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Abstract: The permanent-magnet synchronous motor (PMSM), with the advantages of low energy
consumption and stable operation, is considered a green power source to replace gasoline engines.
Motor control is the core problem of the electric-drive system, so it is important to study the high-
performance motor control algorithm. The traditional PMSM control strategy has problems such as
torque pulsation, large overshoot, and parameters which are not easy to adjust. This work proposes
a new model-predictive torque control (MPTC) based on multi-objective ranking for these issues.
The Romberg observer was utilized to accurately estimate motor flux and torque across a wide
range of speeds and ensure optimal performance of the MPTC. The optional voltage vectors were
classified using graph theory. The model’s cost function was optimized and the control delay caused
by hardware processing was compensated by a modified Euler method. A multi-objective ranking
method was used to avoid the offline selection of MPTC weight coefficients. Additionally, one ranking
method was used to reduce the complexity of the algorithm for multiple objectives. Based on the
simulation results, the newly proposed MPTC method, when compared with traditional approaches,
reduced the total harmonic distortion from 2.78% to 2.26%. Torque ripple decreased by approximately
58.4%, and the switching frequency was reduced by 3.05%, lowering the inverter’s switching losses.
Therefore, the newly proposed MPTC had faster torque response, reduced computation time, and
less torque pulsation, which further improved the dynamic performance of the permanent-magnet
synchronous motor.

Keywords: permanent-magnet synchronous motor; model-predictive control; multi-objective sorting;
model-predictive torque control

1. Introduction

The most common control method of the PMSM is vector control. The principle is
based on coordinate transformation, which aligns the magnet’s magnetic field with the
rotating coordinate system to achieve the decoupling of the magnetic field and torque. This
results in AC motors exhibiting similar performance to DC motors. Direct torque control
(DTC) is a recently developed AC frequency-control technology with high performance,
proposed by Takahashi [1] and Depenbrock [2]. Compared with vector control technology,
it does not have pulse-width modulations (PWM), current control, and park transform.
DTC employs Bang-Bang control (hysteresis control) to generate PWM signals, ensuring
optimal control of the inverter’s switching states, thus achieving high dynamic performance
in torque [3]. DTC abandons the decoupling concept, replacing rotor flux orientation with
stator flux orientation. It eliminates the need for complex coordinate transformations,
reducing the system’s dependency on motor parameters and enhancing computational
speed. By real-time monitoring of stator voltage and current, torque and flux amplitudes
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are calculated and compared with the predetermined torque and flux values. The resulting
differences are utilized for direct control of flux and torque [4]. Hence, DTC features a
simple control structure and excellent dynamic performance. However, DTC produces
variable switching frequencies with large fluxes and torque ripple, which result in high-
frequency noise. Researchers have studied some strategies, e.g., employing space vector
modulation (SVM) to control voltage inverters [5] or introducing duty-cycle control [6] and
DTC based on sliding mode speed controller [7] to solve these problems.

Due to the characteristics of permanent-magnet synchronous motors (PMSM), such as
nonlinearity, strong coupling, and numerous variable parameters, traditional vector control
methods like Field-Oriented Control (FOC) and Direct Torque Control (DTC) often fall short
of meeting the demands of high-performance, high-precision, and robust operation [8].
To enhance the control performance of PMSMs, numerous researchers have proposed
advanced control strategies, including intelligent control [9], sliding mode control [10],
and predictive control [11]. Intelligent control methods encompass neural networks and
fuzzy control, among others. The essence of intelligent control lies in autonomy, mimick-
ing human thought processes to achieve intelligent control. For instance, Han et al. [12]
achieved precise observation of electromagnetic torque using a BP neural network. Chaoui
and others [13] proposed a continuously adaptive RBF network for speed control of interior
permanent-magnet synchronous motors, simplifying the control structure while enhancing
control accuracy. However, intelligent algorithms such as neural networks and machine
learning typically require extensive training data, exhibiting limited robustness and flex-
ibility in PMSM systems [14]. When dealing with multiple objectives, some intelligent
algorithms necessitate retraining, adding to the workload. Moreover, the significantly
increased computational complexity due to intelligent algorithms hampers the motor’s
ability to respond rapidly [15].

Recently, the emergence of the MPTC has attracted more and more attention from
academia and industry. It is considered an effective alternative to the classical magnetic
field-oriented control [16]. This has been validated in [17].The results indicate that MPTC
achieves steady-state performance similar to FOC but with faster dynamic response. Fur-
thermore, it provides superior current quality and lower computation time. Additionally,
MPTC allows the design of cost functions to assess the impact of voltage vectors [18]. These
cost functions offer flexibility, making it easy to incorporate system constraints. In [19],
the torque, stator flux, and neutral point potential of MPTC were kept more accurately
within their hysteresis bounds while pursuing the lowest switching frequency. MPTC can
still combine multiple control objectives [20], thereby achieving comprehensive system
performance optimization.

