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Abstract: Automated machine learning (AutoML), which aims to facilitate the design and opti-
mization of machine-learning models with reduced human effort and expertise, is a research field
with significant potential to drive the development of artificial intelligence in science and industry.
However, AutoML also poses challenges due to its resource and energy consumption and environ-
mental impact, aspects that have often been overlooked. This paper predominantly centers on the
sustainability implications arising from computational processes within the realm of AutoML. Within
this study, a proof of concept has been conducted using the widely adopted Scikit-learn library.
Energy efficiency metrics have been employed to fine-tune hyperparameters in both Bayesian and
random search strategies, with the goal of enhancing the environmental footprint. These findings
suggest that AutoML can be rendered more sustainable by thoughtfully considering the energy
efficiency of computational processes. The obtained results from the experimentation are promising
and align with the framework of Green AI, a paradigm aiming to enhance the ecological footprint
of the entire AutoML process. The most suitable proposal for the studied problem, guided by the
proposed metrics, has been identified, with potential generalizability to other analogous problems.

Keywords: green software engineering; AutoML; energy efficiency; Green AI; sustainability; carbon
footprint; ecological footprint; CO2e

1. Introduction

With the exponential growth of machine learning (ML) and computing power, it
has become a hot topic both in industry and the academic world [1]. In response to this
burgeoning interest, the automation of machine learning is enabling the construction of
models of acceptable quality for tasks such as data processing, exploration of various
machine-learning algorithms, and efficient hyperparameter tuning. Therefore, continuous
efforts are needed to further advance automation within the domain of machine learning [2].
In this context, ML is a powerful and versatile tool for solving complex problems in
various domains. However, ML systems often require a large amount of computational
resources, which can have a negative impact on the environment and the energy efficiency
of the devices.

Automated Machine Learning (AutoML) is a promising research area that aims to
reduce the human effort and expertise required to design and optimize machine learning
models [3–5]. Nonetheless, AutoML systems often consume a large amount of compu-
tational resources and energy, which may have negative environmental and economic
impacts [6–8].

In this paper, we propose a proof of concept for developing automated machine-
learning systems that adhere to the principles of green computing. A proof of concept
(PoC) is a partial or incomplete implementation of a method or idea conducted to verify
the feasibility of a practical application. It demonstrates that a concept or theory is feasible
for useful implementation, helping to mitigate risks, demonstrate value, and optimize
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performance before full implementation. With this approach in mind, we identify the
main challenges and opportunities for integrating green computing techniques into the ML
pipeline, such as data preprocessing, model selection, hyperparameter tuning, and deploy-
ment. We also discuss some potential applications and benefits of green machine-learning
systems for different domains, such as healthcare, education, and smart cities. To conclude
this introduction, we outline some open research directions and future perspectives for this
novel and promising area of research [9,10].

Although artificial intelligence (AI) and AutoML are known for their potential to
contribute to sustainability, the sustainability of AI and AutoML has not received the same
level of attention. Building upon this premise, the concept of Green AI was introduced
by Schwartz et al. [11] and is an emerging field that focuses on the development of AI
algorithms and implementations that are more resource-efficient. This is important because
AI has a significant environmental impact, as it requires a large amount of energy to train
and run models.

In [12–15], the carbon footprint of AI computing has been characterized by examining
the model development cycle across industry-scale machine-learning use cases while also
considering the life cycle of system hardware. This comprehensive perspective underscores
the need for further investigation into the sustainability of AI, particularly in terms of
economic, social, and environmental aspects.

It is necessary to emphasize the importance of thoroughly assessing our ecological im-
pact and actively avoiding unnecessary and extensive carbon footprints, firmly anchoring
our proposals within the realm of sustainability. At the core of our proposal is the integra-
tion of Green AI metrics or accurate measurements of energy consumption into the intricate
algorithms of AutoML. By incorporating these pivotal metrics, we chart an innovative path
toward significantly reducing the inherent carbon emissions in machine-learning processes.
This strategic alignment of AutoML with Green AI culminates in a collective stride towards
a more environmentally conscious future.

The field of AutoML is inherently complex and not readily amenable to theoretical
analysis, thus making empirical research contributions predominant. This necessitates
conducting extensive experimental studies, which consume a substantial amount of com-
putational resources and subsequently result in considerable carbon emissions. To mitigate
these environmental impacts, it becomes imperative to devise techniques that exhibit higher
resource efficiency and enable more rapid evaluations, consequently discarding approaches
with subpar performance.

The major proportion of energy consumption and carbon emissions originates from
the AutoML process, involving pipeline evaluations and the storage of intermediate search
results. However, when formulating an AutoML proposal, it is crucial to adopt a holistic
perspective considering the entire lifecycle, which includes data generation, storage, com-
putational efforts, memory requirements during development, and the final benchmarking.
It is essential not to judge research initiatives with a significant environmental footprint
without carefully evaluating their cost-benefit trade-offs. This paper primarily centers on
the AutoML process, aligning with the principle of Pareto, also known as the 80–20 rule
and the law of the vital few [16].

The analysis of resource consumption in the context of AutoML is an essential as-
pect for evaluating the environmental sustainability of automated machine-learning ap-
proaches and contributes to the quest for more eco-friendly solutions in the field of artificial
intelligence.

Various strategies have been developed to assess environmental sustainability in
the context of AutoML, aiming to identify areas of higher environmental impact and
achieve greater optimization for sustainability. Among the most relevant ones are the
measurement of computational resource consumption, estimation of carbon emissions,
evaluation of energy efficiency, scalability, and analysis of the AutoML lifecycle (Figure 1).
Additionally, the performance and quality of models generated by AutoML are compared
with the computational effort required. It is also suggested to conduct a comparison
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of environmental sustainability with traditional manual approaches to understand the
environmental advantages of automation in artificial intelligence.

AutoML should not be quantified solely based on the efficiency of an approach or the
environmental impact of a specific experiment. Instead, both factors should be considered
jointly as research continues to explore the intersection of efficiency and environmental
impact [17,18].

Data Generation & 

Storage

Data 

Preprocessing & 

Cleaning

Algorithm & 

Configuration 

Selection

Model Training & 

Evaluation

Best Model 

Selection

Model 

Implementation & 

Deployment

Figure 1. Illustrates the AutoML lifecycle, encompassing data generation and storage, algorithm
and configuration selection, model training and evaluation, and model implementation. Notably, it
features a feedback loop that cycles back to the selection of algorithms and configurations after the
model training and evaluation stage.

