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Featured Application: This work proposes a working set of rules for translating English sen-
tences into the formal language of non-axiomatic logic (NAL). The proposed translation takes
advantage of several linguistic tools for pre-processing and can be used for commonsense reason-
ing via non-deductive inferences formalized in NAL.

Abstract: Non-axiomatic logic (NAL) is a term-based, non-monotonic, multi-valued logic with
evidence-based formal semantics. All those characteristics position NAL as an excellent candidate for
modeling natural language expressions and supporting artificial agents while performing knowledge
discovery and commonsense reasoning tasks. In this article, we propose a set of rules for the
automatic translation of natural language (NL) text into the formal language of non-axiomatic logic
(NAL). Several free available tools are used to support a previous linguistic analysis, and a common
sense ontology is used to populate a background knowledge base that helps to delimit the scope
and the semantics of logical formulas translated. Experimentation shows our set to be the most
comprehensive NL-to-NAL translation rule set known so far. Furthermore, we included an extensive
set of examples to show how our proposed set of rules can be used for translating a wide range of
English statements with varying grammatical structures.

Keywords: non-axiomatic logic; computational linguistics; commonsense reasoning; knowledge
discovery

1. Introduction

Endowing artificial agents with the ability to understand natural language in a way
similar to humans is a task in which artificial intelligence has not yet made enough
progress [1–3]. Even the most advanced connectionist and generative models, trained
with gigabytes of examples and on large-scale high-performance clusters, perform poorly
when faced with the task of commonsense reasoning based on the contents of natural
language texts [4,5]. From the symbolic perspective, modeling natural language with logic
has also yielded poor results, but it is believed that those poor results are a consequence
of the low expressive power of the logics used for modeling [6,7]. When predicate logic
(PL) or any of its subsets have been used, poor results are also attributed to the mathe-
matical orientation of those logics as well as their inability to model everyday concept
acquisition and processing [8,9]. If a radically different logic is used, it may be possible to
obtain better results, and that is exactly the case with non-axiomatic logic (NAL), a formal
language designed to model the process of an agent pragmatically learning its environ-
ment [10,11]. As such, NAL offers several advantages over other symbolic logics [12,13],
such as the ability to define higher-order expressions and use a variety of inference models
besides deduction.

Although similar studies have been published using different logics, and even some
of them have used the exact same logic (NAL), in all of them the core problem is the same:
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translating natural language expressions into a formal language. Previous efforts in other
logics have focused on formulating syntactic methods for identifying grammatical structure
and semantic roles, but since we believe there is no clear, universal and deterministic way of
doing so, in this research, we proceed the other way around. We use linguistic analysis tools
to provide the grammatical and semantic elements needed for constructing an equivalent
logic expression and provide context for each concept by using a general purpose ontology
(WordNet). The main contributions of this paper can be summarized as follows:

1. We reverse the traditional process of tackling the problem of natural language trans-
lation into formal language by selecting some linguistic analysis tools as a guide for
constructing logic expressions with approximately the same semantics as the natural
language sentences being translated.

2. We use a logic that has features that other classic logics lack: subject–predicate sen-
tences, experience-grounded semantics and syllogistic inference rules [14].

In contrast with the other representations of NL in NAL, our proposal have the
following novelties:

1. We predefined some NAL terms (concepts), as well as some NAL term relations, for
representing grammatical and semantic relations commonly found in English sentences.

2. We propose a set of NL-to-NAL translation rules general enough to cover the great
majority of English universal dependencies use cases and provide a full set of examples.

3. We include not only grammatical properties of the translated sentences but semantic
elements too.

4. Finally, we glimpse into the possible use of the proposed translation rules for support-
ing commonsense reasoning tasks [15].

The rest of this article is organized as follows: In Section 2, (Related Work) we briefly
mention some previous related works that are relevant in understanding our contribution,
either because of the similarity of the ideas used or because of the opposite. In Section 3,
(Theoretical Foundations and Required Background Knowledge) the fundamental basic
concepts of NAL are presented, as well as a brief listing of the linguistic tools used in
this research. Section 4 (Proposal) details our proposal for translating English sentences
into NAL expressions, including the predefined terms and their semantics, as well as
the predefined relations used during the translation process. Section 5 (Experiments and
Results) shows a large table of examples, helping to verify that all the intended use cases
are indeed covered by the proposed translation rules set. In Section 6, (Commonsense
Reasoning) we present a simple but illustrative example of how the translated expressions
could be used to perform commonsense reasoning. Finally, in Section 7 (Discussion), we
make some final remarks, draw some conclusions and speculate about future directions of
the research.

2. Related Works

The task of computationally representing and processing natural language using
some formal language has been a highly sought goal since the birth of the discipline of
artificial intelligence. When it became clear that predicate logic (PL) did not have the
expressiveness necessary to model some of the inference mechanisms that humans use
on a daily basis, many efforts in that direction were abandoned. With that motivation,
new logics aiming to capture new aspects of representation and reasoning closer to human
common sense emerged, such as modal logics, fuzzy logics, temporal logics, paraconsistent
logics, etc. These logics have been widely used in applications involving natural language,
such as [16], which overviews means of description logics for representing knowledge
contained in natural language texts, or [17], which uses a temporal logic for expressing
natural language goals.

Non-axiomatic logic (NAL) brings together several features that other logics lack,
such as subject–predicate sentences (as a result of being a term logic), experience-grounded
semantics and syllogistic inference rules [18]. Those features have made NAL useful in
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diverse applications such as [19], which detects anomalies in a smart city domain, or [20],
where a robotic manipulator arm learns about its environment. As for natural language,
ways of appropriate translation to NAL, for different purposes, have been widely discussed;
however, attempts to make a well-defined method are very scarce.

Among the few known works relating natural language and NAL are [21,22]. In [21],
some guidelines for representing natural language in NAL are discussed, mainly through
examples, whereas in [22], a small set of translation rules are proposed. Those rules are
included in the implementation of OpenNARS for Applications, a NAL-based reasoning
system. Unfortunately, [21] does not describe any methodology for the translation, nor
does it propose any way to automate the process. On the other hand, the set of rules
in [22] is very small and is only useful for simple sentences. Particularly, those rules create
logical relationships from phrases using prepositions. Furthermore, those rules have some
problems identifying named entities and a somewhat unstable handling of clauses. As an
example, consider the sentences:

• You gave me the important manual
• You gave the important manual to me
• The important manual was given to me by you

Although all these sentences have different structures, they all have the exact same
semantics. Therefore, it would be desirable for all of them to be translated in exactly the
same way, regardless of their linguistic particularities.

Using the set of translation rules proposed in [22], those sentences are translated in
three different ways. However, even worse is that some of the resulting expressions in NAL
completely lose their original semantics.

Instead, the herein proposed set of translation rules identifies the semantics indepen-
dently from the sentence structure and translates all three sentences in the exact same way.

