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Abstract: During pipeline operation, internal cracks may occur. The severity around the crack tip can
be quantified by the stress intensity factor (KI), which is a linear–elastic fracture mechanics parameter.
For pressurized pipes featuring infinitely long internal surface cracks, KI can be interpolated from
a function considering pressure, geometry, and crack size, as presented in API 579-1/ASME FFS-1.
To enhance KI prediction accuracy, an artificial neural network (ANN) model was developed for
such pressurized pipes. Predictions from the ANN model and API 579-1/ASME FFS-1 were com-
pared with precise finite element analysis (FEA). The ANN model with an eight-neuron sub-layer
outperformed others, displaying the lowest mean squared error (MSE) and minimal validation
discrepancies. Nonlinear validation data improved both MSE and testing performance compared to
uniform validation. The ANN model accurately predicted normalized KI, with differences of 2.2% or
lower when compared to FEA results. Conversely, API 579-1/ASME FFS-1′s bilinear interpolation
predicted inaccurately, exhibiting disparities of up to 4.3% within the linear zone and 24% within
the nonlinearity zone. Additionally, the ANN model effectively forecasted the critical crack size (aC),
differing by 0.59% from FEA, while API 579-1/ASME FFS-1′s bilinear interpolation underestimated
aC by 4.13%. In summary, the developed ANN model offers accurate forecasts of normalized KI and
critical crack size for pressurized pipes, providing valuable insights for structural assessments in
critical engineering applications.

Keywords: artificial intelligence; artificial neural network; stress intensity factor; crack; pipe

1. Introduction

During the operation of a pipeline, various types of flaws can occur, including volu-
metric flaws (e.g., pores, inclusions, undercuts, and overlaps) as well as crack-like flaws
characterized by planar flaws with a sharp root radius [1,2]. According to the recommenda-
tions outlined in API 579-1/ASME FFS-1 [3], it is advisable to treat volumetric flaws in the
close vicinity as crack-like flaws, the severity of which could be characterized by length and
depth. A crack-like flaw intends to create an idealized crack geometry that is intentionally
conservative (i.e., more severe than the actual volumetric flaws).

Under the combination of mechanical action and environment, the propagation of
a surface crack is possible and becomes a serious risk to the structural integrity of the
pipeline system. The severity of a crack can be quantified by a linear–elastic fracture
mechanics parameter, known as the stress intensity factor or K [4]. If K is higher than the
fracture toughness of pipe material (i.e., the critical stress intensity factor or KC), the crack
propagates rapidly, and a sudden fracture of the pipeline is possible. On the other hand,
if K is lower than KC but still high enough to initiate crack propagation, the crack could
propagate in the thickness of the pipe (i.e., a propagating crack), eventually leading to
leakage (i.e., a through-thickness crack). With periodic observation and life assessment, the
service of a cracked pipeline may be allowed to continue until appropriate maintenance is
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performed [2]. For a pipe under internal pressure, the semi-elliptical crack-like flaws are
likely to nucleate at an inner wall and in the longitudinal direction due to the influence
of hoop stress [5]. Because the K under opening mode (i.e., KI) at the deepest point of
an infinitely long crack could be considered the upper limit of KI for the pressurized
pipe with semi-elliptical surface cracks [3,6]; the KI solution for an infinitely long crack is
recommended by API 579-1/ASME FFS-1 for a cracked pipe under internal pressure.

For a pressurized pipe with an infinitely long internal surface crack in the longi-
tudinal direction, KI can be numerically calculated using finite element analysis (FEA).
However, the FEA for an accurate KI requires various resources, such as numerical skills,
computational hardware, and time. As an alternative, the KI values obtained from FEA are
mathematically arranged into a simple function based on applied pressure, geometry, and
crack size, as presented in API 579-1/ASME FFS-1. Interpolations are necessary to obtain
the required geometry function when the geometry of a cracked pipe does not exactly
match those provided in API 579-1/ASME FFS-1. Although the geometry functions for
various crack sizes and pipe thicknesses are nonlinear, linear interpolation is typically
employed for the required geometry function. Rahman et al. [7] found that for shallow
cracks in a pipe, linear interpolation does not yield a significant difference in KI when
compared with nonlinear interpolation. However, for deep cracks in a pipe, the difference
becomes more pronounced (i.e., up to 6%).