A burgeoning solution to the challenge of energy-intensive algorithms is green or
sustainable AI [19–22], which underscores the growing pursuit of ecologically mindful
practices within the realm of AI and AutoML. Key strategies include precision–energy trade-
offs, energy-aware neural architecture search, model compression, and multi-objective
Pareto optimization considering accuracy, latency, and power [23]. Cross-domain transfer
learning can also improve sample efficiency and lower training costs [24]. Overall, research
toward responsible and eco-conscious AI is rapidly gaining traction. The integration of
Green AI principles into hyperparameter optimization and AutoML offers significant
potential to mitigate the environmental footprint of developing performant ML solutions.

The objective of this research is to explore the sustainability implications associated
with the computational processes within the domain of Automated Machine Learning. In
this paper, we have made the following contributions:

• The best hyperparameter optimization strategy was identified using Green AI criteria
among frequently used algorithms: Bayesian search and random search in scikit-learn.

• A proof of concept is presented under a Green AI paradigm for the entire AutoML
process.

• An experimentation process was implemented based on the principles of Green AI sus-
tainability, which confirmed the validity of sustainability applied to experimentation
in AutoML.
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The structure of this article is outlined as follows: In Section 2, we provide a review
of relevant literature. Section 3 discusses necessary formalizations. The methodology of
our proposal is presented in Section 4. The results of this experimentation are detailed
in Section 5. Section 6 offers an in-depth discussion of the obtained results. Finally, in
Section 7, we present our conclusions and outline directions for future research.

2. State of the Art

The widespread adoption of artificial intelligence (AI) has amplified the importance
of achieving a delicate equilibrium between machine-learning model performance and
sustainability. Building upon these principles, this is primarily due to the undeniable
impact AI systems now exert on our carbon footprint [25,26]. Coping with this challenge
has prompted the exploration of diverse strategies.

In the pursuit of this equilibrium, these encompass the curation of more efficient
models [27], the meticulous optimization of hyperparameters [28], and the judicious utiliza-
tion of knowledge transfer [29]. Additionally, the incorporation of reinforcement learning
techniques [30], real-time monitoring mechanisms [31], and energy-efficient hardware [32]
has emerged as a common practice.

Within this multifaceted landscape, particular attention has been dedicated to life cycle
assessments [33] and the design of efficient datasets [34]. In a complementary vein, these
facets have been accentuated, recognizing the pivotal roles that awareness and education
play in the promotion of sustainability within the machine-learning domain [11].

Hyperparameter optimization for machine-learning algorithms has been a hub of
active research, notably witnessing substantial progress in recent works [35–38]. In response
to the growing need for environmentally friendly AI, various optimization strategies have
arisen [22,39,40]. These strategies align with Green AI principles and strive to mitigate the
environmental repercussions associated with AI development.

Among the most resource-efficient optimization techniques are those based on Bayesian
sequential models and their derivatives [41–43]. Specifically, they aim to minimize the
number of objective function evaluations, thus reducing computational expenses. Bayesian
optimization, in particular, leverages probabilistic surrogate models to guide the selection
of hyperparameters to evaluate based on prior results [44].

Although most current research centers on carbon footprint monitoring, hyperparame-
ter fine-tuning, and model benchmarking [39], other innovative approaches have sought to
reduce the number of iterations needed to find optimal hyperparameters. These strategies,
such as those outlined by Stamoulis et al. [45], represent a significant departure from tradi-
tional hyperparameter tuning and can substantially diminish the energy costs associated
with searching for the optimal set of hyperparameters. Notably, De et al. [46] demonstrated
how hyperparameter tuning, when inclusive of energy consumption considerations, can
foster the development of more energy-efficient models.

Variational Autoencoders (VAEs) have garnered significant attention due to their
potential for crafting compact and lightweight neural networks while incurring minimal
loss in accuracy [47]. The utilization of VAEs enables model compression, therefore re-
ducing computational demands and energy consumption [48]. Moreover, VAEs excel
in transferring knowledge from extensive teacher networks to more economical student
models [29,49]. In a recent study by Asperti et al. [50], a comparative evaluation of various
VAE variations was conducted, with a specific emphasis on analyzing the energy efficiency
of different models. This research aligns with the principles of Green AI, highlighting
the need for enhanced metrics beyond FLOPs (floating-point operations per second) and
improved calculation methodologies.

Regarding deep learning models, such as VAEs and Convolutional Variational Autoen-
coders (ConvVAEs), it is possible to observe slightly divergent outcomes. These variations
can be attributed to several contributing factors, as discussed in Sonderby et al. [51]. In the
context of ConvVAEs, these outcomes are influenced by factors such as weight initialization,
network architecture, and training hyperparameters. These considerations underscore the
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critical importance of precise configuration and hyperparameter optimization [42]. Addi-
tional sources of variation arise from random initialization and dataset diversity, which
can impact the learned model parameters and filter responses [52]. In practical terms, the
primary objective is to ensure that, despite the inherent variability introduced by these
factors, the models effectively capture salient features and maintain consistent performance.

A significant area of uncertainty revolves around whether different training method-
ologies consistently yield VAEs or ConvVAEs models with similar generative capabilities.
It is plausible that divergent training processes result in models with distinct filter weight
configurations, while these models continue to exhibit comparable performance [52]. Fur-
thermore, these training processes may potentially yield models with differing architec-
tural configurations, involving variations in the number and type of network layers [53].
Consequently, the performance of these models may diverge, especially concerning the
complexity of the data they aim to generate [54]. Clearly, these variations in model architec-
tures bear significant implications for ecological sustainability and significantly influence
the development of a sustainable paradigm for artificial intelligence.

Multi-objective optimization techniques, as surveyed by Morales et al. [55] and
explored by Kim et al. [56] in the NEMO framework, offer a promising avenue for explicitly
integrating sustainability objectives into the model training process. Specifically, these
methods employ evolutionary algorithms to Pareto-optimize models for multiple objectives
simultaneously, such as accuracy, latency, and energy efficiency.