Nowadays, connectionist models and methods have gained popularity for natural
language processing tasks. However, in order to obtain acceptable experimental results,
complex architectures and huge amounts of training data are required. Furthermore,
although some research has been carried out on the semantics and explainability of those
models, as in [23,24], it seems quite evident that the most popular connectionist applications
today have severe problems with basic reasoning tasks, and their generalization capacity is
in serious doubt, as discussed in [25–27].

Those discussions have motivated the formulation of some neuro-symbolic meth-
ods [28], which in addition to incorporating symbolic knowledge to reinforce semantics,
have been able to yield better experimental results, and simple reasoning benchmarks have
also been proposed [29,30]. However, we strongly believe that symbolic methods should
not be relegated exclusively to representational tasks, as they can prove indispensable for
logical and commonsense reasoning tasks, which can naturally be modeled with formal
systems. It is therefore very important to note that the proposed representation in this
paper is not intended to be used as input to any kind of neural network or connectionist
architecture, and therefore cannot be compared with representations that do have that
purpose. On the contrary, the logical representation herein presented was designed with the
aim of integrating a complete reasoning module able to use all of the NAL inference rules.
As an example of this type of vision, consider [31], where OpenNARS for Applications acts
as an oracle for ChatGTP-4.

3. Theoretical Foundations and Required Background Knowledge
3.1. Non-Axiomatic Logic

Non-axiomatic logic (NAL) [14,18,32] is a non-monotonic and multi-valued term logic
developed in order to model everyday thinking as well as the process of an artificial agent
learning its environment and adapting to it. NAL is not an agent logic in the modern
computational sense but only a formal language that serves as a sufficiently expressive
knowledge representation tool and as a reasoning guide for an agent who must always
operate under the Assumption of Insufficient Knowledge and Resources (AIKR). This assumption
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implies that the agent can never assume that it has neither complete knowledge of any
situation nor infinite time and/or processing resources to obtain it. Furthermore, to operate
under AIKR implies that there is no constraint defined on the content of the experience the
agent may have. Most notably, the classic monotonic-reasoning restriction of many other
logics is not present in NAL.

As a non-monotonic logic, in NAL, it is not required for each new formula just learned
to be consistent with all formulas previously known. This characteristic allows us to better
model the flow of a text in natural language [33]. As a multi-valued logic, the truth values
of formulas in NAL are not limited to be either true or false. This enables the grading of
truth based not on predefined axioms but strictly on the account of evidence supporting
each formula in the agent’s experience. Lastly, being a term logic means that formulas
do not adhere to the mathematical predicate logic syntax and semantics. NAL formulas
are more closely related to Aristotle’s logic, where each formula is composed of two terms
(called subject and predicate) related by a relational operator (called copula). A term is either a
constant labeling a specific concept within the universe of discourse (also called domain) or a
quantified variable that represents a subset of concepts within the same domain and which
are still to be determined [34].

Since Götlob Frege first defined predicate logic [35], he claimed that its crucial advantage
over term logics was its capability for expressing any conceivable relation between concepts,
while a term logic can only represent a finite and small number of relations depending on
the copulas defined. NAL has only five native copulas defined (see Table 1), and although
these five copulas are evidently not enough to match the expressive power of predicate
logic, that handicap is compensated by NAL’s capabilities to express compound terms,
and user-defined relations.

Table 1. Native NAL copulas.

Copula Formula Structure English Meaning Example

Inheritance S→ P S is a type of P
canary→ bird

(Canaries are a type of bird)

Similarity S↔ P S is similar to P
tweety↔ birdy

(Tweety is similar to Birdy)

Instance {S} → P S is an instance of P
{tweety} → canary
(Tweety is a canary)

Property S→ [P] S has property P
canary→ [yellow]

(Canaries are yellow)

Instance–property {S} → [P] Instance S has property P
{tweety} → [yellow]
(Tweety is yellow)

Compound terms are constructed using some set theory operators (union, intersection,
and difference), while user-defined relations are constructed by associating a compound
term, including all related terms, with a new term that names the relation among them.
This last extension is what really helps to harness the expressive power of NAL, and it
is a crucial modeling element of the proposed method. Tables 1 and 2 summarize basic
compound term capabilities in NAL.
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Table 2. Compound terms and relations definition in NAL.

Term Connector Term Structure English Concept Example

∪
Set Union T1∪ T2

Any element of concept T1
or concept T2 (bird ∪ [yellow])

∩
Set Intersection T1∩ T2

An element of concept T1
and of concept T2 (bird ∩ [yellow])

−
Asymmetric Set Difference T1− T2

An element of concept T1
but not of concept T2 (bird− [yellow])

	
Symmetric Set Difference T1	 T2

An element with properties of T1
but no properties of T2 (canary	 bird)

×
Relation (×T1, . . . , Tm)→ Tn

Terms T1 to Tm are related
by a Tn relation (×cat, bird)→ chase

The element that notably highlight the distinction between NAL and other symbolic
logics are the truth values of formulas. However, in order to correctly define truth values
in NAL, it is first necessary to understand how to account for positive and negative evidence
for a logical expression. Since NAL has experience-based semantics, positive and negative
evidence depends on the occurrence of specific statements in the agent’s experience (i.e.,
its knowledge base). For example, if an agent perceives a flying bird (identified as bird-1),
it may add to its knowledge base the expressions: bird-1 → bird and bird → [ f lying] to
represent the learned facts that “entity bird-1 is a bird” and “Birds can fly”. Each new flying
bird observed by the agent will add to the positive evidence of the latter expression. However,
at any moment, the agent may observe a penguin, an ostrich or a kiwi, which are non-flying
birds. Then, each of those experiences add to the negative evidence of the knowledge that
“Birds can fly”, so the truth value of the expression bird→ [ f lying] will change to reflect the
new balance of evidence.

In NAL each formula is assigned a truth value, which is a vector 〈 f , c〉, where [14]:

• Frequency ( f ) is a real number in the interval [0, 1] computing the ratio of positive
evidence (w+) for the formula over the total available evidence (W, the sum of positive
and negative evidence) about it; therefore, f = w+/W.

• Confidence (c) is another real number in [0, 1) computing the ratio of currently available
evidence (W) for the formula over the total amount of evidence expected to exist
(W + k), so c = W/(W + k), where the k variable is a constant expressing the system’s
learning speed, and it is usually set at k = 1.

The above quantification system is similar, although not exactly equivalent, to some
commercial product ranking systems that rely on users’ opinions. When a potential new
buyer queries for a product, he/she looks for two elements: the average rating assigned by
users and the number of users that have rated it. The first element (the product’s average
rating) is expressed as a ratio of the received rating over the maximum allowed rating,
for example: 3 1/2 stars out of 5 possible stars. However, for that measure to make sense, it
is also necessary to look at how many users have rated the product. If that number is very
small, there is little evidence of the quality rating of the product, whereas if that number is
high, there is much evidence that the average rating of the product is most likely the real one.