Regardless of the above advantages, the MPTC faces several challenges [21]. The
computational burden increases exponentially with the prediction steps, so long-horizon
predictions are difficult to perform in real time for commonly used numerical processors.
Secondly, one optimal vector is applied to the PMSM in each period, and the control period
is confined by huge computation, which leads to a high torque ripple. Thirdly, the switching
frequency, torque, and flux linkage are adjusted by weighting factors of the cost function,
so it is difficult to achieve a low switching frequency with a low torque ripple. Researchers
have proposed various methods to decrease calculations, torque ripple, and switching
frequency during the last decade.

The optimal voltage vector is preselected and stored in a lookup table to reduce the
computational effort [22], while the memory occupation grows with increased prediction
steps and variables following exponential law. Ref. [23] adopts a second optimization and
a new simplified search strategy to make the output voltage vector closer to the actual
optimal solution. In this case, a more suitable voltage vector is applied in each sampling
period. The simplified search strategy reduces calculation time by cutting down the number
of candidate voltage vectors without affecting drive performance. The computational
complexity is reduced by setting the switching table, and ripples are reduced under the
premise of satisfying torque performance without increasing sampling time [24]. Wang
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et al. [25] used the DeadBeat (DB) technology to optimize the selection process of voltage
vectors. The method only needs to compute three voltage vectors at each prediction step.

Various solutions have been proposed to decrease torque ripple, e.g., the zero-voltage
vector combined with active voltage vectors [26], the combination of two active voltage
vectors [27], the graph algorithm to select the predicted current error for each sampling
period [28], switched reluctance motors with low measurement effort [29], and the multiple
vector-based model-predictive control [30]. Typical solutions to reduce the switching
frequency of the MPTC include adjacent voltage vectors selected in each step [31], control
current loop [32], virtual three-level MPFC (V3-MPFC) [33], and a new MPTC strategy
based on the virtual voltage vector mode, that is, the cost function is used to optimize
the switching mode between two adjacent control cycles in real time [34]. Although the
aforementioned methods can separately reduce calculations, torque ripple, or switching
frequency, it is difficult to improve these targets simultaneously.

An improved MPTC model was established based on the DTC and MPC in the work.
A multi-objective screening method was used to replace the selection of weighting factors in
the cost function, which avoided unnecessary simulations and experiments when weighting
factors were determined. The method used the genetic algorithm, and the relationship
between all objective functions was equivalent. Besides, electromagnetic torque and the
stator magnetic flux linkage were used as tracking targets. Simulation results showed that
the newly proposed MPTC had a faster torque response, fewer computations, less torque
pulsation, and good dynamic and steady-state performance. The method did not require
offline optimization like other MPTC algorithms. It simplified unnecessary calculations
in prediction and increased the processing performance of the algorithm. The proposed
method enabled decoupled and rapid control of motor torque and stator magnetic flux,
which made it applicable to various PMSMs regardless of their specific parameters.

The rest of the work is arranged as follows. Section 2 presents the model of the
PMSM. Section 3 proposes a multi-objective sorting algorithm based on the traditional
MPC. Section 4 builds a simulation model and compares the proposed algorithm with
traditional MPC algorithms. The experimental results are presented in Section 5. The
conclusions are given in Section 6.

2. Model of the PMSM
2.1. Machine Equations

Since the parameters of the motor model are not always constant, some researchers
have compensated for the nonlinear effects by adding the phase currents and voltages as
well as the DC link currents [35]. However, the work focuses on the performance evaluation
of the MPTC, and the parameters are reasonably constant. An electrical model of the PMSM
is established in the stationary coordinate system with stator current is and stator magnetic
flux linkage ψs as state variables (Equation (1)):

.
x = Ax + Bu (1)

where x = [is,ψs]
T is the state variable; u = us is the shaft voltage of stator d and q; and

A =

[
jωr − Rs

Ls
− jωr

Ls
−Rs 0

]
B =

[ 1
Ls
0

]
(2)

where Rs, Ls, and ωr represent stator resistance, stator inductance, and rotor speed, respectively.
Electromagnetic torque in the static coordinate system is expressed as

Te =
3
2

Npψs ⊗ is. (3)

where Np is the number of pole pairs, and ⊗ represents the cross-product.
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The mechanical equation is

dωr
dt = − B

J ωr +
Np
J (Te − Tl)

dθ
dt = ωr

. (4)

where ωr is used as the parameter. Motors have two time constants. Usually, the elec-
tromechanical time constant is much larger than the electrical time constant, and the
approximation remains valid in such instances.

The stator current and stator flux at the next sampling moment can be predicted
by (1) to ensure the accuracy of prediction. Improved Euler discretization is adopted to
discretize (1), which can be expressed as{

xp(k + 1) = x(k) + Tsc(Ax(k) + Bus(k))
x(k + 1) = x(k) + Tsc

2 A
(

xp(k + 1) + x(k)
) . (5)

where Tsc is the control time step; predicted value xp(k + 1) is a preliminary approximation
obtained by Euler’s formula; and approximation x(k + 1) is obtained by correcting with
the ladder formula.