As an intelligence created by machines to solve complex problems, artificial intelli-
gence (AI) has successfully been applied in various engineering domains. These applica-
tions include predicting the compressive strength of concrete [8], determining the stiffness
matrix of functionally-graded nanoplates [9], generating performance data for a steam
methane reformer (SMR) [10], forecasting electric energy consumption [11], analyzing fuel
efficiency for cargo vessel operation [12], and identifying damages in components as well
as determining the fracture toughness of materials [13,14]. Among various AI methods, the
artificial neural network (ANN) method [15] simulates a brain by using artificial neurons
that transmit and process signals between each other. The signal at a connection of artificial
neurons is a real number, and the output of each artificial neuron is computed by a non-
linear function. During the training process, the weights and biases of artificial neurons
are repetitively adjusted based on the difference between the processed output (i.e., the
prediction) and the target output (i.e., the known solution). The training continues until
a sufficient number of these adjustments are made, and subsequently, the ANN model is
applied to solve the actual problems.

The applications of ANN for predicting fracture toughness include studies by
Wiangkham et al. [16] on polymethyl methacrylate (PMMA), Hamdia et al. [17] on polymer
nanocomposites (PNCs), Guha Roy et al. [18] on rocks, and Liu et al. [19] on Nb-Si alloys.
On the other hand, the applications of ANN for predicting stress intensity factors include
studies by Muñoz-Abella et al. [20] on unbalanced rotating cracked shafts, Wu et al. [21] on
cracked pavements under traffic loading, and Li et al. [22] on through-thickness cracks in
bending tubes. Although ANN has been previously applied for predicting stress intensity
factors in cracked tubes [22], it was specifically designed only for through-thickness cracks.
However, the application of ANN for predicting stress intensity factors of propagating
cracks in pipes (which require periodic observation and life assessment to prevent crack
propagation through the thickness of the pipe) has not been investigated yet.

Due to the complexity of FEA, the impact of linear interpolation on the accuracy of the
geometry function from API 579-1/ASME FFS-1, and the absence of an ANN model for
predicting stress intensity factors of propagating cracks in pipes, it is the objective of this
work to investigate the applicability of the ANN model for predicting KI in a pressurized
pipe with an infinitely long internal surface crack in the longitudinal direction. The ANN
model consists of two input factors: the ratio between crack size and pipe thickness (a/t)
and the ratio between pipe thickness and internal radius (t/Ri), and an output factor
being KI. The KI solutions from API 579-1/ASME FFS-1 were used for training, while
those from FEA were used for validation. Subsequently, the ANN model was applied to
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predict KI for actual problems, involving cracked pipes with geometry different from those
provided in API 579-1/ASME FFS-1. The predicted KI values were compared with the
FEA solutions for accuracy assessment. The applicability of the ANN model for predicting
KI in a pressurized pipe with an infinitely long internal surface crack in the longitudinal
direction was then discussed.

2. Research Method
2.1. Stress Intensity Factor from API 579-1/ASME FFS-1

For a homogeneous and linear-elastic engineering component, KI depends on the
geometry of the component (i.e., the geometry, size and location of the crack) and the
applied mechanical action (i.e., type and magnitude of applied load) [4]. As an example, KI
for an infinite plate with a single-edge crack can be written as follows:

KI = σ
√

πa f (α), (1)

f (α) = 0.265(1− α)4 +
0.857 + 0.265α

(1− α)3/2 , (2)

α =
a

W
, (3)

where σ is the applied stress, a is the crack size, W is the plate width, and f(a/W) is the
geometry function.

For the pressurized pipe with an infinitely long internal surface crack in the longitudinal di-
rection (Figure 1), KI can be calculated using the formula provided in API 579-1/ASME FFS-1:

KI =
PR2

o

R2
o − R2

i

√
πa

[
2G0 − 2G1

(
a
Ri

)
+ 3G2

(
a
Ri

)2
− 4G3

(
a
Ri

)3
+ 5G4

(
a
Ri

)4
]