According to the semantics of NAL expressions, the evidence supporting each judge-
ment can only come from the agent’s experience (i.e., the contents of its memory). Therefore,
each time a new English sentence is read and has to be translated to NAL, if it is the first con-
tact of the agent with the terms involved in that sentence, then it is the first and only piece
of evidence supporting that sentence in the agent’s experience (i.e., W = 1, and w+ = 1).
Therefore, it should be assigned a frequency value of 1.0. As for the confidence of such a
new judgement, Pei Wang justifies in [14] that a value of 0.9 expresses that the agent has
almost all the available evidence but without ruling out the possibility that some other new
evidence might be encountered in the near future. Therefore, each time the agent learns a
new, not seen before, judgement, its truth value is set to <1.0, 0.9>.



Appl. Sci. 2023, 13, 11535 6 of 20

On the other hand, if new evidence supports inconsistent judgements with the ones
included in the current database, the agent must generalize and summarize its experiences
by applying local inference rules, specifically revision and choice. Please refer to [14,18] for a
detailed description of these inference rules and their use.

Because of this process, NAL truth values do not express a coincidence between
a particular judgement and the current state of the universe of discourse, unlike other
axiomatic logics. Furthermore, agents with different experiences will assign different truth
values to the same facts.

Finally, NAL, as with almost all predicate logic variants, also has variables. Variables
in NAL formulas are terms representing another term whose value has not been defined
yet. It is not necessary to ground variables when performing inference since an adequate
structure of the conclusion formula does not depend on the value of variables. Syntactically,
all variables start with a ‘#’ character followed by a name written in italic font. Furthermore,
we named variables with the grammatical element that the variable represents in each
formula, so you can find variables as #Whomever or #Whatever.

3.2. Linguistic Tools

In order to properly define rules for NL-to-NAL translation, it is first necessary to
obtain the linguistic structure of the NL text. Particularly, dependency parsing, part of speech
tagging, named entity recognition, and search for hypernyms are the more relevant linguistic
analyses needed.

Dependency parsing [36] is a linguistic analysis that identifies the grammatical structure
of sentences and constructs a dependency tree that represents such a structure. This process
finds sets of related words within a sentence, as well as the specific type of each one of
those relations. Found relationships are called dependencies, and universal dependencies [37]
is a representative set of dependencies designed to cover a great majority of use cases in
all languages (see Tables 3 and 4).

Part of Speech Tagging (PoS tagging) [38] is a process that marks each word in a sentence
with a tag that indicates its grammatical role in that sentence. PoS tags include the eight
classic categories (noun, verb, participle, article, pronoun, preposition, adverb, conjunction)
as well as other related subcategories. Both dependency parsing and part of speech analysis
are used to define the type of terms and the hierarchical structure of the NAL expressions
defined, and the Stanford typed dependencies module of the Stanford Parser is used for
this process [39].

Named entity recognition [40] involves the identification and categorization of certain
words or parts of sentences considered as key information or entities. An entity is basically
anything that is consistently talked about or referred to in the text. Named entities include
persons, geographic locations, dates, ages, addresses, phone numbers, organizations,
companies, etc. The Stanford Named Entity Recognizer [41] is used for this process with
only Person, Organization, and Location labels.

Lastly, hypernyms are words with a more general meaning than another word with
a related but more specific meaning. We search for hypernyms to establish and enrich the
context of each concept used in the NL text being translated (i.e., each term modeled in an
NAL expression). Hypernyms and their opposite hyponyms define a hierarchy of concepts
extremely similar to that defined by the intension and extension calculus definitions, which
are the basic ideas that conform the formal semantics in NAL expressions. WordNet [42] is
used for finding chains of related hypernyms (i.e., the intension of a term).

A summary of the linguistic analysis performed with the software tools used is
included in Table 5.
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Table 3. Universal dependencies: table of core, non-core and nominal dependencies used in this article.

Nominals Clauses Modifiers Function
Words

Core
Arguments

nominal subject
object

indirect object

clausal subject
clausal complement
open complement

Non-core
Dependents

oblique nominal
expletive adverbial cl modifier adverbial

modifier
copula
marker

Nominal
Dependents

nominal modifier
appositional mod
numeric modifier

clausal modifier adjectival
modifier

determiner
case marking

Table 4. Universal dependencies: table of other dependencies used in this article.

Coordination Multi Word Expression Special

conjunct
coordinating conjunct

fixed
flat

compound
goes with

Table 5. Table of linguistic analysis made before application of rules, with software and outputs used.

Linguistic Analysis Software Output

Named entity recognition Stanford Named Entity
Recognizer, v. 4.2.0 Tagged entities in text

Dependency parsing Stanford Parser, v. 4.2.0 Universal dependencies

PoS tagging Stanford Parser Penn Treebank PoS Tags

- 1 WordNet, v. 3.0 Hypernyms of nouns and
verbs in text

Semantic dependency parsing - 2 VerbNet roles
1 Here we obtain hypernyms for concepts in the text, which is not a linguistic analysis per se. 2 See the note in
Section 7.1, in the last bullet point.

4. Proposal

Linguistic analysis tools facilitate the identification of concepts and relationships ex-
pressed in an NL text. However, in order to decrease the amount of background knowledge
necessary for an agent to reason with the generated logical formulas, on the logic side,
it is required to establish some previous concepts. Therefore, the core of our proposal is
the definition of a group of NAL terms with pre-established semantics, a group of user
relationships with predefined structure and semantics and an informal convention on the
use of NAL variables. These fundamental definitions provide a solid basis for simplifying
the translation process as well as a common base for performing inference tasks with the
generated NAL formulas.

Pre-defined terms delimit the scope of some fundamental concepts implicit in the NL
text that would require human-level knowledge and experience to grasp, such as those
expressed by the question words when or where. We highlight these terms, writing them in
italic font and always ending with a ‘*’ character. Table 6 shows the pre-defined NAL terms
and their semantics.
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Table 6. Pre-defined terms and their semantics.

Pre-Defined Term Semantics

where∗ Term for expressing the location of something or of an event.
See example 1. Nominal subject, case (e)

when∗
Term for expressing when something occurred or to indicate that
two events happened at the same time. See example 7. Oblique
nominal, case (b)

but∗ Term for expressing concession between two events. See example
9. Adverbial clause modifier, case (c)

purpose∗ Term for expressing that an event is the purpose of another. See
example 9. Adverbial clause modifier, case (e)

reason∗ Term for expressing that an event is the reason for another. See
example 9. Adverbial clause modifier, case (f)

how∗ Term for expressing that an event modifies the manner in which another
occurred. See example 9. Adverbial clause modifier, case (h)

Pre-defined relations, on the other hand, allow logical formulas to mimic the grammat-
ical structure of NL sentences. Notably, we use a pre-defined four-term relation to express
the grammatical relation between a subject and its direct and indirect objects with the verb
in an NL sentence. As these elements are not always explicit in a sentence, we also defined
the special term ‘_’ (underscore), playing the role of an anonymous variable whose value is
not explicitly included in the sentence but is not needed for its understanding or processing.
Table 7 shows the pre-defined relations with their structure and semantics.

Table 7. Pre-defined relations and their semantics.

