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Abstract: Examining the relationship between the prognostic factors and the effectiveness of voice
therapy is a crucial step in developing personalized treatment strategies for individuals with voice
disorders. This study recommends using the multilayer perceptron model (MLP) to comprehensively
analyze the prognostic factors, with various parameters, including personal habits and acoustic
parameters, that can influence the effectiveness of before-and-after voice therapy in individuals with
speech disorders. Various methods, including the assessment of personal characteristics, acoustic
analysis, statistical analysis, binomial logistic regression analysis, and MLP, are implemented in
this experiment. Accuracies of 87.5% and 85.71% are shown for the combination of optimal input
parameters for female and male voices, respectively, through the MLP model. This fact validates the
selection of input parameters when building our model. Good prognostic indicators for the clinical
effectiveness of voice therapy in voice disorders are jitter (post-treatment) for females and MPT
(pre-treatment) for males. The results are expected to provide a foundation for modeling research
utilizing artificial intelligence in voice therapy for voice disorders. In terms of follow-up studies, it
will be necessary to conduct research that utilizes big data to analyze the optimal parameters for
predicting the clinical effectiveness of voice disorders.

Keywords: voice disorder; prognostic factor; clinical effectiveness; voice therapy; multilayer perceptron
model; GRBAS; acoustic parameters; binomial logistic regression analysis

1. Introduction

Speech is an essential means of communication in everyday life, and speech disorders
can have a negative impact on an individual’s vocal health and social participation [1–7].
Individuals with speech disorders aim to improve their vocal function through speech
therapy [8,9]. However, not all patients show the same results from speech therapy. This
suggests that personal characteristics and prognostic factors can influence the effectiveness
of speech therapy [10,11]. Examining the relationship between the factors and the effec-
tiveness of speech therapy is a crucial step in developing and implementing personalized
treatment strategies for individuals with speech disorders [12]. By conducting a compre-
hensive analysis of prognostic factors, we can identify which patients are likely to derive
the greatest benefit from speech therapy. Furthermore, the development of personalized
treatment approaches by considering prognostic factors is an important strategy to enhance
the effectiveness of speech therapy and improve patients’ vocal function and quality of life.

Past studies have explored the association between the prognostic factors of indi-
viduals with speech disorders and the outcomes of speech therapy. Zoltan Galaz et al.
conducted a partial correlation analysis to explore the connection between initial phonatory
characteristics and fluctuations in clinical scores. The XGBoost models demonstrated an
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ability to forecast alterations in clinical scores with an error margin ranging from 11%
to 26%. This research proposed a potential method for forecasting the advancement of
Parkinson’s disease (PD) through the acoustic examination of speech patterns [13]. Phan
Huu Ngoc Minh et al. examined the extent of the relationship between aerodynamic
assessments, acoustic measurements, and auditory–perceptual factors. They observed a
robust correlation between local jitter and shimmer and parameters G, R, B, and S, all with
a significance level of p < 0.001. This investigation found noteworthy associations between
these vocal evaluations, highlighting the potential of combined analyses using a multi-
parametric approach to provide a comprehensive and unbiased assessment of pathological
voice conditions in their early stages [14]. Chang Bin Yun et al. studied the predictive
factors for the efficacy of voice therapy for pediatric vocal fold nodules. They found that
good prognostic factors for voice therapy in vocal fold nodules were gender and older age.
However, acoustic and perceptual measures of the voice before treatment could not predict
the effectiveness of voice therapy [15]. In the most recent notable paper, the authors focused
on forecasting vocal recovery three months after thyroid surgery using deep neural net-
works applied to spectrograms. The approach involved utilizing a pretrained model, based
on the GRBAS framework, and training it on preoperative and two-week-postoperative
voice spectrograms using the EfficientNet architecture combined with long short-term
memory (LSTM) in order to predict vocal outcomes at the three-month mark. The results
of the correlation analysis for the predicted grade, breathiness, and asthenia scores were
0.741, 0.766, and 0.433, respectively. This research showed the potential for predicting vocal
recuperation three months post-surgery via spectrogram analysis [16]. Patrick Schlegel
et al. conducted a study to identify clinical parameters that are sensitive to functional voice
disorders using boosted decision stumps. Their findings indicated that a smaller subset of
parameters (specifically, 4 out of 13) was effective in distinguishing between three groups:
one healthy group and two groups with voice disorders [17]. However, these studies have
been limited in terms of considering the association between prognostic factors and the
outcomes of speech therapy. Some studies have focused only on one prognostic factor
or used subjective evaluation tools to assess the effectiveness of speech therapy [14,15].
These limitations make it difficult to derive reliable results from previous studies and have
resulted in the lack of a comprehensive understanding of speech therapy.