Improved Euler discretization is used to preliminarily discretize the stator current as

is(k + 1) =
(

1 + Tsc jωr −
TscRs

Ls

)
is(k)−

Tsc jωr

Ls
ψs(k) +

Tsc

Ls
us(k). (6)

Based on the analysis of electromagnetic torque ripple, electromagnetic torque can be
predicted as

Te(k + 1) =
3
2

Npψs(k + 1)⊗ is(k + 1). (7)

The prediction of stator flux is

ψs(k + 1) = (us(k)− is(k)Rs) · Tsc + ψs(k). (8)

2.2. Inverter Model

The three-phase two-level inverter is one of the most widely used power electronic
topologies to set the device input voltage. A set of voltages u(t)(u(t) ∈ U ⊆ Rm) is applied
to the motor. It can be selected from switching state U {000, 100, 110, . . . , 111}, where U is
a finite set. Electromechanical state x(t)(x(t) ∈ X ⊆ Rn) can be obtained, and X is also a
finite set. Thus, the future state of the system can be calculated from the actual inputs and
the actual state of the system.

The topology of the inverter (Figure 1) consists of 6 fully controlled switching devices
and 6 reverse parallel current-continuing diodes. Every 2 fully controlled switching devices
and 2 reverse parallel current-continuing diodes form 1 H half-bridge, which makes a total
of 3 H half-bridges.
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3. Proposed MPTC with Multi-Objective Ranking

Figure 2 shows the block diagram of the improved MPTC frame. This algorithm is
primarily composed of four components: motor output observation, delay compensation,
prediction process, and cost function calculation.
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(1) Motor output observation: The three-phase voltage quantities and current flow
information of the motor are measured, which are then fed into the Lomborg observer. This
calculates the stator flux ψs(k) and the torque Te(k) at the current time. Simultaneously,
the reference speed ωr

ref and actual speed ωr are input into the PI controller, yielding the
current electric torque reference value Tre f

e .
In the case of utilizing a conventional PI controller, the expression for the speed loop

controller is as follows:

i*q =

(
Kp +

Ki
s

)(
ω*

m −ωm

)
− Bnωm (9)

Kp = βJ
1.5ρnψf

Ki = βKp
(10)
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where ωm represents the mechanical angular velocity of the motor; J denotes the moment
of inertia; B is the damping coefficient; ψ f is the stator flux; Ba is active damping; pn is
the polar logarithm; Kp represents the proportional gain of the Pl controller; and Ki is the
integral gain of the Pl controller.

Compared to the typical method of tuning PI controller parameters using classical
two-degree-of-freedom systems, this approach to parameter tuning is straightforward, and
the relationship between parameter adjustments and the system’s dynamic quality is clear;

(2) Delay compensation: In the case of model predictive torque control, the selection of
the optimal voltage vector for the next moment based on the sampled value at the current
moment will “expire” due to the delay due to the existence of the computer command
cycle. As a result, the optimal voltage vector acting at time k will be delayed to act at time
(k + 1), which is inaccurate for the motor control system. Therefore, delay compensation is
usually used to calculate the optimal voltage vector at the (k + 1) moment in advance to
eliminate the inaccuracy of the voltage vector due to the delay in calculation.

To further enhance the precision of model predictions and achieve complete compen-
sation, this study employs a two-step computational delay compensation approach: firstly,
estimating the stator current ik

s and the stator flux ψk
s at the k instant, and then predicting

ik+1
s and ψk+1

s based on Equations (4) and (5). Subsequently, the variables at time (k + 1)
serve as initial conditions for predicting (k + 2);

(3) Forecasting process: The traditional MPTC control algorithm requires rapidly
substituting 8 fundamental voltage vectors into the prediction model to calculate the stator
flux and torque values generated under the influence of each voltage vector. However, this
computational task is evidently complex. In this study, a graph algorithm is employed to
reduce the 8 fundamental voltage vectors to 4. These reduced vectors are then applied to
the prediction model to calculate the stator flux ψk+2

s and torque values Tk+2
e at time (k + 2)

for subsequent cost function screening;
(4) The calculation of cost function. In the context of multi-objective optimization

problems for permanent-magnet synchronous motors (PMSM), the weighting coefficients in
traditional model-predictive torque control (MPTC) serve as a crucial method to coordinate
various control objectives. These coefficients enable standardization of control variables
while allowing for the assignment of varying importance levels to different controlled vari-
ables based on practical requirements. However, the design of these weighting coefficients
necessitates extensive offline optimization efforts. To tackle the challenges related to the
cumbersome design of weighting coefficients and the difficulty in determining optimal co-
efficients, this paper proposes a multi-objective sorting optimization method. Each control
objective function is independently evaluated and transformed into dimensionless sorting
results. By comprehensively considering the sorting values of the objective functions,
the method selects the voltage vector with the lowest sorting value, thereby identifying
the voltage vector uk+1

opt that minimizes torque error and stator flux error. This approach
employs a ranking-based multi-objective optimization approach, replacing traditional cost
functions in achieving the optimal solution for voltage vectors.