Pre-Defined Relation Semantics

(×××, subject, object, recipient)→→→ verb

subject (actor, agent or experiencer as
in [43]) makes verb (an action), the
direct object (not a recipient) of verb
is object, and recipient is the recipient.
See example 1. Nominal subject,
case (a) or 3. Indirect object, case (a)

(×××, argument1, argument2)→→→ pre-defined term

argument1 and argument2 are related
under the semantics of the pre-defined
term.
See example 1. Nominal subject,
case (e) or 7. Oblique nominal, case (b)

(×××, argument1, argument2)→→→ adjective

argument1 and argument2 are related
following the semantics of adjective.
See example 6. Open clausal comple-
ment, case (b) or 7. Oblique nominal,
case (e)

(×××, argument1, argument2)→→→ comparative

argument1 and argument2 are related
following the semantics of comparative,
which represents a comparative or
superlative adjective.
See example 6. Open clausal comple-
ment, case (b) or 7. Oblique nominal,
case (e)
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Table 7. Cont.

Pre-Defined Relation Semantics

(×××, argument1, argument2)→→→ equality

argument1 and argument2 are related
following the semantics of equality,
which represents an equality compa-
rison.
See example 9. Adverbial clause modi-
fier, case (g) or 15. Adjectival modifier,
case (c)

Translation Rules

The proposed set of NL-to-NAL rules was designed to cover all universal depen-
dencies (see Tables 3 and 4), with a few exceptions [44]. The rules are grouped into four
different sets:

• Entity rules: Rules that only require as input the result of the named entity recognition
analysis. These rules ground some of the logical terms and establish some of the
context judgements. With these rules, the words “Bill Gates” will be translated to a
single term {Bill-Gates} and the judgment ({Bill-Gates} → person)

• Term rules: These rules take as input the lemmatization of the text, dependency
parsing and PoS tagging results of the text. This type of rule obtains some compound
and non-compound terms that will be used in the translation—for example, the words
“the manual”, “chasing” and “important” will be mapped to the terms {the-manual},
chase and [important]

• Hypernym rules: As the name suggests, these rules take as input hypernyms of
concepts in the text via WordNet. The output of these rules is judgments representing
“is a” context, for example (canary→ bird)

• Text rules: Their input consist of the dependency parsing of the text, PoS tagging
results and hypernyms of some of the concepts in the text. Establishing judgements
that involve defined terms and express the content of the text is the main goal of this
group of rules. Suppose the sentence “Ana writes poems” is in the text, then these
rules will obtain the judgment ({Ana}, poem, _)→ write.

Figure 1 shows the data flow for applying the proposed set of rules. Parallelograms
indicate the specific group of rules applied in each case and shaded rectangles indicate
the type of NAL formulas yielded. A thorough example of the application of rules is
shown below, and Section 5 contains a list of examples in the translation of all universal
dependencies used.

Example 1. Consider the sentence:

“The important manual was reluctantly given to Bill Gates by Ford”.

Following the diagram in Figure 1, first, a named entity recognition analysis is made,
and it should state that Bill Gates and Ford are entities—the first one is a person, and the
second one is an organization; hence, the application of entity rules will give as the result:

{Bill-Gates} → person %Bill Gates is a person

{Ford} → organization %Ford is an organization
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Text

Entities Entity
rules

NER judgements

Universal dependencies

Term
rules

Terms

Text
rules

Hypernym
rules

Text judgements

Hypernym judgements

Named Entity Recognition

Lemmatization

Dependency parsing and PoS tagging

Figure 1. Translation process.

After this, dependency parsing and PoS tagging should be carried out. The result of
this analysis should be similar to the following:

Text: The important manual was reluctantly given to Bill Gates by Ford.
Tag: deter adjective noun verb adverb verb TO noun prep noun

adjective

subject

adverb
object

oblique

Applying term rules, the terms {the-manual} (the manual is an instance), [important]
(important is a property), [reluctantly] (reluctantly is a property) and give (give is an atomic
term) will be obtained.

With the information from WordNet and the Hypernym rules, the following judge-
ments will be added to the translation as context:

{the-manual} →→→ manual %The manual is a manual

manual→→→ handbook %Manuals are handbooks

handbook→→→ book %Handbooks are books

person→→→ organism %Persons are organisms

organism→→→ living-thing %Organisms are living things

organization→→→ social-group %Organizations are social groups

social-group→→→ group %Social groups are groups

give→→→ transfer %Giving is transferring
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Lastly, applying the text rules, the following judgements are obtained:

% Ford, the manual, and Bill Gates are related under the relation of giving reluctantly

(×××, {Ford}, {the-manual}, {Bill Gates})→→→ give∩∩∩ [reluctantly]

% the manual has the property of being important

{the-manual} → [important]

Every judgment obtained will be assigned an initial truth value of 〈1.0, 0.9〉, a value
that corresponds to a verified positive example of the related statement, as discussed in
Section 3.1.

The final set of NAL judgements will show two important characteristics:

1. Every concept appearing in the text will be implicitly represented and its mean-
ing extended with the help of auxiliary background judgements from the WordNet
ontology.

2. NAL is a non-monotonic logic, an agent wielding that logic can always learn new
concepts and receive new information, consequently adding new formulas to its
knowledge base, even when such new formulas seem like contradictory information.

5. Experiments and Results
Experiments per Case

This section shows some examples of natural language sentences translated into
NAL formulas. The examples follow Table 3, with the exception of function words (last
column), and are labeled accordingly to facilitate their identification and association with
the corresponding dependency cases. Each case shows an example sentence and the
translated NAL formula we obtain by applying the proposed methodology.

1. Nominal subject

(a) Active voice with a verb as root and nominal core arguments
Clinton defeated Dole

(×××, {Clinton}, {Dole}, _)→→→ defeat

(b) Passive voice with a verb as root and nominal core arguments
Dole was defeated by Clinton

(×××, {Clinton}, {Dole}, _)→→→ defeat

(c) Adjective as root
This toy is red
{this-toy} →→→ [red]

(d) Nominal as root and no case dependency
Roses are flowers

rose→→→ flower

(e) Nominal as root and case dependency
We are in the barn

(×××, {we}, {the-barn})→→→ where∗

(f) Copular sentence with clausal complement (outer)
The important thing is to keep calm

{the-thing}∩∩∩ [important]→→→ ((×××, #Whoever, calm, _)→→→ keep)

2. Object

(a) Active or passive voice with a verb as root
Ana teaches Logic

(×××, {Ana}, logic, #To-whomever)→→→ teach
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3. Indirect object

(a) Active or passive voice with a verb as root
Ana teaches the students Logic

(×××, {Ana}, logic, {the-students})→→→ teach

4. Clausal subject

(a) Active voice with a verb as root
Taking a nap will relax you

(×××, ((×××, #Whoever, {a-nap}, _)→→→ take), {you}, _)→→→ relax

(b) Passive voice with a verb as root
That she lied was suspected by everyone

(×××, #everyone, ((×××, {she}, #Whatever, #To-whomever)→→→ lie), _)→→→ suspect

(c) Adjective as root
Taking a nap is relaxing

((×××, #Whoever, {a-nap}, _)→→→ take)→→→ [relaxing]

