of improving computational elasticity and efficiency,
which are important considerations in deep learning workloads [3]. The execution cycle
of a deep learning workload can be divided into three phases: training, servicing, and
monitoring, as shown in Figure 1. During the training phase, users need to install the
configuration for the framework, provision the required computing resources, and then
proceed with training. When training is complete, the model is exported and the API
server is installed. The model is then deployed for service. In the service phase, users
should monitor the model’s performance to determine whether the model is overfitting
or underfitting the training data. When the model’s performance degrades, the user must
train the model again. Therefore, configuring and managing deep learning infrastructure is
a complicated and time-consuming task. All of these steps can be performed in the data
center or cloud, but some tasks such as data collection and post-training monitoring are
increasingly shifted to the edge side. Reducing energy consumption and privacy risks is
important in mobile edge as continuous training is performed by using data collected from
mobile devices and sensors [5]. Container-based deep learning has been introduced to
provide such features in a managed service [6,7].
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Containers provide several merits compared to traditional virtual machines for run-
ning deep learning workloads. That is, containers are lightweight and portable, so it is easy
to deploy and manage containerized deep learning workloads. Containers also share the
host OS, thereby minimizing the virtualization overhead. Thus, containers are efficient for
compute-intensive deep learning workloads that require heavy resources. Another impor-
tant merit of a container is that it provides easy management for configuration settings. In
a virtual machine platform, each guest machine should have its own configuration files,
thus keeping track of changes and ensuring the configurations are difficult. Moreover, in
container environments, it is easy to recreate the same environments and dependencies
used to train and deploy models. In contrast, in virtual machine environments, each guest
machine has a set of dependencies, so recreating the same environment on another machine
is not simple [8].

Despite these advantages, using containers to run deep learning workloads also
presents some challenges. One of the biggest challenges is that containers are less isolated
than virtual machines. This means that performance degradation is more likely to occur due
to resource conflicts [9]. For example, if two containers try to access the same resource, a
performance conflict may occur. Since containers share the host OS, they compete for system
resources and need careful resource management techniques to prevent performance
degradation. Fortunately, the overhead of containerization is not significant in traditional
workloads. For example, running multiplayer gaming and video streaming workloads
in a containerized edge environment incurs only a small amount of Docker overhead
without affecting data processing in each container [10]. Also, as containers are frequently
used for application deployment, network resources become a major bottleneck due to
the large amount of data transfer between nodes [11]. However, this is not the case for
deep learning workloads, which are resource-intensive and require more computation than
communication [12]. Thus, containerization may introduce other resource bottlenecks such
as CPU, memory, and storage. As deep learning is increasingly used in image processing
in various service fields such as manufacturing and medicine, the importance of efficient
resource management in containerized deep learning continues to grow [13,14].

Moreover, deep learning workloads have different resource usage patterns from tradi-
tional workloads, making efficient resource management more difficult [15,16]. Traditional
workloads often have consistent resource usage patterns. For example, web servers or
database servers repeatedly process the same tasks, such as http requests or query process-
ing, so the number of requests varies, but the characteristics of the workload are uniform,
making it relatively easy to cope with resource requirements [17]. In contrast, deep learning
workloads are known to have very different resource usage patterns during the training
and inference phases [18]. In the training phase, the model is learned on the data set, and
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the parameters are updated. During this process, resource usage may show sudden spiky
patterns. On the other hand, the inference phase uses models to predict new data and
resource usage is not high and is relatively uniform.