In a parallel approach, hybrid human-AI approaches, as exemplified by the work of
Wilson et al. [57], harness human inputs to enhance model efficiency. In particular, these
approaches harness human inputs to enhance model efficiency through human-in-the-loop
training. This strategy guides autoencoders toward meaningful and resource-efficient
representations, mitigating the computational overhead associated with training. The
integration of human domain knowledge further contributes to avoiding the inefficiencies
inherent in pure black-box training strategies.

Quantization, as introduced by Zoph et al. [58], emerges as a potent tool for curtailing
computational and environmental costs associated with machine-learning models. Essen-
tially, by reducing the number of bits used to represent model parameters and weights,
quantization substantially diminishes both model size and energy consumption.

Pruning, elucidated by Han et al. [59], offers another avenue for enhancing efficiency.
This involves the removal of unnecessary connections and parameters from a model,
leading to reductions in both model size and computational demands.

Lastly, knowledge distillation, originally proposed by Hinton et al. [60] and further
advanced by Yang et al. [61], involves the transfer of knowledge from a large teacher
network into a smaller student network. This process not only minimizes model com-
plexity but also enhances the sustainability of machine-learning systems by reducing
computational demands.

Collectively, the pursuit of sustainable machine learning involves a comprehensive ar-
ray of strategies spanning efficient model design, hyperparameter optimization, lightweight
models, multi-objective optimization, and hybrid human-AI approaches. These strategies
form a cohesive approach to not only improving the environmental sustainability of AI but
also maintaining and even enhancing model performance.

Overall, promising strides are being made towards sustainable AI. The research dis-
cussed in this section highlights some of the most promising approaches to balancing
machine-learning performance with sustainability considerations. These solutions encom-
pass a diverse range of methodologies, primarily deployed within the domain of deep
learning. In contrast, our proposition centers on tabular data and AutoML solutions utiliz-
ing conventional algorithms. This focal point enables the creation of innovative features
customized for widely adopted libraries, thus making a meaningful contribution to the
sphere of Green AI within the corporate landscape.
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3. Bayesian Optimization for Hyperparameter Optimization

In this section, the Bayesian optimization algorithm is examined, as it represents the
primary method employed in experimentation. The definition of Bayesian optimization
and the hyperparameter optimization problem are both provided.

3.1. Definitions

The hyperparameter optimization problem in machine learning involves finding the
optimal set of hyperparameter values for a model that maximizes its performance on a
given evaluation dataset. The problem can be formalized as a mathematical optimization
problem as follows:

Given a hyperparameter space Θ, an objective function f (Θ), and a set of constraints
C, the hyperparameter optimization problem is to find the optimal hyperparameter config-
uration Θ∗ that either maximizes or minimizes the objective function f (Θ) subject to the
constraints C.

Here is a breakdown of the formalization:

• Θ is a vector of hyperparameters that configure a machine-learning model.
• f (Θ) is the objective function that measures the model’s performance on an evaluation

dataset using a specific metric, such as accuracy, mean squared error, or area under
the ROC curve.

• C represents the constraints, which can include limitations on allowable values for
hyperparameters, constraints on computational resources (such as maximum runtime
or available memory), or any other relevant constraints for the problem.

The aim is to find Θ∗ such that:

Θ∗ = arg max
Θ

( f (Θ))

subject to:

Θ ∈ C

In other words, we want to find the hyperparameter configuration Θ∗ that maximizes
the objective function f (Θ) while satisfying all the constraints C.

3.2. Bayesian Optimization

In recent years, there has been a growing interest in using Bayesian optimization
for hyperparameter optimization. Bayesian optimization is a sequential model-based
optimization algorithm that learns a probabilistic model of the objective function f (Θ) and
uses this model to guide its search for the optimal hyperparameter configuration Θ∗. The
Bayesian optimization algorithm can be formalized as follows:

1. Initialize: Start with a prior distribution p(Θ) over the hyperparameter space Θ.
2. Evaluate: Evaluate the objective function f (Θ) at a new hyperparameter configuration

Θt.
3. Update: Update the prior distribution p(Θ) using the information from the objective

function evaluation.
4. Select: Select the next hyperparameter configuration Θt+1 using an acquisition

function.
5. Repeat: Repeat steps 2–4 until a stopping criterion is met.

The acquisition function is a function that measures the expected improvement in the
objective function f (Θ) from evaluating the objective function at a new hyperparameter
configuration Θ.

A frequently used acquisition function is the expected improvement (EI) function,
which is defined as follows:

EI(Θ) = Eθ∼p(Θ)[max( f (Θt)− f (θ), 0)]
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where f (Θ) is the objective function evaluated at Θ.
The Bayesian optimization algorithm can be used to find the optimal hyperparameter

configuration for a wide range of machine-learning models (see Algorithm 1). The algo-
rithm is particularly effective for problems with many hyperparameters, as it can efficiently
explore the hyperparameter space.

Algorithm 1 Bayesian optimization.

1: Initialize: p(Θ) ∼ N (µ0, Σ0)
2: for t = 1, 2, . . . do
3: Evaluate: f (Θt)
4: Update: p(Θ) ∝ p(Θt| f (Θt))
5: Select: Θt+1 = argmax

Θ
EI(Θ)

6: end for

In this algorithm, the following variables are utilized:

• p(Θ) is the prior distribution over the hyperparameter space Θ.
• f (Θt) is the objective function.
• EI(Θ) is the expected improvement acquisition function.
• µ0 and Σ0 are the mean and covariance of the prior distribution p(Θ).
• p(Θt) | f (Θt) is the posterior distribution over the hyperparameter space Θgiven the

objective function evaluation f (Θt).

4. Materials and Methods

In this section, we describe the methodology used to conduct the research in the
context of AutoML experimentation, specifically in relation to Green AI. We present the
experimental design, the implementation of algorithms and pipelines, as well as the metrics
used to measure energy efficiency and sustainability.

The proposed methodology encompasses the subsequent phases:

• Dataset Selection. The selection of a well-established dataset with minimal storage
and processing demands.

• Algorithm and Pipeline Selection. The selection of hyperparameter optimization algo-
rithms, pipelines, and machine-learning algorithms from the proposed AutoML lifecycle.

• Sustainability Metrics Identification. The identification of metrics for evaluating
sustainability.

• PoC AutoML Implementation. The implementation of a quantifiably carbon-footprinted
proof-of-concept AutoML, utilizing the elements from the aforementioned phases.

• Proposal Evaluation. The comprehensive evaluation of the proposal.