(d) Nominal as root and no case dependency
What she said is a proverb

((×××, {she}, #Whatever, #To-whomever)→→→ say)→→→ proverb

(e) Copular sentence with clausal complement (outer)
To hike in the mountains is to experience nature

((×××, hike, {the-mountains})→→→ where∗)→→→ ((×××, #Whoever, nature, _)→→→ experience)

5. Clausal complement

(a) Active or passive voice with a verb as root and the explicit subject of the complement
He says you like flowers

(×××, {he}, ((×××{you}, flower, _)→→→ like), #To-whomever)→→→ say

(b) Active or passive voice with an adjective as root and the explicit subject of the complement
Ana is delighted that you could help

(×××, {Ana}, ((×××, {you}, #Whatever, #To-whomever)→→→ help))→→→ delighted

(c) Active or passive voice with a verb as root and not specified subject of the complement
The boss said to start digging

(×××, {the-boss}, ((#Whoever, dig, _)→→→ start), #To-whomever)→→→ say

6. Open clausal complement

(a) Active or passive voice with a verb as root and the implicit subject of the complement
I consider her honest

(×××, {I}, ({she} →→→ [honest]), _)→→→ consider

(b) Adjective as root and implicit subject of the complement
Susan is liable to be arrested

(×××, {Susan}, arrest)→→→ liable-to

7. Oblique nominal

(a) Locational modifier dependent on a verb
The will arrive in Boston

(((×××, {they}, _, _)→→→ arrive), {Boston})→→→ where∗

(b) Temporal modifier dependent on a verb
They will arrive on Friday

(((×××, {they}, _, _)→→→ arrive), {Friday})→→→ when∗

(c) Element of the dative alternation dependent on a verb
Ana teaches Logic to the students

(×××, {Ana}, logic, {the-students})→→→ teach
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(d) Agent dependent on a passive verb
The cat was chased by a dog

(×××, {a-dog}, {the-cat}, _)→→→ chase

(e) Dependent on an adjective
He is afraid of sharks

(×××, {he}, shark)→→→ afraid-of

(f) Adverbial modifiers
The director is 65 years old

{the-director} →→→ [old]∩∩∩ [65-years]

8. Expletive

(a) Existential there with an oblique modifier
There is a ghost in the room

(×××, {a-ghost}, {the-room})→→→ where∗

(b) “It” in extraposition constructions
It is clear that we should decline

((×××, {we}, #Whatever, _)→→→ decline)→→→ [clear]

(c) Existential there without oblique modifiers
There are children

#Some→→→ child

9. Adverbial clause modifier

(a) Temporal modifier
The accident happened as night was falling

(×××, ((×××, {the-accident}, _, _)→→→ happen), ((×××, night, _, _)→→→ fall))→→→ when∗

(b) Locational modifier
They drove beyond where the city ends

(×××, ((×××, {they}, #Whatever, _)→→→ drive), ((×××, {the-city}, _, _)→→→ end))→→→ where∗ ∩∩∩ [beyond]

(c) Concession modifier
He is a teacher, although he no longer teaches

(×××, ({he} →→→ teacher), ((×××, he, #Whatever, #To-whomever)→→→ teach∩∩∩ [no-longer]))→→→ but∗

(d) Condition modifier
If you know who did it, you should tell the teacher

((×××, {you}, ((×××, #Whoever, {it}, _)→→→ do), _)→→→ know)
⇒ ((×××, {you}, #Whatever, {the-teacher})→→→ tell)

(e) Purpose modifier
He talked to you in order to secure the account

((×××, (×××, {he}, #Whatever, {you})→→→ talk), ((×××, #Whoever, {the-account}, _)→→→ secure))→→→
purpose∗

(f) Reason modifier
I am in my house since I caught a cold

((×××, (×××, {I}, {my-house})→→→ where∗), (×××, {I}, {a-cold}, _)→→→ catch))→→→ reason∗

(g) Comparison modifier
John can speak English as fluently as his teacher can
(×××, ((×××, {John}, English, #To-whomever)→→→ speak),

((×××, {his-teacher}, English, #To-whomever)→→→ speak))→→→ as-fluent-as

(h) Manner modifier
He spent a lot of money as if he was rich

(×××, ((×××, {he}, money∩∩∩ [a-lot-of], _)→→→ spend), ({he} →→→ rich))→→→ how∗
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10. Adverbial modifier

(a) Adverbial modifying verb
Ana rarely drinks coffee

(×××, {Ana}, coffee, _)→→→ drink∩∩∩ [rarely]

(b) Adverbial modifying adjective
About 200 people came

(×××, [about 200]∩∩∩ people, _, _)→→→ come

(c) Adverbial modifying adverb
Tom is almost always busy

{Tom} →→→ [busy]∩∩∩ [almost always]

(d) Negation
Tom does not like Italian food

¬¬¬((×××, {Tom}, [Italian]∩∩∩ food, _)→→→ like)

11. Nominal modifier

(a) Determiner modifying a noun or noun phrase
Some of the toys are red
{some toys} →→→ [red]

(b) Noun modifying a noun or noun phrase
Toys for children are cute

children-toys→→→ [cute]

12. Appositional modifier

(a) Appositional modifier
Sam, my brother, arrived

(({Sam}, _, _)→→→ arrive)∧∧∧ ({Sam} →→→ {my-brother})

13. Numeric modifier

(a) Numeric modifier
Sam spend forty dollars

({Sam}, [40]∩∩∩ dollar, _)→→→ spend

14. Clausal modifier of a noun

(a) Modified noun as subject
My sister has a parakeet named Cookie

((×××, {my-sister}, {a-parakeet}, _)→→→ have)∧∧∧ ((×××, #Whoever, {Cookie}, {a-parakeet})→→→ name)

(b) Modified noun as object
He is a teacher whom the students really love

({he} →→→ {a-teacher})∧∧∧ ((×××, {the-students}, {a-teacher}, _)→→→ love)

15. Adjectival modifier

(a) Adjectival modifier
Canaries are yellow
canary→→→ [yellow]

(b) Comparative adjective
Ana is taller than Tom

(×××, {Ana}, {Tom})→→→ taller

(c) Comparison “as . . . as”
Ana is as tall as Tom

(×××, {Ana}, {Tom})→→→ as-tall-as
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(d) Superlative adjective
Ana is the tallest in the group
(×××, {Ana}, $Whatever)→→→ taller

$Whatever→→→ the-group

6. Commonsense Reasoning

Attempting to explain in sufficient detail the form and properties of commonsense
reasoning is undoubtedly an extremely difficult task. Historically [6,7], commonsense
reasoning deals with obtaining non-deductive logical consequences of the available data,
and while formal reasoning systems are restricted to deductive inference, commonsense rea-
soning systems are more focused on other inference forms: induction, abduction, analogy,
exemplification, etc. Furthermore, of course, the knowledge inferred by any of those forms
cannot contradict or hinder in any way the formal deduction process. That is, commonsense
reasoning must coexist with and support formal reasoning.