It has been reported that deep learning workloads temporarily cause excessive memory
usage during the training phase and that the bias in data accessed is weaker than traditional
workloads because they rely less on hot data [19]. These characteristics make resource
management more difficult compared to traditional workloads. Specifically, due to the
spiky and bursty nature of memory usage in deep learning workloads, performance
can rapidly deteriorate if insufficient memory space is allocated. However, equipping a
large memory capacity to handle such situations will waste resources in the remaining
time. So resource allocation that allows each container to run smoothly without over-
allocation is a challenging issue. In addition, weak bias in data access makes it more
difficult to design efficient caching mechanisms and limits performance gains through
caching. Comprehensively monitoring data access patterns can be helpful in identifying
and remediating resource usage issues. In particular, extracting and analyzing system
traces from the host layer provides precise resource usage for each container, allowing for
better resource allocation by accurately characterizing container workloads.

In this article, we investigate the resource requirements in the context of containerized
deep learning workloads and aim to find performance implications for such environments.
To do this, we extract and analyze the event traces of deep learning workloads in container
environments and compare them to traces collected by running the same workloads on
host systems. By doing so, we can see the impact of containerization in deep learning with
respect to resource contention and performance overhead. We also investigate the impact of
multi-tenancy by running deep learning workloads simultaneously in different containers
to highlight challenges in resource management issues.

By analyzing system calls and event traces generated by container-based deep learning
workloads, we provide implications for resource management in a containerized environ-
ment. Specifically, we observe that write-back operations to storage can be a major cause
of performance bottlenecks. We also show that resource contention is significant in multi-
tenant environments. To cope with this situation, we introduce a preliminary solution that
adopts an intermediate non-volatile flushing layer to alleviate the performance bottleneck
of storage write-backs. Instead of flushing to traditional storage, our solution effectively
hides the write-back overhead by absorbing hot data in fast NVM media, improving I/O
latency by 82% on average.

The remainder of this article is organized as follows. Section 2 briefly summarizes pre-
vious studies related to this article. In Section 3, we describe the experimental configurations
of deep learning workloads to investigate the performance effect of container platforms.
Section 4 analyzes the event traces captured and discusses their implications. In Section 5,
we introduce our solution to cope with the performance bottleneck of containerized deep
learning. Finally, Section 6 concludes this article.

2. Related Work

In this section, we briefly summarize previous research on deep learning workload
characterization and container-based systems. We also review techniques proposed to
improve the performance of such systems.

Recently, research has been conducted to characterize deep learning workloads in
terms of reference patterns and resource usage. Park et al. comprehensively analyze
memory reference patterns for neural network workloads and observe that they are signifi-
cantly different from traditional workloads [19]. In particular, their analysis shows that the
heap and data regions account for most memory references in deep learning workloads,
but the memory reference bias is weaker than in traditional workloads, especially for
write operations.

Berral et al. explored resource usage characteristics of containers used to train deep
learning models [12]. They identify recurring patterns and similarities across containers
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and suggest the potential to optimize resource allocation in a dedicated deep-learning
cluster. Specifically, they utilize clustering techniques and conditional restricted Boltzmann
machines to discover action steps during deep learning training. They also optimize
resource allocation by dynamically adjusting container resources based on phase-specific
statistical information. However, their approach only addresses resource allocation and
overlooks communication considerations. Also, their methods are only effective for deep
learning workloads with repetitive resource usage patterns and require sufficient historical
data and clustering training.

Xu et al. investigated the effectiveness of Docker containers as a means to simplify
the deployment and management of deep learning workloads [20]. In particular, they
evaluate the impact of Docker containers on the performance of deep learning workloads.
Their findings indicate that both CPU- and GPU-intensive tasks exhibit minimal overhead
when running inside Docker containers. This means that Docker containers can be used
for deep learning workloads without significant performance degradation. However, it is
important to note that their study only evaluates the performance of Docker containers on
specific hardware types, so different hardware configurations are likely to produce different
performance results. As a result, further research is needed to evaluate Docker container
performance across different hardware types and deep learning frameworks [20].

Bae et al. investigated the performance of Intel-Caffe, a distributed deep learning
framework, on the Nurion supercomputers. Specifically, they focus on identifying the file
I/O factors that affect the performance of Intel-Caffe in a container-based environment [21].
They observed that although the training phase of deep learning in a container-based
environment has minimal overhead, page cache has a significant impact on the performance
of deep learning frameworks.