To overcome these limitations, in this study, we aim to comprehensively analyze
prognostic factors in relation to various parameters, including personal habits and acoustic
parameters, which influence the effectiveness of speech therapy in individuals with speech
disorders. This paper also evaluates changes in vocal quality before and after speech
therapy to elucidate the relationship between prognostic factors and the effectiveness of
speech therapy. To achieve this, we employ various methods including assessments of
personal characteristics, acoustic analysis, perceptual evaluations statistical analysis, and
the multilayer perceptron model. By adopting this comprehensive approach, we clarify the
correlation between prognostic factors and the effectiveness of speech therapy.

The results of this study are expected to provide useful guidelines to clinical physicians
and speech and language therapists. The development of personalized treatment strategies
considering prognostic factors can greatly improve the effectiveness of speech therapy and
enhance the vocal function and quality of life of individuals with speech disorders. The
contributions of this study are summarized as follows:

• Based on a gender analysis reflecting the vocal characteristics of males and females, we
investigate the relationship between the effectiveness of voice therapy and predictive
factors in relation to each gender’s voice.

• This paper introduces correlation analysis before and after treatment based on effec-
tiveness (+) and non-effectiveness (−) in women’s and men’ voices.

• New parameters proposed according to the characteristics of acoustic parameters pre-
dict the effectiveness of speech therapy through binomial logistic regression analysis.

• Multiple experiments were conducted to validate the utility of the proposed parame-
ters, employing the multilayer perceptron model.
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• The results highlight the superiority of this system, which predicts the effectiveness
of voice therapy by combining gender-analysis-based perceptual modeling and the
new parameters.

2. Materials and Methods
2.1. Materials

This study retrospectively reviewed the medical records of 206 patients diagnosed
with voice disorders at the Otorhinolaryngology Department of Nowon Eulji Medical
Center, Eulji university, from March 2020 to February 2023. The study was conducted
with the approval of the Institutional Review Board (IRB No. 2022-04-014), following the
research ethics guidelines. Excluding patients who had not completed voice therapy and
those who were lost to follow up, a total of 81 patients with voice disorders were included
in the study. Table 1 presents the dataset details employed in this study. This dataset
comprises recordings of the/a/vowels obtained from 55 female and 26 male voices, each
exhibiting more than 10 distinct pathologies. The purpose of this dataset was to facilitate
a gender-based analysis. The subjects were categorized into two groups based on the
effectiveness of voice therapy, specifically concerning improvements in the G scale within
the GRBAS (grade, roughness, breathiness, asthenia, strain) assessment [14]. The first
group was the responsive group, which showed an improvement of at least 1 point, and the
second group was the non-responsive group, which did not show any improvement. These
scores are represented as an effectiveness metric (+ or −) in both groups, and the numbers
are shown in Table 1. Finally, the variables used in this study are shown in Table 1.

Table 1. Information related to the samples in the experimental dataset.

Female Male

Number of samples 55 (27 Voice users) 26 (12 voice users)

Average age 51 48

Types of voice disorders (numbers)

Vocal fold polyp (15), vocal nodule (16),
thyroid nodule (2), hoarseness (1), muscle
tension dysphonia (5), sulcus vocalis (1),
dysphonia (8), presbyphonia (3), vocal
cyst (4)

Vocal fold polyp (11), vocal cord paralysis
(2), mutational dysphonia (1), vocal
nodule (1), vocal cyst (2), leukoplakia (1),
dysphonia (2), sulcus vocalis (1), muscle
tension dysphonia (2), presbyphonia (2),
vallecular cyst (1)

Number of responsive samples
(effectiveness, +) 41 18

Variables

Smoking status, alcohol status, voice user status, coffee status, fundamental frequency
before and after treatment (Hz), jitter before and after treatment (%), shimmer before
and after treatment (%), noise to harmonic ratio before and after treatment (NHR, dB),
speaking fundamental frequency before and after treatment (SFF, Hz), maximum
phonation time before and after treatment (MPT, s)

2.2. Acoustic Analysis

A microphone was positioned 5 cm from the subject’s mouth, and the subject was
instructed to produce and sustain the vowel /a/ at their most comfortable pitch and
volume [18]. The digitally recorded data were then transferred to a computer, with a
sampling frequency of 44.1 kHz, for subsequent analysis using the multidimensional voice
program (MDVP) software version 2.3 from Kay Elemetrics [18,19]. Then, measurements
such as jitter (%), shimmer (%), the noise–harmony ratio (NHR, dB), fundamental frequency
(F0, Hz), speaking fundamental frequency (SFF, Hz), and maximum phonation time (MPT,
s) were obtained [9,20]. For this experiment, the measurements were taken before and after
the voice therapy process, as shown in Table 1.
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2.3. Perceptual Analysis

A speech and language pathologist utilized the grade–roughness–breathiness–asthenia–
strain (GRBAS) scale for the perceptual evaluation of the patient’s voice. To assess the
severity of dysphonia perceptually, the rater followed instructions for evaluating the G
component (overall dysphonia) of the GRBAS using a four-point ordinal scale, as recom-
mended by the Japanese Society of Logopedics and Phoniatrics [21]. This scale ranged from
0, indicating normal voice quality, to 3, signifying severe dysphonia.