In NAL, there are ten different inference formulas (see [14] Appendix B), and while
presenting and explaining all of them falls outside the scope of this paper, we will show
here a brief but illustrative example. A reader interested in the details of NAL’s inference
rules should consult [10,14,18]. In addition to the obvious fact that there are no universally
accepted characterizations of what constitutes commonsense reasoning, it is important to
understand the following two aspects:

1. Inference formulas in NAL have both a syntactic component and an arithmetic com-
ponent. The syntactic component shows how to combine the terms included in the
initial premises to form a conclusion, while the arithmetic component shows how to
compute the truth value of the conclusion from the truth value of the premises.

2. The conclusion expression, along with its truth value, must be translated back into
natural language in order to complete the reasoning task. That translation involves
the use of certain words to represent the numerical interval in which the values of
both frequency and confidence in the truth value of the conclusion are found. This
second translation process is also beyond the scope of this paper.

Lets analyze the following example:

Example 2. We have the following sentences:

• Someone picked up some food for a snack at the supermarket.
• These ingredients were bought at the grocery store.
• Milk can be purchased at food markets.

Using the translation method presented, the following judgments are obtained:

(×××, ((×××, _, snack-food, _)→→→ pick-up), {the-supermarket})→→→ where∗ 〈1, 0.9〉 (1)

(×××, ((×××, _, {these ingredient}, _)→→→ buy), {the grocery-store})→→→ where∗ 〈1, 0.9〉 (2)

(×××, ((×××, _, milk, _)→→→ purchase), food-market)→→→ where∗ 〈1, 0.9〉 (3)

Please note that all three sentences were translated into higher-order NAL expressions.
Furthermore, the context extraction process generates the following expressions extracted
from WordNet:

snack-food→→→ food 〈1, 0.9〉 (4)

milk→→→ food 〈1, 0.81〉 (5)

{these ingredient} →→→ food 〈1, 0.73〉 (6)

pick-up→→→ buy 〈1, 0.81〉 (7)

purchase↔↔↔ buy 〈1, 0.9〉 (8)

{the supermarket} →→→ food-market 〈1, 0.81〉 (9)

{the grocery-store} →→→ food-market 〈1, 0.81〉 (10)
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From the above expression, any formal reasoning system can perform deduction. Partic-
ularly, all the following conclusions can be obtained just by deduction:

From (1) and (4):

(×××, (×××, _, food, _)→→→ pick-up, {the-supermarket})→→→ where∗〈1, 0.81〉 (11)

From (11) and (9):

(×××, (×××, _, food, _)→→→ pick-up, food-market)→→→ where∗〈1, 0.65〉 (12)

From (12) and (7):

(×××, (×××, _, food, _)→→→ buy, food-market)→→→ where∗〈1, 0.59〉 (13)

From (2) and (6):

(×××, (×××, _, food, _)→→→ buy, {the grocery-store})→→→ where∗〈1, 0.66〉 (14)

From (14) and (10):

(×××, (×××, _, food, _)→→→ buy, food-market)→→→ where∗〈1, 0.53〉 (15)

From (3) and (5):

(×××, (×××, _, food, _)→→→ purchase, food-market)→→→ where∗〈1, 0.73〉 (16)

From (16) and (8):

(×××, (×××, _, food, _)→→→ buy, food-market)→→→ where∗〈1, 0.66〉 (17)

NAL also has rules to summarize judgments with the same sentence but different truth
values, such as judgments (13), (15) and (17). One of these rules, called revision, produces
the following judgment:

From (13), (15) and (17):

(×××, (×××, _, food, _)→→→ buy, food-market)→→→ where∗〈1, 0.84〉 (18)

Now, a commonsense reasoning system needs to infer non-deductive knowledge that
may seem simpler but cannot be obtained by deduction. So, after performing all the above
deductions, if the system receives a new piece of knowledge in the sentence: I bought
something at the supermarket:

(×××, (×××, {I}, something, _)→→→ buy, food-market)→→→ where∗〈1, 0.9〉 (19)

By applying the NAL induction rule, the system can infer:

something→→→ food 〈1, 0.43〉 (20)

Which represents the commonsense reasoning that whatever you bought at the su-
permarket is most probably food, because within the little experience available to the
agent (Formulas (1) to (10) and confidence = 0.43 in the conclusion), all the evidence
(frequency = 1) indicates that food is what is bought at supermarkets.

7. Discussion

Modeling a natural language with a formal language is always going to be an incom-
plete task. Part of the problem stems from the fact that logic formulas (in any symbolic
logic) are purely declarative, while natural languages can express a variety of sentences be-
sides declarative. It has been extensively argued that the lack of contextual or background
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knowledge in an artificial agent prevents any chance of communication or reasoning with
unified semantics [45]. However, it seems quite evident that if artificial intelligence is going
to have any chance of near-human behavior, it cannot depend on non-symbolic generative
models for catching the true meaning of natural language expressions.

In this paper, we have shown a methodological return to the symbolic way, using
linguistic analysis tools that identify the grammatical structure in a natural language sen-
tence and reveal the various types of relations among words (dependencies, semantic role
relations, etc.). Such an analysis provides sufficient evidence to identify concepts, instances
of those concepts, properties and relations expressed by natural language sentences, which
can then be translated into NAL formulas that not only preserve the original relations but
also insert them in a multi-valued, non-monotonic, and higher-order logic with enough
flexibility to later perform inference tasks [46,47].

Our approach has been to search for named entities and grammatical labels in order
to define the terms (logical terms or concepts) on which the logical formulas will be based.
Next, we used a commonsense ontology (WordNet) to construct a minimal background
context for the selected terms. Finally, we took the table of universal dependencies as the
landmark reference, maximizing a consistent covering of commonly used expressions and
idioms, as well as their translation into NAL formulas. We would like to highlight the
following linguistic/logic merits of our proposal:

• A nominal subject sentence (Examples, Nominal subject, cases (a) and (b)) gets trans-
lated to the exact same NAL formula, regardless of it being in an active or passive voice.

• A double object construction (Example, Indirect object, case (a)) and a prepositional
construction (Example, Oblique nominal, case (c)) also got translated to the same NAL
pre-defined relation formula.

• A careful use of NAL product terms allows the pre-defined relations to endow their
related terms with a more semantic role than their syntactic analysis would suggest.
For example, the two sentences Ana teaches Logic and Ana teaches the students have
exactly the same dependency parsing but are translated to slightly different NAL for-
mulas. The first one is translated into (×××, {Ana}, logic, #To-whomever)→→→ teach, while
the second one is translated into (×××, {Ana}, #Whatever, {the-students})→→→ teach.

• Adjectives are not always translated into NAL properties. When appropriate, they
can also be translated into relations, as can be seen in Examples, Table 15, Adjectival
modifier, case (b), which is consistent with [48,49].