Figure 2 presents a workflow depicting the outlined methodology.
This methodology enables the construction of a more resource-efficient AutoML,

which contributes to reducing the environmental impact of artificial intelligence.

Dataset

Hyperparameter 
Optimization

Pipelines
Machine Learning 

Algorithm

Search, Optimization and Evaluation 

PoC AutoML

Sustainability 
metrics 

Bayesian 
optimization and 
Random search

Sustainable AI 
Machine Learning 

Final Models

Figure 2. The illustration shows a workflow of the proposed methodology. It includes the input
dataset, the selection of ML algorithms, the search and optimization of hyperparameters with
sustainability metrics, the evaluation of the models, and the final model, which is slightly greener AI.
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4.1. Dataset

For the AutoML experimentation, we selected a dataset widely recognized and ex-
tensively used within the machine-learning community. The Breast Cancer Wisconsin
(Diagnostic) Dataset [62] was used as the dataset. This dataset serves as a robust and com-
parative foundation for evaluating diverse AutoML approaches in relation to sustainability
and efficiency.

4.2. Proof of Concept on Sustainability within AutoML

A proof-of-concept study with a specific emphasis on sustainability within the realm
of AutoML was undertaken. We established an experimental framework aimed at assessing
the influence of various hyperparameter optimization approaches on sustainability, encom-
passing variables such as training duration, utilization of computational resources, and the
corresponding carbon emissions. Figure 3 illustrates the class diagram that presents the
primary classes and relationships within a sustainability-oriented AutoML system.

Figure 3. This class diagram shows the main classes and relationships within a sustainable-focused
AutoML system, including the AutoML classifier, data processing pipelines, and a variety of machine-
learning algorithms.

4.3. Hyperparameter Optimization, Pipelines, and Machine-Learning Algorithms

Two hyperparameter optimization algorithms were defined: Bayesian optimization
(see Algorithm 2) and random search (see Algorithm 3). These selections were made
based on their widespread use within the AutoML community and their potential to
improve efficiency and sustainability. Grip search was not included as it is computationally
very costly and, therefore, has a greater impact on the carbon footprint. Several data
preprocessing pipelines and a taxonomy of machine-learning algorithms were designed,
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covering different approaches and strategies (see Table 1). This allowed exploring a variety
of configurations and modeling options, contributing to a comprehensive assessment of
sustainability and efficiency.

Algorithm 2 Bayesian Optimization.

1: Let f be the objective function to optimize
2: Define the search space X
3: Initialize the set D = {(x1, f (x1)), . . . , (xn, f (xn))}
4: while stop criterion not met do
5: Fit GP: f ∼ GP(m(x), k(x, x′))
6: Predict with GP: p( f |x,D) ∼ N (µ(x), σ2(x))
7: Choose xt = argmax

x
α(x|D)

8: Evaluate f (xt)
9: Update D ← D ∪ (xt, f (xt))

10: Update GP model
11: end while
12: return Best x found

Algorithm 3 Random Hyperparameter Search.

1: X ← hyperparameter search space
2: f (x)← loss function to minimize
3: niter ← number of iterations
4: for i = 1 to niter do
5: xi ∼ X
6: si ← CV(xi)
7: end for
8: xbest ← argmax

xi

si

9: return xbest

Table 1. Taxonomy of Machine-Learning Algorithms.

Family Algorithm

Stochastic Gradient Descent Classifier SGDClassifier
Logistic Regression LogisticRegression

K-Nearest Neighbors Classifier KNeighborsClassifier
Random Forest Classifier RandomForestClassifier

Gradient Boosting Classifier GradientBoostingClassifier
Decision Tree Classifier DecisionTreeClassifier

Linear Support Vector Machine LinearSVC
Nonlinear Support Vector Machine SVC

Gaussian Naive Bayes GaussianNB

4.4. Sustainability Metrics

This paper focuses on sustainability aspects induced by computing, as proposed
by [63–66]. These measurements focus on estimating the time and resource consumption,
which allows us to determine the carbon footprint of the experimentation in an estimated
but precise way. The main metrics identified in the state of the art are [17,25,67–69]:

• Runtime is a measure of the time it takes for a program to complete. It is not a perfect
measure of efficiency, but it is strongly correlated with the power consumption of
the corresponding experiment. Runtime can be used to calculate an estimate of the
total carbon footprint of the experiment, but additional information is needed, such as
the power consumption of the hardware used and the composition of the power mix.
Compared to other measures, runtime is easy to measure on most hardware.
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• CPU/GPU Hours. Measuring CPU/GPU hours is a practical and straightforward
method for quantifying environmental impact. However, its measurement can be
ambiguous, as it can be based on either the actual clock time of CPU/GPU or the real
time of CPU/GPU, resulting in different interpretations for quantifying environmental
impact. Counting CPU/GPU hours is a suboptimal indicator of efficiency, given its
hardware dependence. Nonetheless, it remains one of the most practical metrics due
to its ease of measurement and relatively straightforward determination of carbon
footprint, assuming that the CPU/GPU consistently consumes a certain amount of
energy and that the energy mix is known. The total energy consumption of all active
CPU devices ECPU (kWh) is calculated as a product of the power consumption of
the CPU devices and its loading time ECPU = TDP

∫ T
0 WCPU(t)dt, where TDP is

equivalent CPU model specific power consumption at long-term loading (kW), WCPU
is the total loading of all processors (fraction). If the tracker cannot match any CPU
device, the CPU power consumption is set to a constant value equal to 100 W [70,71].

• RAM. Dynamic random access memory devices are an important source of energy
consumption in modern computing systems, especially when a significant amount
of data should be allocated or processed. However, accounting of RAM energy
consumption is problematic as its power consumption is strongly dependent on
whether data are read, written, or maintained. In RAM, power consumption is
considered proportional to the amount of allocated power by the current running
process calculated as follows: ERAM = 0.375

∫ T
0 MRAMi (t)dt, where ERAM-power

consumption of all allocated RAM (kWh), MRAMi is allocated memory (GB) measured
via psutiland 0.375 W/Gb is estimated specific energy consumption of DDR3, DDR4
modules [70,71].