The aforementioned four components constitute the working principle of MPTC.
These components are interrelated and jointly determine the success of MPTC. However,
in practical applications within motor control systems, the successful design of delay
compensation and cost functions plays a pivotal role in determining the system’s control
performance.

3.1. Flux and Torque Estimation

Direct torque control measures the motor voltage and current, which can estimate
the flux and torque of the motor. It often requires multiple segment estimations in the full
speed range. The Lomborg observer has high accuracy in the medium- and high-speed
range [36]. A current correction link is introduced, and a modified integration algorithm is
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used to eliminate the drift effect caused by pure integration. An observer model based on
the PMSM model (1) is established as

d
ˆ
x

dt
= A

ˆ
x + Bu + G

(
is − îs

)
. (11)

where
ˆ
x =

[
ˆ
is

ˆ
ψs

]T
is the estimated state variable.

Parameter G needs to be determined to ensure the fast convergence and robustness of
the parameter identification system. The Lomborg observer requires that the real part of
the eigenvalues of the state matrix of the error space equation is less than zero, which can
be used to select G within the range. Of course, constant gain matrix G can also be used to
improve the stability of the observer (10) [37]:

G = −
[

2b
bLs

]
(12)

where b is the negative constant gain. The approach used in the work can be implemented
straightforwardly. In addition, it ensures the observer’s convergence and stability across
the entire speed range, particularly under medium and high speeds.

3.2. Error Prediction Based on the Graph Algorithm

The last inverter-switching state and current error are obtained at the beginning of the
control cycle. Then, the load model is used to predict the current error for the next sampling
cycle. Eight possible error trajectories are plotted according to eight different switching
states (Figure 3). If only two of these exist with possible solutions within the circle, the
solution maximizing the duration within the current error circle should be selected (the
blue dashed line in Figure 4). A larger number of samples can remain within the current
error circle.
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However, predicting errors in these eight cases is time-consuming and unnecessary. It
is necessary to avoid complete dc-link voltage jumps in the common mode voltage (CM) as
well as 2/3 dc-link voltage jumps in the common mode voltage (CM), i.e., bipolar switching
should be avoided. Two opposing voltage vectors increase current ripples; therefore, these
voltage vectors are not selected in the following cycle. The base number is reduced for
predicting the quantity calculation, and the number of predictions is thus reduced from
NN

u to (Nu/2)N for a two-level inverter. The actual switching state of the inverter and the
vectors that can be applied next are represented using a diagram (Figure 5). The picture
illustrates that the switching frequency is finite, as only one change in the switch is allowed
per sampling cycle.
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3.3. File Formats for Graphics

Stator current is and stator flux ψs at moment k are taken as initial variables in MPTC
for the stator flux and torque to track their corresponding reference values. A physical
prediction model is used to predict stator flux ψs and electromagnetic torque Te at moment
k + 1. The following cost function is defined to minimize the error between the estimated
stator flux and torque and the reference value:

g =
∣∣∣Tre f −

ˆ
T

k+1∣∣∣+ kψ

∣∣∣∣∣|ψre f
s | −

∣∣∣∣ ˆ
ψ

k+1

s

∣∣∣∣
∣∣∣∣∣ (13)

where
ˆ
T

k+1

and
ˆ
ψ

k+1

s are calculated by Equations (7) and (8). Torque reference Tre f is
generated by the external PI speed controller, and ψ

re f
s is the stator flux reference. kψ is the

weight factor of the stator flux, which should be adjusted frequently:

kψ = λ
Tn

ψsn
(14)

where Tn and ψsn are the nominal values of torque and stator flux linkage, respectively. λ
can be adjusted to track different targets. kψ is determined using a genetic algorithm and is
typically debugged offline. It significantly affects the performance of the controller.

A certain time delay exists between the control voltage calculated from the previous
sample and the actual voltage by considering the limited time available for the control
algorithm to execute at each step during hardware processing. Requisite compensation is
necessary to mitigate the impact of delay on MPTC performance. A model-based prediction
method is used to reduce the impact of the delay in the work. Stator current ik

s and stator’s
magnetic flux linkage ψk

s at the kth instant areestimated and predicted for ik+1
s and ψk+1

s
according to (5). The variables at the ( k + 1)th moment is used as initial conditions for the
instant ( k + 2)th prediction to obtain the final values of ψk+2

s and Tk+2
e . The minimized

cost function is now defined by

g =
∣∣∣Tre f −

ˆ
T

k+2∣∣∣+ kψ

∣∣∣∣∣∣∣∣ψre f
s

∣∣∣− ∣∣∣∣ ˆ
ψ

k+2

s

∣∣∣∣
∣∣∣∣∣ (15)

Then, the stator voltage vector that minimizes (13) is selected to be output at the next
sampling time:

vopt = arg min
{v0,...,v3}

g
(

vk+1
s

)
(16)

where vopt is the optimal output of the stator voltage vector at the next sampling time.