Voice therapy was conducted using both direct and indirect methods. The therapy
sessions were scheduled once a week, and the number of sessions varied depending on
the patient, ranging from one to eight sessions. On average, four therapy sessions were
conducted. The therapy sessions had a duration of approximately 40 min per session. The
patients themselves evaluated their own voices using the voice handicap index (VHI) and
the Korean version of the voice-related quality-of-life (KVQOL) questionnaire before and
after the treatment [22,23].

2.4. Statistical Analysis

The statistical analysis was conducted using software packages including IBM SPSS,
version 21.0 (IBM Corp., Armonk, NY, USA). Initially, descriptive analyses, such as his-
tograms and box plots, were executed as part of the analysis process. Therefore, means,
maximums, minimums, medians, etc., were calculated for all measures to show the dif-
ference before and after treatment in female and male voices. Next, we calculated the
correlation coefficient and p-value by means of gender and effectiveness for all acoustic
parameters. Subsequently, we employed the Pearson square correlation coefficient (r2),
which quantifies the shared variance between two variables. A correlation analysis was
conducted to ascertain the statistical significance of the correlation coefficients, with a
significance threshold set at p < 0.05 for all findings in our study [24]. The normality of
the data distribution was examined using the Kolmogorov–Smirnov test. When it came
to comparing the distributions of the two groups in this study, the two-sample t-test was
employed under the assumption of normality, considering means and standard deviations.
Conversely, if the data did not meet the normality criteria, the Mann–Whitney U-test was
utilized. The predetermined significance level was set at p < 0.05 [25].

Binomial logistic regression analysis is a statistical method used when dealing with
categorical data for the dependent variable [26]. It is used when the outcome variable is
dichotomous, meaning it has only two possible outcomes [27]. Unlike linear regression,
logistic regression uses the logit function to model the data, allowing the prediction of
the probability of a certain class or event by fitting data to a logistic curve. The logistic
regression model computes the log odds of the dependent variable, which represents
the likelihood of an event occurring. It estimates the probability of the occurrence of
a binary event based on one or more predictor variables. Logistic regression typically
employs maximum likelihood estimation to determine the model parameters and evaluate
the impact of independent variables on the dependent variable. It is commonly used to
understand the influence of specific variables on an outcome and to make predictions for
future observations [26,27].

2.5. Multilayer Perceptron Model

Numerous artificial neural network models have been created for diverse applications
across various fields [28–31]. Within this array of network models, the multilayer feed-
forward artificial neural network (MLP) stands out as being one of the most frequently
employed, and it was also the model of choice in our study [32–35]. All MLP models were
created using Python (version 3.8.0). Prior to entering the networks, the inputs underwent
normalization using the min–max method [32,33]. The training of the MLP involved
supervised learning, wherein a sequence of input and output variables from the training
dataset was provided [34,35]. By undertaking iterative adjustments of connection weights,
an optimal input–output mapping function was developed. During model training, various
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factors, such as the choice of the optimization algorithm, the model structure parameters,
and the maximum number of training iterations, were examined. The neural network
architecture and connection parameters were fine-tuned until the model’s loss function
stabilized and achieved the best fitting performance. Following successful training, the
model’s generalization performance was assessed using an external testing dataset [32,33].

The input characteristics of the MLP models comprised clinical features derived from
the patients’ medical history, which were linked to the target output attributes, namely,
age, gender, smoking, alcohol, coffee, and voice user status. They also included acoustic
features such as fundamental frequency, jitter, shimmer, NHR, SFF, and MPT [36–40].
Within the training dataset, the chosen features were employed to construct an MLP model.
Each neuron’s activation function was configured as the sigmoid function. The learning
process employed the adaptive momentum (Adam) algorithm, with cross-entropy serving
as the loss function. Utilizing the training dataset, the model’s performance underwent
assessment through a five-fold cross-validation procedure, which helped to determine the
optimal number of hidden layer units and the maximum iteration limit for the model. To
prevent overfitting, a regularization coefficient of 0.001 was set. Subsequently, the final MLP
model was trained using the entire training dataset, utilizing the best model parameters
identified during the evaluation phase.