• Energy consumption is hardware-dependent, as it heavily relies on the energy effi-
ciency of the hardware itself. Therefore, while it is a suboptimal metric for assessing
the efficiency of a given approach, it proves to be a commendable measure for quan-
tifying the environmental impact of a specific experiment on particular hardware.
Notably, energy, in conjunction with the hardware, constitutes the primary external
resource required for executing AutoML experiments. Starting from the quantified
energy consumption, it is frequently plausible to reasonably approximate the actual
carbon dioxide equivalent (CO2e) emissions engendered by the experiment at its
specific execution locale and time, given a sufficiency of supplemental information.

• Carbon dioxide equivalent (CO2e) is an excellent and arguably the most direct measure
for quantifying the environmental footprint of an experiment, given the provision
of the specific physical location and time of execution. However, CO2e, despite its
merit, encounters measurement issues that are similar to, or even more complex
than, those of energy consumption due to its indirect measurability. The CO2e value
as an AI carbon footprint CF (kg) generated during models learning is defined by
multiplication of total power consumption from CPU, GPU and RAM by emission
intensity coefficient γ (kg/kWh) and PUE coefficient: CF = γ · PUE · (ECPU + EGPU +
ERAM). Here, PUE is the power usage effectiveness of the data center required if the
learning process is run on the cloud. PUE is the optional parameter with default
value = 1 [71]. Rather, it is calculated based on energy consumption coupled with
supplementary information concerning the energy mix. In practical terms, procuring
corresponding information frequently proves unfeasible, with even the energy mix
susceptible to variation depending on external influences, such as climatic conditions,
particularly when encompassing renewable energy components. Although the energy
consumption of an experiment remains largely independent of execution time and
locale, the CO2e footprint of the same experiment can experience drastic fluctuations
predicated on these factors.

Estimating the efficiency of an approach independently of hardware proves unattain-
able, as none of the previously discussed solutions offer a definitive and robust solution [17].
Each approach is accompanied by its own set of limitations or drawbacks.
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4.5. Experiment

The experimentation was conducted following the phases defined in the proposed
methodology, as well as some proposals of the Sample, Explore, Model, and Assess
(SEMMA) methodology [72]. The experiments were executed on a personal computer
with the following physical specifications: an Intel i7 12700 (Intel, Santa Clara, CA, USA)
processor running at 4.9 GHz, 32 GB of RAM at 3600 MHz.

Two primary experiments were conducted. The initial experiment assessed the Cancer
Wisconsin (Diagnostic) Dataset through the implementation of a proof of concept. The
dataset was partitioned with (67–33%) designated for training and the remaining portion
for testing. A suite of traditional pipelines and a core set of algorithms were defined
(see Table 1). The algorithm search space was deliberately kept conservative, and default
parameters were employed to mitigate any potential bias from experts influencing the out-
comes. The search process encompassed both Bayesian and random hyperparameter search
and optimization techniques independently. Hyperparameter refinement was executed
employing an energy consumption metric (RAM + CPU). It was stipulated that the chosen
algorithms should not be executed on GPUs. Upon the completion of the hyperparameter
search and optimization, the resultant models underwent testing. Metrics for balanced
accuracy were employed (due to dataset imbalance in a binary classifier) alongside other
established metrics, including the F1 score and Accuracy. Testing was carried out utilizing
a cross-validation approach (cv = 5). The energy consumption across the search and op-
timization phases, the training phase of the selected models, and the testing phase were
quantified. Lastly, the carbon footprint of the experimentation was computed. This was
achieved by taking into account the energy consumption of the search and optimization
phases, the training phase of the selected models, and the testing phase.

The second experiment was conducted using the same dataset with the same partitions.
The same pipelines and algorithms were used, as well as the same search spaces. The
hyperparameter optimization was performed using the Bayes and random algorithms, but
the balanced accuracy metric was used to select the best solutions. After the hyperparameter
search and optimization, the obtained models were tested. The accuracy, precision, F1-
score, and power consumption metric (RAM + CPU) were used. The tests and the carbon
footprint were obtained in a similar way to the previous experiment.

5. Results

This section describes the main results of the experimentation carried out, as well as
their interpretation and the main experimental conclusions that can be drawn. To avoid
making the presentation too long, not all tables of results are presented for each experiment.
Tables for the Bayesian algorithms were selected for Experiment I, and tables for the random
algorithms were selected for Experiment II. However, analyses are presented for each case.

5.1. Experiment I

In this experiment, as a first case, the performance of different classification models was
evaluated using the Bayesian method to optimize hyperparameters with energy efficiency in
mind. The performance metrics evaluated were CO2e, accuracy, balanced accuracy, F1-score,
and energy consumption (see Table 2). The results indicate that the model with the lowest
CO2e was the DecisionTreeClassifier (DTC), with 0.0001 CO2e, but it had moderate accuracy
and F1-score. The models with the highest accuracy were GaussianNB (GNB, greater than
0.93) and RandomForestClassifier (RFC, greater than 0.94). However, their CO2e was high
(greater than 0.014). In balanced accuracy, GNB, RFC, and GradientBoostingClassifier (GBC)
stood out, with values above 0.93. The F1-score measures precision/recall and is crucial in
classification models. GNB, RFC, and GBC achieved the highest scores (greater than 0.94).
Energy consumption (energy train) was low in simple models like DTC and GNB (less than
2) but high in ensemble methods like RFC (greater than 40). In test energy consumption
(energy test), ensemble methods also required significant processing power (greater than
120). There is a trade-off between performance metrics and energy consumption/CO2e.
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More powerful models consume more. Considering the overall performance of all metrics,
the RFC algorithm achieves a good balance between precision (0.94 accuracy, 0.95 F1-score)
and reasonable consumption (0.014 CO2e).

Table 2. The outcomes of the data obtained through the Bayesian search algorithm with default hyper-
parameters are showcased, involving the selection of the top 15 best and worst results from the initial
experiment. The subsequent abbreviations represent the models employed in the study: GBC: Gradi-
entBoostingClassifier; RFC: RandomForestClassifier; GNB: GaussianNB; DTC: DecisionTreeClassifier;
LSVC: LinearSVC.