These characteristics, along with the broad coverage of universal dependencies, make
our method more extensive and precise than the one implemented in [22] but still complying
with the specifications in [21].

7.1. Limitations and Future Work

Some of the limitations of the proposed rule set are as follows:

• The rules are not capable of deciding if an adjective should be represented as a property
or as a relation. This difference between adjectives can be clearly seen in possessive
or predicative adjectives, as in [49]. Even more, their translation may depend on a
specific context that could not be part of the current sentence.

• Some translations will not be useful to carry axiomatic reasoning. This can be clearly
seen in the translation of numbers or unities, for example; consider the translation of
the sentence One apple plus two apples equals three apples [50].

On another note, there are improvements to the proposal that can be integrated into
future work, such as:

• Other linguistic analyses can be performed before the application of rules, such as
word-sense disambiguation or anaphora resolution

• While all the variables considered in this work are dependent variables in NAL, this can
be expanded so the rules also include independent variables.
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Furthermore, the implementation could be improved if the following points were
addressed:

• The implemented rules greatly depend in the linguistic software used. If an inadequate
analysis is carried out before, the translation will also be erroneous.

• In addition to the previous point, the implementation is not connected to a semantic
dependency parser to automatically obtain semantic roles in a sentence. Instead,
Prolog predicates are used to denote locations, instruments, time, etc.

8. Conclusions

The contributions of this work can be summarized as follows:

• From the perspective of the symbolic paradigm, this work explores the possibility of
extracting fundamental term relationships expressed in natural language to construct
with them a representation in a formal language (NAL) previously known to be well
adapted for reasoning tasks, and particularly commonsense reasoning.

• From the point of view of natural language processing and computational linguistics,
this work proposes a way to use non-axiomatic logic as a minimum-loss formal
representation of natural language sentences.

• Finally, from the point of view of artificial general intelligence, this work advances
the first step required on the way to designing an agent with language understanding
and commonsense reasoning capabilities.

Following the ideals of this research, the next step seems obvious, and by the time this
paper is published, this next step will already have begun: to test the translated formulas
in different inference tasks and dynamically extend the required background formulas to
enable conversational and commonsense reasoning abilities in an artificial agent. However,
since the first stage of translating natural language to NAL formulas has so many intricate
details, we feel it is worth presenting it in its own dedicated paper. Undoubtedly, the task of
building an artificial agent with commonsense reasoning skills is a colossal task. However,
we firmly believe that the current trend of relying on generative connectionist models
does not advance down the path of artificial general intelligence and fails to capture the
essence of symbolic reasoning, much less commonsense reasoning. That is the reason that
motivates and drives this research.

Author Contributions: O.J., S.G.-C. and H.C. have contributed equally to conceptualization, method-
ology, formal analysis, software and validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Secretaría de Investigación y Posgrado (SIP-IPN) through
projects/grants SIP-20230105 and SIP-20230140.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The supporting information is shared and available online by visiting
https://github.com/aosirisj/nal-english.

Acknowledgments: The authors wish to acknowledge and gratefully thank Consejo Nacional de
Humanidades, Ciencias y Tecnologías (CONAHCYT) and Instituto Politécnico Nacional (IPN).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NAL Non-axiomatic logic
NL Natural language
PL Predicate logic
AIKR Assumption of Insufficient Knowledge and Resources

https://github.com/aosirisj/nal-english


Appl. Sci. 2023, 13, 11535 19 of 20

References
1. Davis, E.; Marcus, G. Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 2015,

58, 92–103. [CrossRef]
2. Sap, M.; Shwartz, V.; Bosselut, A.; Choi, Y.; Roth, D. Commonsense reasoning for natural language processing. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, Online, 5–10 July 2020; pp. 27–33.
3. McCarthy, J. Programs with Common Sense; Taylor & Francis: Abingdon, UK, 1959.
4. Richardson, C.; Heck, L. Commonsense reasoning for conversational AI: A survey of the state of the art. arXiv 2023,

arXiv:2302.07926.
5. Davis, E. Logical formalizations of commonsense reasoning: A survey. J. Artif. Intell. Res. 2017, 59, 651–723. [CrossRef]
6. McCarthy, J. Formalizing Common Sense; Intellect Books: Bristol, UK, 1990; Volume 5.
7. McCarthy, J.; Buvac, S. Formalizing context. In Proceedings of the AAAI Fall Symposium on Context in Knowledge Representation,

Seattle, WA, USA, 31 July–4 August 1994; pp. 99–135.
8. Waismann, F. Ludwig Wittgenstein and the Vienna Circle; Basil Blackwell: Oxford, UK, 1979.
9. Wang, P. Toward a logic of everyday reasoning. In Blended Cognition: The Robotic Challenge; Springer: Berlin/Heidelberg, Germany,

2019; pp. 275–302.
10. Wang, P. From inheritance relation to non-axiomatic logic. Int. J. Approx. Reason. 1994, 11, 281–319. [CrossRef]
11. Slam, N.; Wang, W.; Wang, P. An improvisational decision-making agent based on non-axiomatic reasoning system. In

Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), Warsaw, Poland, 11–14 August 2014; Volume 3, pp. 360–364.

12. Han, S.; Schoelkopf, H.; Zhao, Y.; Qi, Z.; Riddell, M.; Benson, L.; Sun, L.; Zubova, E.; Qiao, Y.; Burtell, M.; et al. FOLIO: Natural
language reasoning with first-order logic. arXiv 2022, arXiv:2209.00840.

13. Purdy, W.C. A logic for natural language. Notre Dame J. Form. Log. 1991, 32, 409–425. [CrossRef]
14. Wang, P. Non-Axiomatic Logic: A Model of Intelligent Reasoning; World Scientific: Singapore, 2013.
15. Jackson, P.C., Jr. Toward human-level qualitative reasoning with a natural language of thought. In Proceedings of the Biologically

Inspired Cognitive Architectures Meeting; Springer: Berlin/Heidelberg, Germany, 2021; pp. 195–207.
16. Kryvyi, S.; Hoherchak, H. Analyzing Natural Language Knowledge Uncertainty. In Proceedings of the 2022 IEEE 4th International

Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 15–17 December 2022; pp. 268–272. [CrossRef]
17. Dzifcak, J.; Scheutz, M.; Baral, C.; Schermerhorn, P. What to do and how to do it: Translating natural language directives

into temporal and dynamic logic representation for goal management and action execution. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4163–4168. [CrossRef]

18. Wang, P. Rigid Flexibility; Springer: Berlin/Heidelberg, Germany, 2006; Volume 55.
19. Hammer, P.; Lofthouse, T.; Fenoglio, E.; Latapie, H.; Wang, P. A Reasoning Based Model for Anomaly Detection in the Smart

City Domain. In Intelligent Systems and Applications; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2021;
pp. 144–159.

20. Hammer, P.; Isaev, P.; Lofthouse, T.; Johansson, R. ONA for Autonomous ROS-Based Robots. In International Conference on Artificial
General Intelligence; Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D., Eds.; Springer: Cham, Switzerland, 2023; pp. 231–242.