3. Results
3.1. Descriptive Statistics

Figure 1 shows histogram distributions of the different categories based on the status
of the participants. Males tend to smoke more than females, while the patterns regarding
alcohol consumption are similar for both genders. Additionally, females tend to consume
more coffee than males. Moreover, both females and males frequently confirmed that they
were not voice users.
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Figure 2 presents distributions of various acoustic parameters in the form of box plots,
which provide better visualization before and after treatment for females and males. As
shown in Figure 2a, for females, F0 showed a distribution ranging from 80 Hz to 316 Hz
before treatment (Pre-tx), with a median of 194 Hz, and a distribution ranging from 131 Hz
to 242 Hz after treatment (Post-tx), with a median of 204 Hz. For males, F0 showed a
distribution ranging from 85 Hz to 230 Hz before treatment, with a median of 144 Hz,
and a distribution ranging from 87 Hz to 235 Hz after treatment, with a median of 147 Hz.
As shown in Table 2, the pre- and post-treatment F0 values for both genders were not
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significantly different and exhibited a typical positive linear correlation. Based on the
results, as F0 exhibits differences based on gender, it is essential to examine the patterns
according to gender when analyzing variables related to F0. Jitter reflects the consistency of
the oscillation cycle and the variation in the F0 mean, and it is associated with the level of
roughness. As shown in Figure 2b, jitter values showed significant differences both before
and after treatment for both female and male voices (p < 0.001), although jitter extracted
from male voices showed a weak correlation. For females, jitter showed a distribution
ranging from 0.2% to 7.854% before treatment (Pre-tx), with a median of 2.166%, and a
distribution ranging from 0.296% to 2.920% after treatment (Post-tx), with a median of
1.144%. For males, it showed a distribution ranging from 0.318% to 4.340% before treatment,
with a median of 2.173%, and a distribution ranging from 0.304% to 2.444% after treatment,
with a median of 0.628%. The diagram presented in Figure 2c illustrates the perturbation of
glottic vibration, signifying the amplitude of the sound wave. This perturbation is linked to
alterations in the level of voice breathiness and variations in intensity. Similar results were
observed for shimmer (p < 0.001 and p = 0.013) as seen for jitter, although shimmer showed
weak correlations for both females and males. For females, shimmer showed a distribution
ranging from 1.075% to 16.681% before treatment (Pre-tx), with a median of 4.15%, and a
distribution ranging from 0.237 to 7.394% after treatment (Post-tx), with a median of 2.792%.
For males, it showed a distribution ranging from 1.861% to 28.831% before treatment, with
a median of 4.10%, and a distribution ranging from 1.662% to 11.995% after treatment, with
a median of 3.107%. In Figure 2d, NHR represents the quantity of noise present within the
harmonics of the waveform. A higher NHR value indicates a lower overall sound quality
level. SFF and MPT in Figure 2e,f refer to the fundamental frequency at which a person
speaks and the maximum duration of sustained phonation or vocalization that a person can
produce in a single breath, respectively. The results show that, as shown in Figure 2d–f and
Table 2, female voices exhibited significant differences in NHR, while male voices showed
significant differences in MPT. Both genders exhibited a strong positive correlation of 0.7 or
higher in terms of SFF and MPT.

Table 2. Correlation and p-value analysis before and after treatment in female and male voices.

Women Men

Pre vs. Post Treatment Pre vs. Post Treatment

Correlation Coefficient p-Value Correlation Coefficient p-Value

F0 (Hz) 0.399 * 0.256 0.587 * 0.647
Jitter (%) 0.307 ** <0.001 ** 0.111 <0.001 **

Shimmer (%) 0.154 <0.001 ** 0.325 0.013 **
NHR (dB) −0.015 0.004 ** 0.208 0.884
SFF (Hz) 0.792 * 0.635 0.771 * 0.182
MPT (s) 0.695 * 0.061 0.688 * 0.004 **

* and ** mean that the correlation is significant at the 0.01 and 0.05 levels, respectively.
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In Figure 3, effectiveness is assessed based on the GRBAS scale, with “G” being the
reference point. When comparing the results from before and after voice therapy, if the
G score of the post-treatment improves, it is assumed to indicate effectiveness (+). The
distributions of various acoustic parameters before and after voice therapy were examined
in female and male voices, using effectiveness as the criterion in Figures 3 and 4. They
provide an overview of the changes in various acoustic parameters based on the presence
(+) or absence (−) of effectiveness. When comparing the distribution of acoustic parameters
in female voices between Figures 2 and 3, they exhibited similar patterns. In particular,
there was a noticeable tendency toward clear treatment effects in the distribution of jitter,
shimmer, and NHR in Figures 3b, 3c and 3d, respectively.
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As shown in Table 3, for females, significant results were observed for jitter, shimmer,
and NHR when effectiveness was demonstrated after voice therapy. However, when there
was no improvement after therapy, none of the parameters showed significant results.
Regarding the correlation analysis, when the voice therapy showed effectiveness, strong
positive correlations were observed in SFF and MPT.