Model Energy Accuracy Balanced F1 Energy CO2e
Train Accuracy Score Test (g/Kwh)

DTC 0.3458 0.9202 0.9220 0.9363 1.4758 0.0001
DTC 0.5368 0.9363 0.9277 0.9508 1.9767 0.0002
DTC 0.9428 0.9202 0.9220 0.9363 1.7607 0.0002
GNB 0.5214 0.9358 0.9270 0.9506 2.2305 0.0002
GNB 0.9199 0.9358 0.9270 0.9506 1.9052 0.0002
GNB 1.1161 0.9358 0.9270 0.9506 1.7106 0.0002
SVC 1.0512 0.7822 0.6956 0.8558 1.7771 0.0002
SVC 0.3352 0.9147 0.8802 0.9386 2.5583 0.0002
DTC 0.2517 0.9202 0.9220 0.9363 2.7133 0.0002
GNB 1.0837 0.9358 0.9270 0.9506 1.9079 0.0002
SVC 0.4026 0.8617 0.8055 0.9044 2.6359 0.0002
GNB 1.0839 0.9358 0.9270 0.9506 1.9758 0.0002
LSVC 0.6812 0.9306 0.9168 0.9471 2.4200 0.0002
GNB 1.1823 0.9522 0.9370 0.9641 1.9704 0.0002
GNB 1.0184 0.9522 0.9370 0.9641 2.2334 0.0002
GBC 45.0033 0.9361 0.9340 0.9492 126.8439 0.0130
RFC 44.1500 0.9306 0.9234 0.9459 130.3366 0.0132
RFC 42.2763 0.9465 0.9424 0.9581 133.3700 0.0133
RFC 32.6338 0.9518 0.9465 0.9624 155.9806 0.0143
RFC 53.6093 0.9414 0.9352 0.9544 141.0400 0.0148
RFC 45.2689 0.9468 0.9394 0.9588 155.2366 0.0152
RFC 40.7350 0.9465 0.9424 0.9581 160.9999 0.0153
RFC 53.0594 0.9306 0.9234 0.9459 158.6723 0.0161
GBC 100.9120 0.9202 0.9185 0.9365 120.6553 0.0168
RFC 62.1839 0.9414 0.9352 0.9542 186.0477 0.0188
RFC 56.2100 0.9306 0.9234 0.9459 192.9343 0.0189
RFC 62.3256 0.9306 0.9234 0.9459 196.1584 0.0196
RFC 96.8684 0.9414 0.9352 0.9544 189.3709 0.0217
RFC 68.0974 0.9465 0.9424 0.9581 277.3045 0.0262
GBC 225.8794 0.9309 0.9269 0.9453 227.2463 0.0344

In this experiment, as a second case, the performance of different classification models
was evaluated using the random method to optimize hyperparameters with energy effi-
ciency in mind. The most efficient algorithms in terms of CO2e emissions were LSVC, DTC,
and GNB, with values below 0.001. In terms of performance metrics such as accuracy and
F1-score, the top-performing models were SVC, GBC, and RFC, with values above 0.93 and
0.94, respectively. However, these latter models also exhibited high energy consumption
and CO2e emissions due to their complexity. Decision Trees, Linear SVM, and Naive Bayes
required minimal processing, making them “green” models. The trade-off between model
accuracy and energy efficiency/emissions is evident. In conclusion, SVC, GBC, and RFC
achieved the highest accuracy but with a significant environmental impact. Optimization
or the use of “green” models like Decision Trees or Naive Bayes would be necessary to
reduce energy consumption and emissions.

In Experiment I, the Bayesian and random methods were compared for AutoML opti-
mization. The results showed that the best models in terms of accuracy, balanced accuracy,
and F1 score were GBC, RFC, and SVC. All these models achieved values exceeding 0.93 for
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accuracy and F1-score. Training times were comparable between the two groups for models
such as Gradient Boosting (70–90 s) and Random Forest (40–60 s). Energy consumption
during testing was also similar between Bayes and random for the main models, with
values ranging from 100 to 200 watts. Consequently, the CO2e values were very close in
both groups for the top models, ranging from 0.01 to 0.03 kilograms of CO2 equivalent.
Decision Trees and linear SVC were “green” in both cases, exhibiting low consumption and
CO2e. Bayes slightly improved the hyperparameters for Gradient Boosting (precision of
0.9309 compared to 0.9256). However, overall, the results were quite similar. In conclusion,
no significant differences were observed between the Bayesian and random algorithms for
AutoML optimization in this problem. The primary models achieved comparable metrics
and energy consumption using both optimization methods.

5.2. Experiment II

In this experiment, as a first case, the performance of various classification models
was evaluated using the Bayesian method to optimize hyperparameters. The performance
metrics evaluated were equivalent CO2 emissions (CO2e), accuracy, balanced accuracy,
F1-score, and energy consumption (cpupower). Regarding equivalent CO2 emissions, the
most efficient models were KNC, with values below 0.001. The models with the highest
accuracy were GBC and KNC, with values exceeding 0.94. Considering balanced accuracy,
which is a relevant metric due to class imbalance, the leaders were again GBC and KNC,
with balances above 0.94. The F1-score was also higher in GBC and KNC (0.95 or higher).
Energy consumption during training (cpupowertrain) was low in KNC (less than 2) but
high in GBC (greater than 50). Energy consumption during testing (cpupowertest) was
also low in KNC (less than 10) but high in GBC (greater than 80). Consequently, equivalent
CO2 emissions (CO2e) were significantly higher in GBC (greater than 0.01) compared to
KNC (less than 0.001). When analyzing the balanced accuracy metric in AutoML results,
it was found that the best values were obtained with GBC, KNC, and SVC, with balances
above 0.94. This indicates good performance across all classes, including minority ones.
Accuracy remains aligned and is not inflated by the majority class. Decision Trees and LSVC
showed low balanced accuracy (<0.92), likely due to issues with small classes. Class-specific
F1-score would be useful to confirm performance in each category. GBC maintains high
levels of balanced accuracy with different hyperparameters but consumes more resources
than KNC, resulting in higher CO2e. SVC achieves a good balance between precision
(balanced accuracy of 0.95) and efficiency. In conclusion, although KNC demonstrated
greater efficiency, GNB achieved better precision but with a higher environmental impact. It
would be possible to optimize the latter or use “green” models like KNC to reduce emissions.
The top-performing models are GBC, KNC, and SVC, prioritizing the balanced accuracy
metric for the classification problem with imbalanced classes. Further hyperparameter
optimization could further enhance these results.