3.4. Multi-Objective Ranking-Based Strategy

The multi-objective sorting-based MPTC, aiming to eliminate the dimensional and
magnitude differences between motor torque and flux, independently evaluates the control
effectiveness of each control variable after obtaining the predicted values of the control
variables. These variables are then ranked using dimensionless sorting results to represent
the control effectiveness for the control objectives [38]. The optimal solution is obtained
by minimizing the sorting results. The complete sorting algorithm mainly consists of the
following four steps: (1) Prediction: Utilize the prediction model to forecast the future states
of the system; (2) Evaluation: Independently assess each control objective to quantify the
effectiveness of different voltage vector control strategies; (3) Sorting: Rank the performance
of different voltage vectors based on their control effectiveness, assigning corresponding
sorting results accordingly; (4) Optimization solving: Sum up the sorting results obtained by
different voltage vectors for each control objective [39]. By obtaining the total sorting result
and through minimizing this total sorting result, one determines the optimal voltage vector.
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The MPTC needs to choose the minimization of the cost function of multiple objectives
within each sampling period. It can be expressed by two different cost functions:

g1 =

∣∣∣∣∣Tre f −
ˆ
T

k+2(
vk+1

s

)∣∣∣∣∣
g2 =

∣∣∣∣∣∣∣∣ψref
s

∣∣∣− ∣∣∣∣ ˆ
ψ

k+2

s
(
vk+1

s
)∣∣∣∣
∣∣∣∣∣

(17)

The torque and stator’s flux-related errors are represented by g1 and g2, respectively.
The MPTC needs to be evaluated for each possible voltage vector.

During the sorting phase, the sorting criteria are defined as follows: utilizing graph
algorithms to reduce the eight basic voltage vectors to four voltage vectors and calculating
the cost function values for each voltage vector. In ascending order [40], voltage vectors
with smaller errors are assigned lower ranks, starting from 0 and incrementing by 1, with a
maximum rank of 4. Based on a unified sorting rule for all control objectives, the voltage
vectors have the same range, which is [0, 4], and have been dimensionlessly processed [8].
The torque sorting results for each voltage vector and the stator magnetic flux sorting
results are denoted as r1 and r2, respectively, that is,

g1

(
vk+1

s

)
−→ r1

(
vk+1

s

)
g2

(
vk+1

s

)
−→ r2

(
vk+1

s

) (18)

where vk+1
s is the voltage vector to be evaluated and r1

(
vk+1

s

)
and r2

(
vk+1

s

)
are the or-

dering values of g1 and g2, respectively; the ordering values are dimensionless variables.
Considering the ordering values of the two objective functions comprehensively, the min-
imum voltage vector of torque and flux errors is selected based on the lowest sorting
value. Torque and flux variables are tracked by selecting the voltage vector with the lowest-
ranking mean value to select the optimal voltage vector. Then, the proposed optimization
method based on ranking is as follows:

vopt = arg min
{v0,...,v3}

r1

(
vk+1

s

)
+ r2

(
vk+1

s

)
2

(19)

Based on the genetic algorithm, the concept of average ranking is introduced using
average criteria. It can be simplified to the sum of r1 and r2 (Figure 6) because the two
optimization objectives are equivalent.

3.5. Sorting Algorithm

Although the dimensionless sorting results in multi-objective sorting-based MPTC
resolve the cumbersome issue of designing weight coefficients, they introduce additional
sorting computations, increasing the computational burden. Most papers employ classical
sorting algorithms such as bubble sort or quicksort [41] for sorting optimization. Although
these methods yield sorting results under the current control objectives, the relative po-
sitions of voltage vectors are altered, necessitating data exchange operations during the
process. In this study, to meet the specific requirements of multi-objective sorting MPTC,
the Tim-sort sorting algorithm is employed.

Tim-sort is an adaptive, hybrid, stable sorting algorithm that combines the Merge-sort
and Insertion-sort algorithms. The core of the algorithm is to extract descending arrays and
upgrade them in ascending order, as arrays are all partially ordered by nature. Arrays can
be sorted in less time than a quick sort. The Tim-sort algorithm used can be described in
the following order:
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Run: Run an incrementing or strictly decrementing sub-string, where the increment
includes the case where the two elements are equal. Decreasing Run is reversed to an
increasing sequence in a real program;

Stack: Used to save each Run;
Sort 1. Iterate through the array collecting each element to form Run based on a

specific condition;
Sort 2. It is put on the stack after obtaining Run;
Sort 3. If Run at the top of the stack meets the merge condition, the merge operation is

triggered, that is, two adjacent Runs are merged to form one Run.
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Figure 6. Execution steps of the improved MPTC.