Table 3. Correlation and p-value analysis before and after treatment based on effectiveness in female
and male voices.

Female Male

Effectiveness (+) Effectiveness (−) Effectiveness (+) Effectiveness (−)

Before vs. after Treatment Before vs. after Treatment Before vs. after Treatment Before vs. after Treatment

Correlation
Coefficient p-Value Correlation

Coefficient p-Value Correlation
Coefficient p-Value Correlation

Coefficient p-Value

F0 (Hz) 0.484 * 0.359 0.101 0.462 0.149 0.291 0.984 * 0.916
Jitter (%) 0.223 <0.001 ** 0.818 * 0.129 0.068 <0.001 ** 0.661 0.753

Shimmer (%) 0.475 <0.001 ** 0.682 * 0.270 0.257 0.002 ** 0.681 0.916
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Table 3. Cont.

Female Male

Effectiveness (+) Effectiveness (−) Effectiveness (+) Effectiveness (−)

Before vs. after Treatment Before vs. after Treatment Before vs. after Treatment Before vs. after Treatment

Correlation
Coefficient p-Value Correlation

Coefficient p-Value Correlation
Coefficient p-Value Correlation

Coefficient p-Value

NHR (dB) −0.033 0.018 ** 0.013 0.108 0.330 0.338 −0.485 0.114
SFF (Hz) 0.791 * 0.735 0.781 * 0.678 0.634 * 0.129 0.950 * 0.674
MPT (s) 0.737 * 0.104 0.507 0.382 0.635 * 0.002 ** 0.975 * 0.916

* and ** mean that the correlation is significant at the 0.01 and 0.05 levels, respectively.
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When comparing the distribution of acoustic parameters in male voices between
Figures 2 and 4, they exhibited similar patterns. In particular, there was a noticeable
tendency of clear treatment effects to be seen in the distribution of jitter in Figure 4b. Based
on Table 3, after voice therapy, there were significant improvements in terms of jitter,
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shimmer, and MPT, as indicated by the p-values. Additionally, SFF and MPT showed a
strong positive correlation. This suggests that voice therapy had a significant positive
impact on these parameters. In both females and males, unless there was an improvement
in the G scale, no significant differences in the acoustic parameters were observed.

3.2. Binomial Logistic Regression Analysis

Binomial logistic regression analysis was conducted to examine the effectiveness of
voice therapy in relation to various acoustic and subjective habit-related variables. The
model estimation results are presented in Table 4. The analysis is conducted by starting
with a full model that includes all independent variables and then removing insignificant
variables using Wald backward elimination. The dependent variable was effectiveness
and the independent variables were age, smoking, alcohol, coffee, and the voice user
status, F0 before and after treatment (Pre-tx and Post-tx), F0 difference between Pre-tx
and Post-tx, jitter before and after treatment, jitter difference, shimmer before and after
treatment, shimmer difference, NHR before and after treatment, NHR difference, SFF before
and after treatment, SFF difference, MPT before and after treatment, F0 comparison, jitter
comparison, shimmer comparison, NHR comparison, and SFF comparison. That is, a total
of 27 dependent variables were used in the experiment in Table 4. In this paper, we propose
new parameters for predicting the effectiveness of voice therapy using the characteristics of
acoustic parameters. The detailed criteria are shown in Table 5. By employing these criteria,
we aim to confirm the impact of interventions on speech disorders in relation to F0, jitter,
shimmer, NHR, and SFF. For each acoustic parameter, the effectiveness was categorized
according to a binary scale of 1 or 0 based on whether the difference between the pre-
and post-treatment values was positive or negative. The categorization aligns with the
effectiveness based on the G scale. Additionally, the normal thresholds for determining the
presence or absence of effectiveness were based on clinical guidelines and prior research in
the field [41]. It is important to note that the proposed criteria should be further validated
through empirical studies and expert consensus.

Table 4. Model estimation results of binomial logistic regression using all parameters in female and
male voices.