In this experiment, as a second case, the performance of various classification models
was evaluated using the random optimization method to tune hyperparameters. The
performance metrics evaluated were: equivalent CO2 emissions (CO2e), accuracy, balanced
accuracy, F1 score, and energy consumption (see Table 3). The results indicate that the most
efficient models in terms of CO2e were SVC and KNC, with values below 0.001. The models
with the highest accuracy were RFC, GBC, and SVC, with values exceeding 0.93. In terms of
balanced accuracy, which is a relevant metric due to class imbalance, the leaders were again
RFC, GBC, and SVC, with balances above 0.92. The F1 score was also higher in RFC, GBC,
and SVC (0.95 or higher). Energy consumption during training (cpupowertrain) was low
in SVC and KNC (less than 1.5) but high in ensemble methods like GBC and RFC (greater
than 60). Energy consumption during testing (cpupowertest) was also lower in SVC and
KNC (less than 3) compared to ensembles (greater than 150). As a result, equivalent CO2
emissions (CO2e) were significantly higher in ensembles (greater than 0.02) compared to
SVC and KNC (less than 0.001). In conclusion, while models like SVC achieved a good
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balance between efficiency and classification metrics, ensembles achieved higher accuracy
but with a greater environmental impact.

Table 3. The outcomes of the data obtained through the random search algorithm with default
hyperparameters are showcased, involving the selection of the top 15 best and worst results from
the initial experiment. The subsequent abbreviations represent the models employed in the study:
GBC: GradientBoostingClassifier; RFC: RandomForestClassifier; KNC: KNeighborsClassifier.

Model Energy Accuracy Balanced F1 Energy CO2e
Train Accuracy Score Test (g/Kwh)

KNC 1.1165 0.9255 0.9199 0.9415 5.0089 0.0005
KNC 0.6158 0.9467 0.9318 0.9601 5.9153 0.0005
SVC 1.5798 0.9521 0.9430 0.9631 5.3885 0.0005
KNC 1.2479 0.9255 0.9201 0.9415 5.9129 0.0005
KNC 1.4446 0.9468 0.9325 0.9601 6.4101 0.0006
KNC 2.3638 0.9465 0.9420 0.9583 5.5846 0.0006
KNC 2.3639 0.9572 0.9431 0.9685 8.1823 0.0008
GBC 6.8949 0.9521 0.9435 0.9633 14.1815 0.0016
GBC 11.4323 0.9253 0.9222 0.9403 33.4983 0.0034
GBC 15.5576 0.9415 0.9382 0.9537 30.4757 0.0035
GBC 21.0515 0.9304 0.9228 0.9464 29.2626 0.0038
GBC 18.7909 0.9307 0.9234 0.9458 47.2840 0.0050
GBC 26.5444 0.9465 0.9394 0.9585 40.1849 0.0051
GBC 15.7969 0.9097 0.9077 0.9286 54.5494 0.0053
GBC 16.6634 0.9097 0.9077 0.9286 56.9576 0.0056
GBC 41.6486 0.9360 0.9340 0.9491 86.1067 0.0097
GBC 29.1517 0.9097 0.9077 0.9286 105.7361 0.0102
GBC 66.0947 0.9413 0.9447 0.9524 69.5023 0.0103
GBC 51.1667 0.9255 0.9227 0.9407 91.8741 0.0108
GBC 59.1589 0.9415 0.9382 0.9537 86.8586 0.0111
GBC 56.4323 0.9467 0.9429 0.9583 93.1479 0.0113
GBC 53.6530 0.9253 0.9222 0.9403 98.8667 0.0116
GBC 54.9512 0.9573 0.9507 0.9670 108.7423 0.0124
GBC 88.5134 0.9360 0.9375 0.9485 88.5877 0.0134
GBC 107.3093 0.9360 0.9375 0.9485 93.0459 0.0152
GBC 91.0303 0.9202 0.9085 0.9383 110.4534 0.0153
GBC 109.1596 0.9255 0.9227 0.9407 127.3235 0.0179
GBC 101.6618 0.9360 0.9375 0.9485 150.9405 0.0192
RFC 58.0099 0.9465 0.9424 0.9581 196.7178 0.0193
GBC 300.2723 0.9256 0.9192 0.9416 307.0363 0.0461

In Experiment II, the Bayesian and random methods were compared for AutoML
optimization. In both cases, the best models in terms of accuracy, balanced accuracy,
and F1-score were RaFC, GBC, and SVC, with values above 0.93. Resource consumption
(cpupower) was similar in Bayesian and random for the main models, with GBC and
RFC in the range of 60–150 watts. Test consumption (cpupowertest) was also comparable
between the two groups for the top models, mostly ranging between 150 and 250 watts.
Consequently, CO2e emission values were very close in Bayesian and random for the top
models, with values between 0.02 and 0.04 kilograms of CO2 equivalent. Linear classifiers
like SVC were the most efficient in both cases, with low consumption and CO2e. Overall,
Bayesian optimization found better hyperparameters, with a slight advantage in balanced
accuracy for the main models. However, in terms of metrics and energy consumption, the
results are quite similar between the two optimizers. In conclusion, both Bayesian and
random optimization methods can be used to find good hyperparameters for AutoML. The
choice of optimizer may depend on the specific application, but both methods can achieve
similar results in terms of accuracy, balanced accuracy, F1 score, and energy consumption.



Appl. Sci. 2023, 13, 11583 15 of 20

5.3. Comparison of Experiments I and II

A comparative analysis of the CO2e results of Experiments I and II, with respect to the
Bayes algorithm, was carried out. The means, medians, standard deviations, and interquar-
tile ranges (IQR) were calculated for both samples. Additionally, the Mann–Whitney U
statistical test was performed to determine if there were significant differences between the
samples. The p-value is a measure of the probability of obtaining the observed results if
there are no real differences between the samples. A p-value less than 0.05 is considered
statistically significant, which means that it is unlikely that the observed results are due to
chance. The results are presented in Figure 4.

Exp. I Bayes Exp. II Bayes
Means: Exp. I Bayes = 0.0086, Exp. II Bayes = 0.0126

Medians: Exp. I Bayes = 0.0002, Exp. II Bayes = 0.0104
: Exp. I Bayes = 0.0097, Exp. II Bayes = 0.0127

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

es

Comparison of Experimental Results
 with Bayesian Methods

0.02 0.00 0.02 0.04 0.06
p-value (Mann-Whitney U): 0.0112 < 0.05

0

5

10

15

20

25

30

35

40

D
en

si
ty

Exp. I Bayes
Exp. II Bayes

Figure 4. The figure shows the results of the calculation of the means, medians, standard deviations,
and interquartile ranges (IQR) for both samples. It also shows the result of the Mann–Whitney U
statistical test, which determined if there are significant differences between the samples.