Janecek et al. analyzed container workload characteristics by collecting system trace
data from host systems [22]. Specifically, they classified containers based on their resource
usage and behavior and identified idle containers in order to efficiently manage container
clusters. However, their experiments use benchmarking tools to generate test data, which
may not be representative of real AI workloads.

Zhang et al. explored resource consumption of containerized workloads on edge
servers, with a particular focus on CPU resources, which are heavily consumed by container
management and inter-container communication by daemon processes [23]. They present
custom containers to improve CPU efficiency and evaluate the effectiveness of the algorithm
based on specific metrics such as inter-container transfers, number of container starts, and
application execution duration. Since their research focuses on CPU resources for network
communication, additional considerations will be needed for deep learning workloads,
where memory is another important bottleneck.

Avino et al. also performed a similar analysis to quantify the overhead of container-
ization in edge environments [10]. They showed that containerization incurs small CPU
overhead without affecting the data processing of each container. However, their target
workload is multimedia streaming and is not related to deep learning.

Recently, Rauschmayr et al. proposed a profiling tool that correlates system utilization
metrics with framework operations in deep learning workloads [18]. Specifically, they
deploy the profiling functionality as an add-on to Amazon SageMaker Debugger and
identify resource usage patterns during the training and inference phases of deep learning.

Overall, previous research has focused on the potential to improve the performance
of deep learning workloads using containers. However, further research is needed to
evaluate the performance of these systems on different hardware configurations and AI
workloads. Additionally, there are still challenges to be solved, such as resource allocation,
communication, and memory usage optimization. Table 1 lists a brief summary of previous
studies related to this article including their strengths and limitations.
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Table 1. A brief summary of related work characterizing workloads with resource considerations.

Resources
Considered Target Workloads Strengths Limitations

Park et al.
[19] Memory AI workload

• Observe AI workload’s memory
usage patterns differentiated
from traditional workloads

• Determine the primary factor
that leads to memory access in
AI workloads

• More research is
needed on different
environments and
models

Berral et al.
[12] CPU, memory AI workload

(containerized)

• Find resource usage patterns and
similarities between containers

• Improve resource usage in deep
learning clusters

• Does not consider how
tasks will communicate
with each other

Xu et al. [20] CPU, GPU AI workload
(containerized)

• Measure the effects of Docker
containers in deep learning
workloads

• Evaluation is limited to
specific hardware types

Bae et al.
[21] I/O AI workload

(containerized)

• Observe the influence of page
cache on the efficiency of deep
learning frameworks

• Evaluation is limited to
specific frameworks

Janecek et al.
[22]

CPU, memory,
I/O, network

Traditional
workload
(containerized)

• Categorize containers according
to resource utilization and
behavior

• Identify and release idle
resources

• Use benchmarking
tools to analyze
scenarios that may
diverge from real-world
conditions

Zhang et al.
[23] CPU, network

Traditional
workload
(containerized)

• Investigate resource utilization of
containerized workloads
running on edge servers

• Enhance CPU efficiency by
assessing the algorithm’s efficacy

• The proposed
algorithm does not
consider the
heterogeneity of edge
nodes

Avino et al.
[10] CPU

Traditional
workload
(containerized)

• Present a quantitative
assessment of the Docker
container’s CPU overhead

• Evaluation is limited to
specific applications

Rauschmayr
et al. [18] CPU, I/O, GPU AI workload

(containerized)

• Propose a profiling tool that
correlates system utilization
metrics with framework
operations