Female

Dependent
Variable

Independent
Variable B S.E. Wald p Value Exp(B) Model

Effectiveness

Alcohol 2.154 1.204 3.202 0.074 8.622

−2 log likelihood = 34.834
Cox and Snell R2 = 0.502

Nagelkerke R2 = 0.682
p < 0.001

Coffee 2.794 1.243 5.049 0.025 * 16.340

Jitter (Post-tx) −1.951 0.947 4.243 0.039 * 0.142

Jitter comparison 4.471 2.008 4.957 0.026 * 87.431

Shimmer (Pre-tx) 0.494 0.224 4.871 0.027 * 1.640

Constant −2.155 1.914 1.267 0.260 0.116

Male

Jitter (Pre-tx) 1.282 0.606 4.470 0.034 * 3.603
−2 log likelihood = 21.60
Cox and Snell R2 = 0.332

Nagelkerke R2 = 0.468
p = 0.005

Jitter (Post-tx) −2.358 1.150 4.206 0.040 * 0.095

MPT(Pre-tx) −1.202 0.533 5.089 0.024 * 0.301

Constant 0.619 1.093 0.320 0.571 1.857

* p < 0.05.
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Table 5. The criteria of new parameters based on effectiveness (+).

Female Male

F0 comparison

(1) If the difference between the before and after
values is negative (i.e., the after value is
higher than the before value), it is considered
to indicate a positive effect (+).

(2) If the difference between the before and after
values is positive, the before value should
exceed a normal threshold 1. Otherwise, it is
considered to indicate effectiveness (−).

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 2.

(2) If the difference between the before and after
values is negative, the before value should be
within a normal threshold 2. Otherwise, it is
considered to indicate effectiveness (−).

Jitter comparison

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 3.

(2) If the difference between the before and after
values is negative, both before and after
values should be within a normal threshold 3

(acceptable range of ±0.02~0.03). Otherwise,
it is considered to indicate effectiveness (−).

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+).

(2) If the difference between the before and after
values is negative, both before and after
values should be within a normal threshold 4

(acceptable range of ±0.01). Otherwise, it is
considered to indicate effectiveness (−).

Shimmer comparison

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 5.

(2) If the difference between the before and after
values is negative, the before value should be
within a normal threshold 5. Otherwise, it is
considered to indicate effectiveness (−).

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 6.

(2) If the difference between the before and after
values is negative, both the before and after
values should be within a normal threshold 6.
Otherwise, it is considered to indicate
effectiveness (−).

NHR comparison

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 7

(acceptable range of ±0.01).
(2) If the difference between the before and after

values is negative, the before value should be
within a normal threshold 7 (acceptable
range of ±0.01).

(1) If the difference between the before and after
values is positive (i.e., the after value is lower
than the before value), it is considered to
indicate a positive effect (+). Then, the before
value should exceed a normal threshold 8

(acceptable range of ±0.01).
(2) If the difference between the before and after

values is negative, both before and after
values should be within a normal threshold 8

(acceptable range of ±0.02).

SFF comparison Same as F0 comparison Same as F0 comparison
1 200 Hz, 2 118 Hz, 3 30.82 %, 4 0.58 %, 5 2.97 %, 6 2.72 %, 7 0.12 dB, 8 0.13 dB [41].

In Table 4, for females, the Cox and Snell R2 value, estimated at 0.502, and the Nagelk-
erke R2 value, estimated at 0.682, were relatively high compared to the R2 values in the
regression analysis. Therefore, the model, which represents the relationship between the ex-
planatory variables included in the model and their effectiveness, is statistically significant
and considered appropriate. The factors of alcohol status, coffee status, jitter after treat-
ment (Post-tx), jitter comparison, and shimmer before treatment (Pre-tx) were identified as
important parameters influencing the effectiveness of voice therapy. Among these, coffee
status, jitter after treatment (Post-tx), jitter comparison, and shimmer before treatment
(Pre-tx) were found to have a significant impact. For males, the estimated model’s Cox and
Snell R2 value is 0.232, and the Nagelkerke R2 value is 0.330; these values are relatively
low compared to the R2 values in regression analysis. However, based on the p-value, this
model was considered statistically significant and appropriate. It was found that jitter be-
fore and after treatment (Pre-tx and Post-tx and MPT before treatment (Pre-tx) significantly
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influence the effectiveness of voice therapy. Detailed verification results are presented in
Table 4. Through the estimated coefficients and Wald statistics of the constructed model,
along with the odds-ratio, it is possible to estimate how much each explanatory variable
influences the effectiveness of voice therapy.

The regression model presented in Table 6 includes the new parameters representing
the scale of the difference between pre- and post-voice-therapy assessments as independent
variables, as shown in Table 5. In both cases of females and males, jitter and shimmer
comparison were identified as important parameters influencing the effectiveness of voice
therapy, but they were found to have no significant impact on the effectiveness of voice
therapy. Additionally, the Cox and Snell R2 value, indicating the explanatory power of
the estimated model, was 0.162 and 0.185, while the Nagelkerke R2 value was 0.220 and
0.261, suggesting a relatively low level. Therefore, it can be concluded that the model
is not suitable for conducting regression analyses with new parameters for male and
female voices.

Table 6. Model estimation results of binomial logistic regression using new parameters in female and
male voices.