, (4)

where P is the internal pressure, a is the crack size, Ri is the internal radius, Ro is the ex-
ternal radius, and G0 to G4 are the influence coefficients. API 579-1/ASME FFS-1 provides
influence coefficients that cover the range of 0.01 ≤ a/t ≤ 0.8 and 0.001 ≤ t/Ri ≤ 0.3333. As
an example of the nonlinear behavior of the influence coefficient, the variation of G0 with
respect to a/t and t/Ri is shown in Figure 1a,b, respectively.
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For the a/t and t/Ri of cracked pipes, which do not exactly correspond to those
provide in API 579-1/ASME FFS-1, linear interpolation is usually applied to estimate the
required influence coefficients. The linear interpolation for the unknown function f (x) can
be expressed as follows:

f (x) = f (x0) + (x− x0)
f (x1)− f (x0)

x1 − x0
, (5)

where x, x0, and x1 are the input parameters (i.e., x is between x0 and x1) and f (x0) and f (x1)
are the known functions. According to the nonlinear behavior of the influence coefficients,
it is likely that the interpolated influence coefficients and subsequently estimated KI could
be inaccurate.

2.2. FEA of Stress Intensity Factor

A two-dimensional linear-elastic plane-strain FEA of the pressurized pipe with an
infinitely long internal surface crack in the longitudinal direction was performed using
a commercial FEA software (ABAQUS 2016 [23]). The FE model of the cracked pipe
is shown in Figure 2. The elements around the crack tip were quarter-point singular
elements, while quadratic hexahedral elements were used elsewhere. Both the quarter-point
singular element and the quadratic hexahedral element can be considered as the eight-node
biquadratic plane strain element, which employs quadratic interpolation functions and
incorporates reduced integration techniques for computational efficiency (i.e., CPE8R [23]).
Regarding the boundary conditions, the displacements at location A and B were allowed
only in the x direction, while those at location C and D were allowed only in the y direction.
The pipe material was assumed to be steel with an elastic modulus (E) of 210 GPa and a
Poisson’s ratio (ν) of 0.3.
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Figure 2. FE model of the cracked pipe.

During the FEA, the internal pressure (P) was gradually increased in 20 steps from
zero to the maximum pressure, and the KI at the crack tip was calculated. To minimize the
dependence of the FEA results on the element size, the element size was varied until the KI
became stable, indicated by a variation in KI lower than 3%. The FEA model consisted of
15,692 elements and 48,260 nodes, and the smallest element at the crack tip measured 100 µm.

To validate the FE model, the cracked pipe with a Ri of 100 mm and P of 1 MPa
was analyzed. Using various a/t and t/Ri ratios, the KI values obtained from the FEA
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were compared with the values estimated from API 579-1/ASME FFS-1, as shown in
Figure 3. The KI values obtained from the FEA are in good agreement with those from
API 579-1/ASME FFS-1, with maximum differences lower than 2%. As a result, the vali-
dated FE model was utilized to calculate the KI for cracked pipes with geometries different
from those described in API 579-1/ASME FFS-1.
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2.3. ANN Model for the Prediction of Stress Intensity Factor

For various values of a/t and t/Ri, the KI values obtained from API 579-1/ASME FFS-1
were normalized using the applied pressure, pipe geometry, and crack size, as follows:

KI
R2

o − R2
i

PR2
o
√

πa
= 2G0 − 2G1

(
a
Ri

)
+ 3G2

(
a
Ri

)2
− 4G3

(
a
Ri

)3
+ 5G4

(
a
Ri

)4
, (6)

This normalized value, also referred to as the geometry function (F), was used during
the formation of the ANN model. The normalized KI for a/t and t/Ri obtained from
API 579-1/ASME FFS-1 are shown in Figure 4.
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The ANN model was constructed using a commercial software, i.e., MATLAB: Neural
Network Toolbox 7 [24]. The structure of the ANN model (Figure 5) consists of the fol-
lowing components: (i) an input layer with two neurons representing a/t and t/Ri, (ii) a
hidden layer with two sub-layers, and (iii) an output layer with one neuron representing
normalized KI. The Tan-Sigmoid activation function, mathematically represented by the
equation:

f (x) =
2

1 + e−2x − 1, (7)
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was chosen for the signal at the connection of artificial neurons in the hidden layer. In this
equation, x represents the sum of weights.
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A schematic diagram illustrating the training and validation process is shown in
Figure 6. The 45 normalized KI values obtained from API 579-1/ASME FFS-1 were used as
training data. After training, the ANN model was employed to predict the training data,
and the difference between each predicted output and its corresponding actual training data
was calculated. As the parameter represents the least accurate prediction, the maximum
difference between the actual training data and the prediction was used to evaluate the
prediction performance. If the maximum difference was higher than 1%, the weights and
biases on the hidden layer of the ANN model were adjusted before another iteration of
training. On the other hand, if the maximum difference was lower than 1%, the ANN model
was subsequently used to predict the validation data (i.e., 16 normalized KI values obtained
from FEA). It is noted that the a/t and t/Ri values of the validation data were different
from those of the training data, and the ratio between the training data and validation
data was approximately 3:1. During the validation, if the maximum difference between the
predicted output and the validation data was higher than 3%, the weights and biases on
the hidden layer of the ANN model were adjusted before another iteration of training and
validation. This method of weight and bias adjustments is called the “backpropagation
method”. The training and validation process continued until the maximum difference
between the predicted output and the validation data became lower than 3%.

As an essential part of the training and validation process, the adjustments of weight
and bias allow the network to learn and improve its accuracy in making predictions.
The weight adjustment of artificial neurons in the hidden layer is performed using the
Levenberg–Marquardt backpropagation (LM) training function, as follows [24]:

wk+1 = wk −
(

JT
k Jk + µI

)−1
Jkek, (8)

where w is the weight, k is the index of the iteration, J is the Jacobian matrix, JT is the
Hessian matrix obtained from the Jacobian matrix, e is the training error between the
network output and the reference output at iteration k, I is the identity matrix, and µ
is the combination coefficient. Similar to the weight adjustment, the bias adjustment of
artificial neurons in the hidden layer also uses the Levenberg–Marquardt backpropagation
(LM) training function. Further information about the formulation of the ANN model, in
addition to what is described in Figure 6, is available in ref. [15,24].
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The number of neurons in each sub-layer of the hidden layer was determined through
a trial-and-error approach. Based on a previous investigation [16], a sub-layer with 10 neu-
rons was initially selected, and then the training and validation processes were applied
to the ANN model. The validation data (i.e., the normalized KI obtained from the FEA)
were uniformly selected among the training data. The predicted output and the validation
data were compared, and their differences were calculated. To determine the appropriate
number of neurons in each sub-layer of the ANN model, the number of neurons was
adjusted between 6 to 12 neurons, and the number of neurons that corresponded to the
ANN model with the smallest difference between the predicted output and the validation
data was chosen.

Because validation helps determine the ability of the ANN model to predict beyond
the training data (i.e., unseen data) and provides an indication for the improvement of the
ANN model via the adjustments of weight and bias, the selection of validation data may
affect the performance of the ANN model. Accordingly, two models of validation data were
investigated in the present work: model A involves uniformly selecting validation data
among the training data, while model B selects validation data based on the nonlinearity of
the training data. In model B, more validation data were chosen from the nonlinearity zone
compared to the linearity zone of the training data.

Based on the coefficient of determination (R2), the linearity and nonlinearity of the
training data in the functions of a/t and t/Ri were analyzed, i.e., linear behavior (R2 ≥ 0.95)
and nonlinear behavior (R2 < 0.95). Schematic diagrams showing the training data and
validation data for model A and model B are presented in Figure 7a,b, respectively. In
model B, since the normalized KI values exhibited nonlinear behavior for pipes with deep
cracks (0.4 < a/t ≤ 0.8) and thin walls (0.001 ≤ t/Ri < 0.1), nine validation data points
were selected from the nonlinear ranges of the training data, while seven validation data
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points were selected from the linear ranges of the training data. Conversely, in model A,
regardless of the nonlinearity exhibited by the training data, 16 validation data points were
uniformly chosen among the training data, whereas only four validation data points were
selected from the ranges of nonlinear training data.
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In order to assess the suitability of the ANN model in predicting KI for a pressurized
pipe with an infinitely long internal surface crack in the longitudinal direction (referred to
as “testing”), the ANN models A and B were applied to predict 25 normalized KI values.
These testing scenarios involved cracked pipes with geometries distinct from those outlined
in API 579-1/ASME FFS-1 and those previously employed in the validation (Figure 7a,b).
The predicted values were subsequently compared with the normalized KI values obtained
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from FEA. The applicability of the ANN model for predicting KI in a pressurized pipe with
an infinitely long internal surface crack in the longitudinal direction was then discussed.