• Evaluation is limited to
specific frameworks

3. Experimental Setup

This section describes an experimental configuration set up to quantify the perfor-
mance of deep learning workloads running in Docker containers compared to running
directly on the host system. The Docker framework we experiment with is composed of
two images: a training image and a deployment image as shown in Figure 2. The training
image does the work of loading the data, training the model, and storing the trained model
outside the container. The deployment image runs the saved model and handles inference
requests. To compare the performance of running deep learning workloads in Docker
containers and directly on the host system, we construct two experimental sets. The first
set runs training and deployment directly on the host machine, while the second set runs
inside a Docker container. We run deep learning workloads on a single physical machine,
and each workload is executed on a separate container. 4 containers are used in order to
see the effect of multi-tenant environments. The hardware configuration of our experiment
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consists of Intel i7-12700 CPU, Samsung DDR4 3200 16GB memory, Galax GeForce RTX
3060 GPU, Hynix Gold P31 SSD 2TB, and WD Blue 7200 HDD 2TB as listed in Table 2. We
measure the performance of each set of experiments using a variety of metrics, including
CPU usage, memory usage, and execution time.
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Table 2. Hardware configuration of our experiments.

Item Specification

Processor Intel® Core™ i7-12700 Processor
Main Board GIGABYTE Z690 GAMING X DDR4
Memory Samsung DDR4 3200 (16 GB)
Graphics Card GALAX GeForce RTX 3060
SSD SK Hynix Gold p31 (2 TB)
HDD WD BLUE 7200/256M (2 TB)

We leverage Ftrace, a kernel tracing framework, to evaluate the performance differ-
ences between the execution of the same task in a Docker container and the host system.
Ftrace supports debugging and performance analysis by tracing a variety of events, includ-
ing function calls, system calls, and interrupts. To ensure a fair and unbiased comparison,
we control for various configurations that could potentially affect performance, such as the
programming language and software library versions used. Details of software configura-
tions we consider are listed in Table 3. All experiments are performed on the same system
and the results reported are averages from five independent runs.

Table 3. Software configuration of our experiments.

Item Version

Linux Linux 5.19.0-42-generic
Docker Docker 23.0.1
Python Python 3.10
Pytorch Pytorch 1.12.1
CUDA CUDA 11.6

We collect event traces using the Ftrace utility while executing deep learning workloads
consisting of two well-known datasets: the Wikipedia dataset [24] and the ImageNet
dataset [25]. For the Wikipedia dataset, we perform preprocessing by using the Kakao
morpheme analyzer (https://github.com/kakao/khaiii, accessed on 23 September 2023)

https://github.com/kakao/khaiii
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to separate samples into morphemes and generate word sets. The lengths of all samples
are matched such that short samples are padded with trailing zeros. For the ImageNet
dataset, the size of the training images was adjusted to 256 × 256 for image classification,
and the shorter width and height were fixed to 256. As training models, we use PyTorch,
the most widely used machine learning framework. Specifically, two large-scale models for
text processing and two small-scale models for image analysis are used. Details of these
models and their corresponding datasets are listed in Table 4. For model training, we first
load the datasets, preprocess them, and repeat them for 10 epochs. The extracted event
traces are categorized into four stages of deep learning: data load, model load, training,
and inference.

Table 4. Model configuration of our experiments.

Dataset Scale Model

Text
Small Mobile-BERT [26]
Large LSTM [27]

Image Small SqueezeNet [28]
Large AlexNet [29]

4. Analysis of Deep Learning Event Traces

In this section, we perform a comprehensive analysis of extracted event and system
call traces while running containerized deep learning workloads. We first examine the
event traces of CPU and memory systems and investigate the distribution of system calls to
quantify potential bottlenecks and performance overhead. We also analyze the relationships
between system calls and their triggering events.