Merging is performed in real time in Tim-sort, and the discovery of each Run may
potentially initiate merging. The stability of the algorithm can be ensured during merging.
The algorithm has an average time complexity of O(nlogn) and a worst-case time complex-
ity of O(nlogn), which requires O(nlogn) comparisons. However, it can run in linear time
with a time complexity of O(n) in the optimal-case scenario where the input is already
sorted. Compared with other sorting algorithms, Tim-sort is far more efficient.

4. Simulation and Results Discussion
4.1. Simulation Study

Simulations were carried out in the MATLAB/Simulink environment to verify the
effectiveness of the proposed multi-objective sequencing MPTC. The parameters in Table 1
were used for the simulation tests.
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Table 1. Parameters of the permanent-magnet synchronous motor.

Parameter Value

Rated voltage [V] 24
Phase resistance [mΩ] 8

Inductance (d-axis) [mH] 4.0
Inductance (q-axis) [mH] 4.0

Stator magnetic-flux linkage [mWb] 26.0812
Pole pairs 2

Maximum bus voltage [V] 36
Minimum busbar voltage [V] 10

Maximum current [A] 10
Control step [µs] 50–100

Friction constant
[
kgm/s2] 1.7 × 10−3

Inertia constant
[
kgm2] 2 × 10−3

Speed-loop response time [ms] 2
Converter type 2-level VSI

Electrical machine type IPM-SM

The simulation settings are as follows. The motor accelerates from rest to 100 r/min
within 0–1.2 s. The load torque of 2 Nm is added at 0.8 s, and the speed increases to
200 r/min at 1.2 s. The load is removed at 1.6 s, and the speed decreases to 50 r/min from
2.4 s onwards. A speed reference and a rated load are added to the system to show the
overall control behavior of the system. The goal is the evaluation of the overall control
behavior. The stator’s reference magnetic flux is maintained at 0.94 Wb, which is slightly
lower than the rated value to avoid magnetic saturation. Figures 7 and 8 present the
simulation results.
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Firstly, the system has significantly improved steady-state performance. Secondly, the
output torque can accurately track the load torque TL with fewer fluctuations than the
conventional MPC. Fluctuations in the steady state also disappear, and the amplitude of
the stator flux has similar characteristics to the torque-tracking curve.

Since the speed control is carried out by a PI controller, the speed exhibits a smooth
response in terms of dynamic performance. It has a short rise time during acceleration and
deceleration, and the overshoot of the motor speed is minimal. When the load is suddenly
applied and removed, the speed fluctuates slightly. However, it can be stabilized at the
set speed soon, indicating that the robustness of the system is high. The new proposed
strategy has a faster dynamic response to torque.

The method proposed in the work has lower switching times, and the switching
frequency is reduced by an average of 41.2% compared to the conventional MPC control
(Figure 9). However, it is still higher than PMSM with the DTC.
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4.2. Weight Factor

The conventional MPC incorporates a weight factor before the stator’s flux error in the
cost function. Traditionally, this factor requires offline adjustment. However, considering
that all variables within this function possess identical properties, there is no necessity for
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weight factor adjustment. Extensive simulations and experimental tests are performed to
determine the appropriate weighting factors in related studies. Moreover, these weighting
factors are highly sensitive to different motor parameters. Table 2 lists the comparison
parameters for the main values obtained by the traditional MPC and the proposed MPTC.

Table 2. Comparison of experimental results.

Parameter MPC MPTC

Total harmonic distortion [%] 2.78 2.26
Stator flux ripple [Wb] 0.02 0.01

Torque ripple [Nm] 0.34 0.28
Average switching frequency [kHz] 13.1 12.7

Average computation time [µs] 19.33 24.17
Standard deviation of calculation time [µs] 0.13 0.10

A comparison of the results obtained by the multi-objective ranking method with
other methods for optimizing the weighting factor offline shows similar results. However,
the algorithm mentioned in the work does not require tedious offline calculations and
weighting-factor optimization.

4.3. Comparison of Sorting Algorithms

A robust approach is proposed for addressing multi-objective systems by eliminating
relative differences between variables in the cost function and the need to choose weighting
factors. Each voltage vector is assigned its corresponding priority utilizing an average
ranking of multiple voltage vectors. Prior classification of voltage vectors is essential to
derive the optimal voltage vector, as excessive calculation of unnecessary ones can waste
computational resources. The classification of the graph algorithm reduces the predicted
eight voltage vectors to four, which significantly reduces hardware resource consumption
during experimentation. Minimization of the torque error and flux error can be considered
optimization objectives in the software algorithm in addition to average sorting.

The conventional MPC algorithm increases significant computational overhead, which
prompts a comparative analysis of timing performance in the work. Processing time for
each segment of the algorithm is considered for its 1000 iterations to reflect its calculation
time (Table 3).

Table 3. Comparison of algorithms’ occupation times.