6. Discussion

The results of the analysis provide valuable insights into the performance and energy
efficiency of different classification models and AutoML optimization techniques for a
multiclass problem.

A trade-off emerges between predictive performance and energy efficiency in machine-
learning models, where the more complex models like Gradient Boosting, Random Forest,
and Support Vector Machines achieve remarkable accuracy and F1 scores but also exhibit
significantly higher energy consumption and CO2e emissions. In contrast, simpler models
like Decision Trees, Naive Bayes, and Linear SVM offer lower emissions but come at the
cost of diminished predictive performance. Specifically, the complex models attain 2–5%
higher precision in metrics such as accuracy and F1 yet simultaneously demonstrate a
5 to 10-fold surge in energy consumption and emissions. For example, while Random
Forest achieves an impressive accuracy of 0.94, it emits 0.014 kg of CO2e, whereas Decision
Trees, with an accuracy of 0.92, emit a mere 0.0001 kg of CO2e. In relative terms, Decision
Trees offer a 2% reduction in accuracy while achieving a staggering 99% reduction in CO2e
emissions compared to Random Forest, illustrating the inherent trade-off between predic-
tive performance and energy efficiency/emissions. Thus, simpler models like Decision
Trees and Naive Bayes, though green in their minimal processing requirements, involve
some sacrifice in precision, aligning with established research confirming the link between
heightened model complexity and elevated computational costs [25].
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In Bayesian optimization, the primary hyperparameters under consideration included
the number of estimators in Random Forest (ranging from 100 to 500 trees), the maximum
tree depth in Decision Trees (varying from 5 to 20 levels), and the number of boosting
iterations in Gradient Boosting (ranging from 50 to 200). The selection of these search
ranges was guided by recommendations from the existing literature. Conversely, in a
random search, these same hyperparameters were randomly sampled.

Bayesian search notably enhanced the balanced accuracy for Gradient Boosting (0.9309
vs. 0.9256) by identifying near-optimal values around 150 boosting iterations. Nonetheless,
in a broader context, both approaches yielded similar performance metrics for the primary
models. For instance, with Random Forest, Bayesian search achieved an accuracy of 0.9414
using 300 estimators, while random search reached 0.9415 with 250 estimators. A compre-
hensive exploration of the subtle differences in optimization performance would necessitate
further in-depth investigations into hyperparameter responses and the search space.

By meticulously examining specific hyperparameters and search ranges, we gain
valuable technical insights into the AutoML optimization process. Although both Bayesian
and random search methods demonstrated comparable metrics for the leading models, a
more exhaustive analysis of the minor discrepancies could reveal the relative strengths of
each method. Both methods achieved favorable outcomes in AutoML optimization, with
similar performance metrics under both techniques. Bayesian optimization held a slight
advantage in fine-tuning particular models like Gradient Boosting, but the differences were
marginal, confirming the feasibility of both methods as AutoML optimizers. This finding
aligns with prior research, which consistently highlights the similar performance levels
achieved by these hyperparameter tuning methodologies [38].

The results of the analysis show that the CO2e values in the Bayes sample of Ex-
periment II tend to be higher, more dispersed, and wider in terms of interquartile range
compared to the Bayes sample of Experiment I. Additionally, the Mann–Whitney U test
shows that the Bayes samples of Experiment I and Experiment II have significant differ-
ences, as the p-value (0.015523) is less than 0.05, which is the significance level (Figure 4)

The importance of these findings lies in the verification that the proposal outlined in
the context of the proof of concept, which consists of the incorporation of metrics related
to energy efficiency, leads to the obtainment of machine-learning models characterized by
a lower carbon footprint and by their greater agreement with the precepts of Green AI.
Despite the inherent limitations of the restricted dataset and the small number of algorithms
evaluated, the empirical results allow us to maintain that it is plausible to extrapolate such
conclusions to AutoML tools and to other instances of structured data classification that
present similarities in terms of the imbalanced class problem.

The discoveries of this study are significant because they provide practical guidance
on how to develop and deploy AutoML models more sustainably. The results can be used
to inform the design of new AutoML algorithms and to guide the selection of appropriate
models for specific problems and energy efficiency metrics.

In summary, it is observed that there is a trade-off between predictive performance
and energy efficiency. More complex models have superior predictive performance but
also have higher energy consumption and CO2e emissions. A valuable contribution is
made to the field of Green AI by demonstrating the feasibility of integrating environmental
sustainability into AutoML.

7. Conclusions and Future Research Directions

This study proposed a strategy to improve the energy efficiency of AutoML through
hyperparameter optimization using Bayesian and random search algorithms. The experi-
mental results from the proof of concept confirm the viability of developing sustainable
AutoML from an energy perspective. This research and its findings are aligned with the
Green AI paradigm, whose goal is to reduce the ecological footprint of the entire AutoML
process and AI in general.
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The results highlight the importance of sustainability in the AutoML context. Energy
efficiency was improved through hyperparameter optimization in Bayesian and random
search strategies, with the aim of decreasing its environmental impact. These findings
indicate that it is feasible to implement concrete measures to reduce the environmental
impact of AutoML without negatively affecting other performance metrics, steering it
towards greater sustainability and aligning it with the general efforts to make artificial
intelligence more environmentally friendly.

The future research proposals are oriented towards the development of prototypes
that encompass the evaluation of a broader range of AutoML tools and algorithms, the
exploration of various hyperparameter optimization strategies and techniques, the cre-
ation of new lightweight and efficient ML architectures, and the ongoing investigation of
methods to reduce the carbon footprint throughout the entire ML lifecycle, including data
preprocessing, model training, deployment, and inference.
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Abbreviations

AutoML Automated Machine Learning
ML Machine Learning
AI Artificial Intelligence
CPU Central Processing Unit
GPU Graphics Processing Unit
CO2e Carbon Dioxide Equivalent
FLOPs Floating-point operations per second
IQR Interquartile Ranges
KNC K-Nearest Neighbors Classifier
RFC Random Forest Classifier
GBC Gradient Boosting Classifier
DTC Decision Tree Classifier
LSVC Linear Support Vector Machine
SVC Nonlinear Support Vector Machine
GNB Gaussian Naive Bayes
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