4.1. Basic Event Analysis

We use the Linux perf tool to profile system calls and events generated by container
processes, Docker daemons, and host processes to quantify the performance effects of
each system configuration. The container process executes deep learning workloads on a
container based on a virtualized form. The Docker daemon is a process that handles Docker
API requests and manages containers. Specifically, it builds, runs, and manages images,
containers, and other Docker objects. The host process runs deep learning workloads
directly on the host OS without virtualization. Table 5 shows basic event and system
call traces extracted from the container process, Docker daemon, and host process. For
system calls, the most frequently invoked events and their number of invocations are
listed. As we see from this table, most system calls are related to memory allocation and
I/Os. In terms of CPU performance, running workloads in Docker containers increases
CPU cycles by approximately 50% compared to running workloads directly on the host
machine. As we can see, the pure container overhead caused by the daemon process is not
significant, but various inefficiencies resulting from the addition of a layer of containers
increase the overhead.

When analyzing block-related system calls in the container environment, we observe
a significant number of block_rq_insert events. In particular, by analyzing the call graphs
associated with these events in Table 6, we see that there is a significant number of write-
back operations due to dirty pages within the container. This sync process flushes all dirty
pages to storage, causing write-back operations to wait for the flush.

We also measure page-faults and swaps occurring on the container-based and host
systems. As can be seen in Table 5, the number of page-faults in the container-based
system is more than twice that of the host system. There are two types of page-faults:
major faults, which involve swap I/O, and minor faults, which can be handled by kernel
mapping without storage access [30]. The increased number of page-faults in container-
based systems suggests that containers may be more susceptible to I/O performance
problems than traditional OSs. This is because containers share the file system and host



Appl. Sci. 2023, 13, 11654 8 of 15

OS, which can lead to contention and fragmentation. This results in poor performance and
increased I/O load in container-based systems. To alleviate the performance degradation
of page swapping, it is important to carefully manage the memory management algorithms
allocated to containers. For example, it should be ensured that containers have sufficient
memory and do not execute workloads that are known to generate a lot of page-faults.
Also, it is necessary to generate different container runtimes to provide better isolation
from the host system.

Table 5. Event and system call traces extracted from container and host processes.

Event Container Process Container Daemon Host Process

CPU cpu_core/cycles/ 461,729,070,471,469 124,892,660,806 306,402,857,705,993
cpu_atom/cycles/ 93,706,213,673,857 93,207,046,124 61,663,593,615,121
cpu_core/instructions/ 412,465,430,821,263 198,780,273,963 178,197,584,510,724
cpu_atom/instructions/ 106,333,305,694,655 112,349,586,140 9,714,425,305,632
cpu_core/cache-misses/ 1,375,684,053,246 1,760,922,473 641,571,962,797
cpu_atom/cache-misses/ 539,034,658,626 1,663,241,340 61,020,677,212

Memory page-faults 1,685,309,171 9081 825,523,873
minor-faults 342,203,571 9035 150,807,077
major-faults 1,343,104,572 14 674,716,307
cpu_core/mem-loads/ 0 0 0
cpu_atom/mem-loads/ 1,688,256 0 3313
cpu_core/mem-stores/ 41,600,872,930,344 19,056,452,909 12,134,821,271,569
cpu_atom/mem-stores/ 11,791,995,380,030 10,442,649,500 511,089,910,826

System block:block_touch_buffer 281,259 1244 244,841
call block:block_dirty_buffer 267,489 269 159,348

block:block_rq_complete 977,810 143 1,100,795
block:block_rq_insert 48,881 4 28,958
block:block_rq_issue 971,675 528 1,096,962
block:block_bio_backmerge 39,741 436 51,398
block:block_bio_frontmerge 428 0 114
block:block_bio_queue 1,007,074 993 1,145,499

Table 6. Call graph of block request insert.

# perf record -g -e block:block_rq_insert -p [pid] && perf report

. . .
17.77% kworker/u40:5 -f [kernel.kallsysms] [k] blk_mq_insert_requests
ret_from_work
kthread
worker_thread
process_one_work
wb_workfn
wb_do_writeback
+ wb_writeback

4.2. Dirty Pages and Write-Backs

In this subsection, we track the frequency of write-back system calls to compare the
incidence of dirty pages across containers, host processes, and multi-tenant environments.
In a multi-tenant environment, we run four containers simultaneously. We set the flush
interval for our Linux system according to the environment variables in Table 7.
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Table 7. Environment variables for flush operations.