Female

Dependent
Variable

Independent
Variable B S.E. Wald Odds Ratio p Value 1 Exp(B) Model

Effectiveness

Jitter comparison 2.151 1.169 3.386 1 0.066 8.596 −2 log likelihood = 63.417
Cox and Snell R2 = 0.162

Nagelkerke R2 = 0.220
p = 0.008

NHR comparison 1.335 0.686 3.794 1 0.051 3.801

Constant −2.424 1.228 3.897 1 0.048 0.089

Male

Jitter comparison 2.303 1.378 2.790 1 0.095 10.000 −2 log likelihood = 26.769
Cox and Snell R2 = 0.185

Nagelkerke R2 = 0.261
p = 0.07

NHR comparison 2.015 1.111 3.292 1 0.070 7.500

Constant −2.708 1.653 2.683 1 0.101 0.067

1 p < 0.05.

3.3. Multilayer Perceptron Model

This study conducted an analysis of the MLP method with the dataset of voice disor-
ders, and effectiveness factors that may be linked to voice therapy were identified. Using
the statistically significant parameters identified through the various regression models
shown in Tables 4 and 6, multilayer perception modeling was conducted as shown in
Table 7. For females, jitter (Post-tx), shimmer (Pre-tx), coffee-drinking status, and the jitter
comparison were found to be statistically significant. For males, jitter (Pre-tx), MPT (Pre-tx),
and jitter (Post-tx) were found to be statistically significant.

Table 7. Information related to MLP modeling and results.

Female Male

Input layer Input factors Coffee status, jitter (Post-tx), shimmer
(Pre-tx), jitter comparison,

Jitter (Pre-tx), jitter (Post-tx),
MPT (Pre-tx)

Number of units 6 3

Hidden layer
Number of hidden layers 1 1

Number of units 2 1
Activation function Hyperbolic tangent Hyperbolic tangent

Output layer

Dependent variable Effectiveness Effectiveness
Number of units 2 2

Rescaling of scale-dependent variables Standardized Standardized
Activation function Softmax Softmax

Error function Cross entropy Cross entropy
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Approximately 70% of the total dataset was allocated for the training phase, while the
remaining 30% was reserved for testing, as outlined in Table 7. For the female subgroup, the
input layer consisted of seven units, the hidden layer included three units, the activation
function for the hidden layer was a hyperbolic tangent, the output layer comprised one
unit with an identity activation function, and the error function was based on the sum of
squares. The optimization of the model’s hyperparameters was accomplished using the
scaled conjugate gradient method. In the case of the male subgroup, the MLP modeling
approach mirrored that of the female subgroup, with the exception of the number of units
in the input and output layers.

The MLP model was evaluated using performance metrics including accuracy, sensi-
tivity, specificity, the F-score, and the area under the curve (AUC). AUC-ROC curves were
compared as shown in Figure 5. The predictive capacity of the prognostic models was
similar according to the AUC-ROC values, with 0.853 and 0.861 for female and male voices,
respectively. This finding validates the choice of input parameters used to build our model.
Table 8 shows the confusion matrix produced by each MLP, using feature parameters to
predict effectiveness in female and male voices. From Table 9, accuracies of 87.5% and
85.71% are shown for the combination of the input variables of Table 10. Additionally, as
shown in Table 10, Jitter (Post-tx) and MPT (Pre-tx) were identified as the most important
parameters in the MLP models for female and male voices, respectively.
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Table 8. Confusion matrices.

Female Reference

Effectiveness (+) Effectiveness (−) Total

Predicted
Effectiveness (+) 11 1 12
Effectiveness (−) 1 3 4

Total 11 5 16

Male Reference

Effectiveness (+) Effectiveness (−) Total

Predicted
Effectiveness (+) 4 1 5
Effectiveness (−) 0 2 2

Total 4 3 7
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Table 9. Classification performance matrices of the MLP model.

Female Male

Performance Metrices Values

Accuracy (%) 87.5% 85.71%
Precision 0.92 1.00

Specificity 0.75 1.00
Recall 0.92 0.67

G value 0.83 0.82
F score 0.92 0.80
AUC 0.853 0.861

Table 10. Importance of the input variables.