Algorithm Time -
xt(µs) σt(µs) tmax(µs)

Traditional
MPTC

tm 5.91 0.088 6.98
test 6.03 0.041 6.32

tpred 5.22 0.026 5.36
ttop 2.87 0.029 3.01
ttotal 19.33 0.13 20.92

Proposed
MPTC

tm 6.09 0.075 7.16
test 6.33 0.035 6.95

tpred 5.91 0.064 6.56
ttsort 3.20 0.023 3.31
Trank 4.13 0.018 4.19
ttotal 24.17 0.10 26.53

Note: Algorithm execution time Ts = 20 µs;
−
xt is the average value; σt is the standard deviation; tmax is the

maximum value.

There is little difference in time required for the measurement and speed control
between these control methods: test = 6.33 µs for an estimation and delay compensation;
tpred = 5.91 µs for a prediction. Time required for the sorting method proposed in the
sorting phase is topt = ttsort + trank = 7.33 µs, where ttsort = 3.20 µs and trank = 4.13 µs for
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subsumption sorting and sorting minimization, respectively. Since the conventional MPTC
has no sorting process, the time required is topt = 2.87 µs. This is the only drawback of
the algorithm. However, the processing time of the sorting method depends on program-
ming. Tim-sort sorting is more stable for larger sequences like this one, especially for the
implementation of the sorting algorithm and sorting optimization.

The maximum value of calculation time in each case is considered in the actual
implementation of the algorithm since maximum processing time is minimum sampling
time that can be used. Most studies on motor control algorithms use two-level three-phase
inverters with the predicted number of voltage vectors in each control cycle (n = 8). Table 4
presents a comparison between the proposed MPTC and traditional MPC as well as the
fast-sorting algorithm when the prediction range is set (h = 1) and control target i = 2. The
subsumption algorithm requires 16 calculations, while the sorting minimization algorithm
only needs 4 calculations, which results in a total of 20 computations.

Table 4. Algorithms’ calculation-complexity comparison.

Approach Task Operations Example

Proposed
Algorithm

Tim-sort * (i·nlogn)h 16
Ranking

(
n2)h 16

Model (n)h 4
Total (i·nlogn)h +

(
n2)h

+ (n)h 36

Conventional
Algorithm

Optimization (n)h 8
Model (n)h 8
Total 2·(n)h 16

Note: * means considering the worst case of comparisons.

Computational complexity increases dramatically when prediction ranges, control
targets, or different inverters are added. The data filtering of initial variables reduces
the computational basic numbers, which significantly affects algorithm performance. Of
course, more sophisticated algorithms can be used to address issues such as target priority,
frequency variation limits, and prediction range adaption. However, the work improves
the weighting factor selection and processing based on the existing MPC and compares
each one’s feasibility.

5. Experimental Evaluation

This chapter designs an experimental platform for the PMSM based on the STM32F4
series chip. The experimental platform for the control system is introduced from the
hardware circuit and software program. Both of them are software–hardware development
platforms based on MATLAB/Simulink (2022b), offering C language rapid generating and
online calibration functions. Relevant testing methods are designed to verify the control
performance of the two algorithms, and the results are analyzed and discussed.

5.1. Test Bench Introduction

Figure 10 shows the flow of the PMSM control system, and its working principle
is summarized as follows. The Hall sensor samples the electrical signals from the main
circuit, from where it is converted into an analog signal and input to the MCU after signal
conditioning. The incremental optical encoder measures the actual speed of the PMSM.
It is converted into a digital quantity and input to the MCU chip. The MCU control chip
calculates and outputs three-phase PWM signals to the inverter drive circuit according
to input data and the program set by the PC. Drive signals are reinforced to regulate the
PMSM. CubeMX5.1.0 is used as the software development platform to improve system
performance. As a graphical configuration tool compatible with the master control MCU
chips, it generates the initialized C code for processors with Cortex-M cores and allows the
step-by-step configuration of STM32 microcontrollers and microprocessors.
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5.2. Experiment Results and Discussion 
The initial speed is set to 100 rpm in the experiment, and the motor starts in the un-

loading condition. It continues to accelerate until reaching the reference speed. The refer-
ence speed is immediately increased to 200 and 400 rpm at 0.25 and 0.5 s, respectively; it 
is reduced back to 100 rpm at 0.75 s. Figure 13 shows the experimental results. 

Figure 10. Hardware block diagram of the digital control system of the PMSM.

The steps are as follows: (1) Select an STM32 microcontroller, microprocessor, or
development platform compatible with the desired peripherals; (2) Users can configure
GPIO pins, set up the system’s clock, allocate peripherals, and define various parameters
for the MCU; (3) Users configure relevant files in the code generation area to generate
corresponding initialized C code; (4) The debugger is connected to the JTAG interface of
the MCU using Keil uVision5 software. The program is then downloaded to the STM32F4
chip and debugging is performed. The emulator model used in the work is ST-Link, which
can transmit data signals and convert protocols. The PMSM can be controlled in this way.
Figure 11 illustrates the connection method between software and hardware.
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Figure 12 shows the PMSM and its control system used in the experiment. This
consists of a regulated DC power supply, control board, PMSM, simulator, computer, and
oscilloscope. The software algorithms designed earlier are burned into the system. The
computer acts as the host machine to send commands and perform parameter debugging in
this experimental setup, while the MCU serves as the lower computer to control the PMSM.
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5.2. Experiment Results and Discussion