21. Wang, P. Natural language processing by reasoning and learning. In Proceedings of the International Conference on Artificial
General Intelligence, Beijing, China, 31 July–3 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–169.

22. Hammer, P. English to Narsese. 2020. Available online: https://github.com/opennars/OpenNARS-for-Applications (accessed on
13 May 2022).

23. Adi, Y.; Kermany, E.; Belinkov, Y.; Lavi, O.; Goldberg, Y. Fine-grained analysis of sentence embeddings using auxiliary prediction
tasks. arXiv 2016, arXiv:1608.04207.

24. Kádár, A.; Chrupała, G.; Alishahi, A. Representation of linguistic form and function in recurrent neural networks. Comput.
Linguist. 2017, 43, 761–780. [CrossRef]

25. Ranaldi, L.; Pucci, G. Knowing knowledge: Epistemological study of knowledge in Transformers. Appl. Sci. 2023, 13, 677.
[CrossRef]

26. McCoy, R.T.; Pavlick, E.; Linzen, T. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference.
arXiv 2019, arXiv:1902.01007.

27. Talmor, A.; Elazar, Y.; Goldberg, Y.; Berant, J. oLMpics-On what language model pre-training captures. Trans. Assoc. Comput.
Linguist. 2020, 8, 743–758. ._a_00342. [CrossRef]

28. Hitzler, P.; Eberhart, A.; Ebrahimi, M.; Sarker, M.K.; Zhou, L. Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev.
2022, 9, nwac035. [CrossRef] [PubMed]

29. Zanzotto, F.M.; Santilli, A.; Ranaldi, L.; Onorati, D.; Tommasino, P.; Fallucchi, F. KERMIT: Complementing Transformer
architectures with Encoders of explicit syntactic interpretations. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 256–267. [CrossRef]

30. Sinha, K.; Sodhani, S.; Dong, J.; Pineau, J.; Hamilton, W.L. CLUTRR: A diagnostic benchmark for inductive reasoning from text.
arXiv 2019, arXiv:1908.06177.

31. Hammer, P. NARS-GPT. 2022. Available online: https://github.com/opennars/NARS-GPT (accessed on 31 August 2023).
32. Wang, P.; Hofstadter, D. A logic of categorization. J. Exp. Theor. Artif. Intell. 2006, 18, 193–213. [CrossRef]

http://doi.org/10.1145/2701413
http://dx.doi.org/10.1613/jair.5339
http://dx.doi.org/10.1016/0888-613X(94)90021-3
http://dx.doi.org/10.1305/ndjfl/1093635837
http://dx.doi.org/10.1109/ATIT58178.2022.10024237
http://dx.doi.org/10.1109/ROBOT.2009.5152776
https://github.com/opennars/OpenNARS-for-Applications
http://dx.doi.org/10.1162/COLI_a_00300
http://dx.doi.org/10.3390/app13020677
http://dx.doi.org/10.1162/tacl_a_00342
http://dx.doi.org/10.1093/nsr/nwac035
http://www.ncbi.nlm.nih.gov/pubmed/35673530
http://dx.doi.org/10.18653/v1/2020.emnlp-main.18
https://github.com/opennars/NARS-GPT
http://dx.doi.org/10.1080/09528130600557549


Appl. Sci. 2023, 13, 11535 20 of 20

33. Gärdenfors, P.; Makinson, D. Nonmonotonic inference based on expectations. Artif. Intell. 1994, 65, 197–245. [CrossRef]
34. Lindes, P. Constructing Meaning, Piece by Piece: A Computational Cognitive Model of Human Sentence Comprehension. Ph.D.

Thesis, University of Michigan, Ann Arbor, MI, USA, 2022.
35. Frege, G. Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought. In From Frege to Gödel: A Source

Book in Mathematical Logic, 1879–1931; Harvard University Press: Cambridge, MA, USA, 1879; pp. 1–82.
36. Mitkov, R. The Oxford Handbook of Computational Linguistics; Oxford University Press: Oxford, UK, 2022.
37. de Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal Dependencies. Comput. Linguist. 2021, 47, 255–308. [CrossRef]
38. Jurafsky, D.; Martin, J. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and

Speech Recognition; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
39. Dan, K.; Manning, C. Accurate unlexicalized parsing. In Proceedings of the 41st Meeting of the Association for Computational

Linguistics, Sapporo, Japan, 7–12 July 2003; pp. 423–430.
40. Kapetanios, E.; Tatar, D.; Sacarea, C. Natural Language Processing: Semantic Aspects; CRC Press: Boca Raton, FL, USA, 2013.
41. Finkel, J.R.; Grenager, T.; Manning, C. Incorporating non-local information into information extraction systems by Gibbs sampling.

In Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics, Ann Arbor, MI, USA, 25–30 June
2005; pp. 363–370.

42. Miller, G. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
43. Schuler, K.K. VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon; University of Pennsylvania: Philadelphia, PA, USA, 2005.
44. Documentation of Universal Dependency Relations. 2014. Available online: https://universaldependencies.org/u/dep/index.

html (accessed on 28 August 2023).
45. Gärdenfors, P. The emergence of meaning. Linguist. Philos. 1993, 16, 285–309. [CrossRef]
46. Chabierski, P.; Russo, A.; Law, M. Logic-Based Approach to Machine Comprehension of Text. 2017. Available online:

https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Piotr-
Chabierski---Logic-based-Approach-to-Machine-Comprehension-of-Text.pdf (accessed on 28 August 2023).

47. Barker-Plummer, D.; Cox, R.; Dale, R.; Etchemendy, J. An empirical study of errors in translating natural language into logic.
Proc. Annu. Meet. Cogn. Sci. Soc. 2008, 30, 30.

48. Wang, P. The interpretation of fuzziness. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 1996, 26, 321–326. [CrossRef]
[PubMed]

49. Kamp, H. Two theories about adjectives. In Meaning and the Dynamics of Interpretation; Brill: Leiden, The Netherlands, 2013;
pp. 225–261.

50. Wang, P. Axiomatic Reasoning in NARS; Technical Report; Technical Report 15, AGI Team; Temple University: Philadelphia, PA,
USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0004-3702(94)90017-5
http://dx.doi.org/10.1162/coli_a_00402
http://dx.doi.org/10.1145/219717.219748
https://universaldependencies.org/u/dep/index.html
https://universaldependencies.org/u/dep/index.html
http://dx.doi.org/10.1007/BF00985971
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Piotr-Chabierski---Logic-based-Approach-to-Machine-Comprehension-of-Text.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Piotr-Chabierski---Logic-based-Approach-to-Machine-Comprehension-of-Text.pdf
http://dx.doi.org/10.1109/3477.485883
http://www.ncbi.nlm.nih.gov/pubmed/18263034

	Introduction
	Related Works
	Theoretical Foundations and Required Background Knowledge
	Non-Axiomatic Logic
	Linguistic Tools

	Proposal
	Experiments and Results
	Commonsense Reasoning
	Discussion
	Limitations and Future Work

	Conclusions
	References