/proc/sys/vm

dirty_background_ratio 10
dirty_ratio 20
dirty_expire_centisecs 3000
dirty_writeback_centisecs 500

Figure 3 shows the frequency intervals of write-back system calls invoked in a single
container, multiple containers, and host systems. As shown in the figure, containers call
write-back functions more frequently than host processes on average. Also, when we
compare the standard deviation of write-back call intervals in Figure 3, containers exhibit
a much larger variance than the host system. This implies that the estimation of write-
back system calls is more difficult in container-based deep learning, causing potential
performance penalties. When comparing single and multi-tenant container environments,
however, there is no significant difference in the write-back system call interval. This implies
that multiple containers are certain to flush more dirty pages than a single container per each
write-back system call. That is, as containers need to perform global data synchronization
consistently, multi-tenancy inherently increases I/O traffic to storage even if it does not
increase write-back frequency [31]. Specifically, storage write traffic will be increased
with multiple containers, as each container needs to synchronize its data with the data of
other containers.
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Figure 3. Comparison of sync system call intervals.

In our experiments, the write-back system call interval of Docker containers is shorter
than the default storage flush interval listed in Table 7. This implies that dirty pages
are generated more frequently in the container than with the default storage flush setting,
resulting in more frequent sync system calls. Note that dirty pages have some modifications
to the data after they are loaded into memory, so they need to be flushed to storage.



Appl. Sci. 2023, 13, 11654 10 of 15

4.3. Page-Fault Analysis

Since page-faults and write-backs are quantified as significant causes of performance
penalties in containerized deep learning, we further analyze memory and storage-related
events using Linux Ftrace. Specifically, we investigate page-fault situations and their main
reasons comprehensively. Table 8 shows the distribution of page-faults, and the files and
functions that cause the page-faults. As we see from the table, a majority of page-faults are
caused by a small number of specific files. In particular, the main sources of page-faults
are found to be shared libraries, garbage collection, and regular expressions for path rules.
Page-faults caused by shared libraries occur when an application loads a library file that is
not resident in the main executable file. If the library is already in memory, this is a minor
fault and only requires a re-mapping by the OS. If not, the library file needs to be loaded
from storage and this is called a major fault. Garbage collection can also cause page-faults
because garbage collection may result in the deallocation of memory that is still in use.
Also, regular expressions for path rules can incur page-faults when complex expressions
should be evaluated, which can lead to large memory space allocations.

Table 8. System call frequency distributions.

Rank Task File Location Cause Percent

1 docker /usr/lib/x86_64-linux-
gnu/ld-linux-x86-64.so.2 _dl_relocate_object Shared library

injection 6.2

2 docker-buildx /usr/libexec/docker/cli-
plugins/docker-buildx runtime.memclrNoHeapPointers Garbage Collection 5.1

3 docker /usr/bin/docker runtime.(*spanSet).push Container start
new command 4.5

4 docker-buildx /usr/libexec/docker/cli-
plugins/docker-buildx runtime.(*spanSet).push Container start

new command 3.8

5 docker /usr/bin/docker runtime.memclrNoHeapPointers Garbage Collection 3.0

6 docker-buildx /usr/libexec/docker/cli-
plugins/docker-buildx runtime.memmove Memory Copy 2.8

7 docker /usr/bin/docker runtime.memmove Memory Copy 2.5

8 docker /usr/bin/docker runtime.getempty Container first
start command 1.9

9 ML process /usr/libexec/docker/cli-
plugins/docker-buildx runtime.(*spanSet).push Container start

new command 1.6

10 docker-
compose

/usr/libexec/docker/cli-
plugins/docker-compose 0x6b239 Heap 1.5

To buffer the performance overhead caused by frequent storage flushes in container-
based deep learning, NVM (non-volatile memory), also known as persistent memory, can
be adopted. For example, eMRAM, a type of NVM for mobile systems, is being developed
by Samsung Electronics [32]. If we flush hot dirty pages generated in Table 8 to the NVM,
access to slow storage media can be eliminated. This can significantly accelerate the
performance of container-based deep learning workloads, which will be discussed further
in the next section.