Female Male

Input Variable Importance Input Variable Importance

Jitter (Post-tx) 0.363 MPT (Pre-tx) 0.395
Shimmer (Pre-tx) 0.260 Jitter (Post-tx) 0.361

Coffee-drinking status 0.226 Jitter (Pre-tx) 0.244
Jitter comparison 0.151

4. Discussion

The main purpose of this study was to identify the prognostic factors that influence
the effectiveness of speech therapy in individuals with speech disorders. In the comparison
of pre- and post-voice-therapy aspects, for females, significant differences were observed
in terms of jitter (p < 0.001), shimmer (p < 0.001), and NHR (p = 0.004), whereas, for males,
significant differences were observed for jitter (p < 0.001), shimmer (p = 0.013), and MPT
(p = 0.004). In terms of the effectiveness of voice therapy before and after treatment, for
females, the jitter (p < 0.001), shimmer (p < 0.001), and NHR (p = 0.018) parameters demon-
strated positive efficacy. Similarly, for males, the jitter (p < 0.001), shimmer (p = 0.002), and
MPT (p = 0.002) parameters showed favorable effectiveness. Based on this experiment,
we were able to identify gender-specific efficacy factors for assessing the effectiveness of
voice therapy before and after treatment. The results indicated that the jitter, shimmer,
and NHR parameters were significant efficacy indicators for both males and females. This
suggests the necessity of conducting gender-specific experiments to accurately evaluate the
effectiveness of voice therapy. Two binomial logistic regression analyses were conducted to
examine the effectiveness of voice therapy in relation to various acoustic and subjective
habit-related variables. For females, the binomial logistic regression model consisting
of coffee status, jitter after treatment, jitter comparison, and shimmer before treatment
(p = 0.025, p = 0.039, p = 0.027, and p = 0.026, respectively) effectively explained its efficacy.
According to the real values of the model, the regression model was found to be statistically
significant (p < 0.001); the Cox and Snell R2 value was 0.502 and the Nagelkerke R2 value
was 0.682, indicating that this model has an explanatory power of approximately 68%
for the dependent variables included in the study. For males, the regression model was
found to be statistically significant (p = 0.005), and the model had an explanatory power
of approximately 33% (Cox and Snell R2 value = 0.232, Nagelkerke R2 value = 0.330),
which is relatively low compared to the R2 values in regression analysis. It was found that
jitter before and after treatment and MPT before treatment (p = 0.034, p = 0.040, p = 0.024)
significantly influence the effectiveness of voice therapy.

In this paper, we propose new parameters for predicting the effectiveness of voice
therapy by using the characteristics of acoustic parameters such as F0, jitter, shimmer, NHR,
and the SFF comparison. Although the model using the proposed parameters did not show
significant results in both males and females, there are plans to retest the utility of the
suggested parameters using big data in the future. This paper emphasizes the significance
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of introducing multiple parameters. Finally, the MLP model was evaluated to compare its
performance, including accuracy, sensitivity, specificity, the F-score, and AUC. Accuracies
of 87.5% and 85.71% are shown for the combination of input variables for female and male
voices, respectively. This result validates the input parameters selected to build our model.
For females, a combination of jitter (Post-tx), shimmer (Pre-tx), coffee-drinking status, and
jitter comparison was used. For males, a combination of jitter (Pre-tx), MPT (Pre-tx), and
jitter (Post-tx) was found to be statistically significant. Therefore, jitter (Post-tx) and MPT
(Pre-tx) were identified as the most important parameters in the MLP models for female
and male voices, respectively.

A notable finding in this study’s results is that, among the acoustic variables, jitter
(Post-tx) for females and MPT (Pre-tx) for males have been identified as factors capable of
predicting the effectiveness of voice therapy. Furthermore, the methodology proposed in
this paper is believed to be well suited to identifying factors predicting the effectiveness of
voice therapy before and after treatment, centered around an effectiveness metric based
on the G scale from the GRBAS scale, which exhibits a strong correlation with acoustic
variables. Our study has certain limitations. First, our dataset consisted of 81 individuals,
including 55 females and 26 males, with more than 10 different pathologies. This sample
size may not be sufficient for training a deep neural network effectively. Consequently,
we are in the process of planning a validation study, aiming to recruit a larger number of
patients with long-term follow-up data. Furthermore, we did not take into account factors
that might have influenced interpersonal phonetic outcomes, such as the patient’s surgical
range, method, or age. It is important to note that the variability in the GRBAS scores
can vary depending on the individual conducting the assessment, and prediction of these
scores may not fully encapsulate the participant’s vocal condition.

5. Conclusions

This study recommends the MLP model for comprehensive analysis of prognostic
factor with various parameters, including personal habits and acoustic parameters that can
influence the effectiveness of before-and-after speech therapy in individuals with speech
disorders. Good prognostic indicators for speech therapy in voice disorders are jitter
values (Post-tx) for females and MPT (Pre-tx) for males. Most pre-treatment acoustic and
perceptual indices cannot predict the effectiveness of speech therapy. The results of this
study are expected to serve as a foundation for promising modeling research utilizing
artificial intelligence in the context of speech therapy for voice disorders.

In terms of follow-up studies, it is necessary to conduct further research that uti-
lizes big data to analyze the optimal parameters for predicting the effectiveness of voice
disorder treatment.
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