The initial speed is set to 100 rpm in the experiment, and the motor starts in the
unloading condition. It continues to accelerate until reaching the reference speed. The
reference speed is immediately increased to 200 and 400 rpm at 0.25 and 0.5 s, respectively;
it is reduced back to 100 rpm at 0.75 s. Figure 13 shows the experimental results.
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According to the experimental results, it takes 0.05 s for the motor to reach steady-state
speed with the MPC control method during low-speed operation. However, it takes a longer
time to reach a steady state during medium to high-speed operation, with an overshoot of
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approximately 9.7%. When the speed drops sharply, the MPC method exhibits a waveform
where the speed cannot be tracked for approximately 0.13 s. It then waits for an additional
0.06 s before re-tracking the reference speed. On the other hand, regardless of the speed
stage of the motor, it can reach the reference speed within 0.02 s without any overshoot
under the MPTC method. Therefore, the MPTC designed in the work demonstrates faster
and better speed-tracking performance compared to the traditional MPC control method.

The MPC exhibits lower torque switching in terms of the torque response during
speed transitions. The MPTC shows larger torque values at each speed-switching point,
and the difference between peak torque and speed switching is truly correlated. However,
MPTC can recover reference torque more rapidly than the MPC when the local torque
waveform is observed. Additionally, the steady-state torque fluctuation in the MPTC
is significantly smaller than that using the MPC, with an average reduction in ripples
of approximately 58.4%. As for the stator flux, both methods maintain stability. MPTC
exhibits higher peaks at speed switching points, but they remain within the allowable
range of the motor. The dynamic and steady-state characteristics of the MPTC are similar
to torque characteristics. Therefore, the MPTC designed in the work demonstrates better
steady-state torque performance compared to the traditional MPC.

Given an initial reference speed of 400 rpm, the motor is started without loads until the
reference speed is reached. The load torque of 2 Nm is applied to the PMSM at 0.25 s after
a period of no-load operation, and the reverse torque of −2 Nm is immediately loaded at
0.5 s. Load torque is withdrawn at 0.75 s to observe the performance of the motor. Figure 14
shows the experimental results.
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The experimental results indicate that, when the load is suddenly increased, the motor
speed decreases by a maximum of 157 rpm with the MPC; however, it only decreases
by 78 rpm with the MPTC. When torque suddenly transits from load torque to dragging
torque, the speed increases by 316 rpm with the MPC, whereas the MPTC method shows
an increase of only 107 rpm. The MPC experiences a period of speed drop after torque is
removed, which lasts until approximately 0.04 s before it continues to track the reference
speed. On the other hand, the speed tracking of the MPTC is similar to the curve of the first
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sudden increase in torque. Therefore, the MPTC designed in the work exhibits stronger
resistance to load disturbances compared to the traditional MPC.

Although the MPC does not exhibit high peak torque from the torque-response per-
spective, it shows approximately 12% overshoot when torque is tracked during the load
application. When torque reverses, the MPC maintains zero torque for approximately
0.2 s, which rapidly increases the speed. Approximate 0.07 s are taken for the MPC to
track back to load torque. The same situation occurs when load torque is removed. On
the other hand, the initial MPTC exhibits peak torque due to the given initial speed of
400 rpm, and high torque is utilized to quickly bring the motor to the reference speed.
Torque returns to no-load torque after 0.02 s, and its response is significantly faster than
that of the MPC. The MPTC can promptly respond to the load torque application, torque
switching, and load-torque removal without overshooting. The flux characteristics resem-
ble the torque characteristics. MPC performance declines when the loading direction is
switched, while the MPTC can stably track load torque. Therefore, the MPTC designed in
the work demonstrates more stable torque-load performance compared to the MPC.

6. Conclusions

The MPTC was proposed based on a multi-objective sorting algorithm and the tra-
ditional MPC for problems such as large flux linkage and torque fluctuations, difficulty
in unifying physical dimensions, repeated testing of weight coefficients, complex system
algorithms, and a large amount of online computing on the MPC of the PMSM. Then, the
MPTC was compared with the traditional MPC.

The MPTC comprehensively considered the switching loss and the dynamic response
in permanent-magnet synchronous motors. The optimal voltage vector was selected to con-
trol the motor through a multi-objective ranking and optimization algorithm. The method
could significantly reduce torque fluctuation and computational complexity through sim-
ulation and experimental verification, which improved the comprehensive performance
of the motor-drive system. However, there is still much room for improvement due to
time constraints and personal abilities. It can be extended to multi-parameter identification
in the future to reduce the dependence of the prediction process on the precise establish-
ment of system models and parameter accuracy and improve system robustness. Model
prediction can be combined with other intelligent algorithms to complement each other’s
advantages and achieve better control performance.
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