5. Flushing Dirty Pages to Secondary Storage

In the previous section, we traced the statistics of dirty pages that were flushed to
storage by kernel write-back calls while executing deep learning workloads. In this section,
we further analyze the details of storage flush events. Specifically, we analyze the write-back
activities as time progresses and the ratio of write-back triggering reasons (e.g., periodic,
background, and sync). The most common cause of write-backs is “periodic,” which is
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activated periodically on a schedule. These periodic write-backs ensure that dirty pages are
flushed to storage within a certain time window regardless of the situation of the system.
Another common cause of write-backs is “background,” which is triggered when the ratio
of dirty pages in memory exceeds a certain threshold. Note that periodic and background
write-backs are not explicitly requested by a user space process but are performed by the
kernel. In contrast, “sync” can be requested explicitly by a user process to flush all dirty
data to storage, regardless of the reason for the write-back operation. Frequent invocation
of “sync” may slow down the entire system so it should only be used if we need to flush all
dirty data to storage.

Tables 9 and 10 show the frequency and ratio of write-backs based on call reasons in
single and multiple Docker environments, respectively. As shown in Table 9, “periodic”
accounts for the majority of write-backs (68.1–81.5%) in single Docker environments, but
there is also a certain portion of “background” write-backs of 18.4–31.6%. Note that
“background” write-backs are difficult to estimate, so they may degrade the performance
of the entire system. Note also that the ratio of “background” write-backs grows even
more in multi-tenant environments (by up to 42.1%) as shown in Table 10. This is because
multi-tenants use more memory space, so “background” write-backs are triggered more
frequently to reduce dirty pages in memory. Based on this result, we can conclude that
multi-tenants incur more unpredictable write-backs, causing efficient management of flush
I/Os difficult. Also, the differences observed between the two environments suggest that
each requires a customized approach to manage the write-back process.

Table 9. Frequency and ratio of write-backs (single Docker).

Background Periodic Sync

SqueezeNet 2400 (31.6%) 5182 (68.1%) 24 (0.3%)
Mobile-BERT 3040 (18.4%) 13,500 (81.5%) 20 (0.1%)
AlexNet 1674 (22.0%) 5866 (77.2%) 57 (0.8%)
LSTM 2157 (25.8%) 6155 (73.6%) 49 (0.6%)

Table 10. Frequency and ratio of write-backs (multiple Dockers).

Background Periodic Sync

SqueezeNet 23,753 (42.1%) 32,542 (57.6%) 180 (0.3%)
Mobile-BERT 19,466 (34.9%) 36,106 (64.8%) 186 (0.3%)
AlexNet 4884 (28.5%) 12,020 (70.2%) 208 (1.2%)
LSTM 5361 (35.0%) 9773 (63.8%) 186 (1.2%)

Reducing the number of write-backs can be achieved by appropriately setting the
write-back parameters or using a file system that supports asynchronous writing. However,
setting appropriate parameters in deep learning varies depending on the model and the
number of tenants (i.e., single or multi-tenant).

To investigate the characteristics of write-back activities over time, we plot in Figure 4
the number of write-backs that occur for each memory page as time progresses. As shown
in the figure, dirty pages that are being written back are evenly distributed across all pages
in the early stages of deep learning, but after a certain time point, some limited pages are
consistently flushed. This means that some limited data in deep learning is constantly
modified, and it is necessary to efficiently manage these data flushes for stable performance
of the deep learning training process. In the early stages of deep learning training, data is
loaded, models are initialized, and weights are changed frequently. This means that there
are a variety of dirty pages that need to be flushed back into storage [33]. However, as the
model learns and the weights converge over time, the number of dirty pages decreases.
That is, after a certain time point, the model repeatedly updates some limited data, which
generates certain pages increasingly hotter as shown in Figure 4. Note that these hot
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dirty pages can cause performance issues as they should essentially be flushed to storage
frequently, wasting CPU and memory resources.
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To handle this situation, we suggest an intermediate non-volatile flushing layer re-
siding between the main memory and the storage. Our architecture shown in Figure 5
has the mission of improving the write-back performance by making use of NVM as the
front-end cache of secondary storage, leading to reduced I/O traffic and frequency of flush
operations to slow disk storage. Specifically, our preliminary architecture utilizes NVMe
as a secondary storage buffer to accelerate the write-back performances. As NVM is also
a non-volatile medium like hard disks, we can eliminate storage flushing operations. To
assess the effectiveness of this system architecture, we conduct simulation experiments for
write-back activities in container-based deep learning workloads and compare the results
of the original system and those with our NVM-added architecture. We use the parameters
of a Toshiba DT01ACA1 hard disk drive (HDD) with a read/write access latency of 8 mil-
liseconds for secondary storage. For NVM media, we use the parameters of a phase change
memory (PCM) with a write latency of 350 nanoseconds. Note that PCM is a well-known
NVM media that can be placed in front of slow storage to accelerate I/O performances [16].
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Figure 6 shows the I/O latency of the proposed NVM-added architecture in compari-
son with the traditional system that does not use NVM as workloads and system situations
are varied. As shown in the figure, our preliminary architecture improves the I/O latency
significantly in all cases. Specifically, the improvements for SqeezeNet, Mobile-BERT,
AlexNet, and LSTM, are 83%, 90%, 84%, and 77%, respectively, in single Docker and 78%,
77%, 86%, and 83%, respectively, in multi-tenant Docker environments. The improvement
is the largest in the single Docker Mobile-BERT dataset. Note that Mobile-BERT is the
smallest text dataset so most flush operations can be eliminated even with a small NVM
capacity. We also observe that the improvement is large in multi-tenant environments
with relatively heavy models such as Alexnet and LSTM because an increased number of
write-backs in such models puts more strain on the HDD. In summary, our architecture
has the effect of significantly improving I/O latency in containerized deep learning by
absorbing storage flushing into an intermediate buffer between the container and slow
HDD storage.
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6. Conclusions

In this article, we quantified the resource requirements of containerized deep learning
workloads through measurements and trace-based analysis. Specifically, we extracted and
investigated the system event trace of container-based deep learning and compared it to
traces collected by running the same workload on host systems to identify the overhead of
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containerization and potential performance penalties. Based on our analysis, we observed
that memory management, especially write-backs of dirty pages to storage, can be the
main bottleneck in container-based deep learning. This is because containers share the
host kernel and file systems, which can cause contention, and each container may have
different synchronization intervals. By analyzing system calls and event traces generated
by container-based deep learning, we provided implications for resource management in
a containerized environment. We also introduced a preliminary solution that adopts an
intermediate non-volatile flushing layer to alleviate the performance bottleneck of storage
write-backs. Instead of flushing to traditional storage, our solution effectively hid the
write-back overhead by absorbing hot data in fast NVM media, improving I/O latency by
82% on average.

In this article, we focused on analyzing the overhead of containerization in deep
learning workloads executed in IoT environments that have limited resource capacities.
Thus, we selected workloads that are relatively lightweight and suitable for deployment
on edge devices rather than huge workloads where trace extraction imposes significant
overhead on the system. In the future, we will extend our target architecture to high-
performance systems that can support more complicated deep learning workloads, such
as ResNet, NASNet, or GoogLeNet, to analyze resource usage patterns of containerized
deep learning.
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