3. Results and Discussion
3.1. Influence of Number of Neurons in Sub-Layer on the Performance of ANN Model

As a common parameter used to quantify the average squared difference between
predicted values and actual values in a dataset, the mean squared error (MSE) was applied
to evaluate the influence of the number of neurons in a sub-layer on the performance of
the ANN model. A lower MSE value indicates that the predictions of the ANN model
are closer to the actual values. For example, the reduction in MSE with the epochs (i.e.,
the iterations of training and validation) of ANN model A with eight neurons is shown
in Figure 8. Initially, the weights and biases of the training data were randomly selected,
and the MSEs were calculated. Subsequently, the weights and biases were adjusted before
the next epoch. The MSE of the ANN model improved with each epoch and eventually
converged, indicating that further improvements in the model’s performance are unlikely.
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To evaluate the influence of the number of neurons in a sub-layer on the performance
of the ANN model, the converged MSE and maximum difference of ANN model A with
6 to 12 neurons were calculated and compared, as listed in Table 1. It is observed that
the ANN model with eight neurons provides the lowest MSE and the smallest maximum
difference in validation data, i.e., 0.00510 and 2.04%, respectively. Therefore, eight neurons
in the sub-layer was the appropriate number for the present ANN model.

Table 1. Influence of number of neurons in sub-layer on the performance of ANN model.

Number of
Neurons

MSE Maximum Difference (%)

Training Data Validation Data Training Data Validation Data

6 0.00034 0.10270 0.77 5.81
7 0.00037 0.07500 0.58 5.07
8 0.00002 0.00510 0.53 2.04
9 0.00013 0.01580 0.25 6.70
10 0.00024 0.01810 0.35 9.14
11 0.00036 0.02780 0.46 11.65
12 0.00021 0.05700 0.32 13.40

3.2. Influence of Validation Data on the Performance of ANN Model

To evaluate the influence of validation data on the performance of the ANN model
with eight neurons, the MSE and maximum difference of ANN models A and B were
calculated and compared, as listed in Table 2. As depicted in Figure 7, the validation
data for model B were mainly selected from the nonlinear ranges of the training data
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(consisting of nine validation data points), whereas the validation data for model A were
mainly selected from the linear ranges of the training data (consisting of 12 validation
data points). Since predicting the linear behavior of validation data is easier, model A
exhibits a lower MSE and a smaller maximum difference in validation data, i.e., 0.00510
and 2.04%, respectively.

Table 2. Influence of validation data on the performance of ANN model.

ANN
Model

MSE Maximum Difference (%)

Training
Data

Validation
Data

Testing
Data

Training
Data

Validation
Data

Testing
Data

A 0.00002 0.00510 0.00513 0.53 2.04 3.97
B 0.00022 0.01040 0.00309 0.40 2.44 2.16

On the other hand, when both models were applied to predict 25 testing data points
(i.e., randomly selected as illustrated in Figure 7), model B yielded a lower MSE and a
smaller maximum difference in testing data, i.e., 0.00309 and 2.16%, respectively. This
suggests that selecting nonlinear validation data (as performed in model B) enhances
the performance of the ANN model in predicting testing data. Consequently, model B
is considered as appropriate choice for predicting the KI of a pressurized pipe with an
infinitely long internal surface crack in the longitudinal direction.

3.3. Comparison between the Normalized KI from API 579-1/ASME FFS-1 and ANN Model

The cracked pipes, requiring the interpolation of normalized KI from
API 579-1/ASME FFS-1, were divided into two groups: the linear interpolation (Lerp)
group and the bilinear interpolation (BiLerp) group. In the Lerp group, pipes with t/Ri
values not matching those provided in API 579-1/ASME FFS-1 were selected. Since the a/t
ratios of the selection corresponded to those in API 579-1/ASME FFS-1, Lerp was utilized
to estimate normalized KI values between two t/Ri points. On the other hand, in the BiLerp
group, the cracked pipes with a/t and t/Ri values not exactly corresponding to those in
API 579-1/ASME FFS-1 were chosen. As a result, BiLerp was employed to estimate nor-
malized KI values between two a/t points and two t/Ri points. The normalized KI values of
the Lerp and BiLerp groups were also estimated using an ANN model. Subsequently, the
predictions of normalized KI from both API 579-1/ASME FFS-1 and the ANN model were
compared with those obtained from FEA, which represents the accurate solution for KI.

The normalized KI values obtained from the Lerp of API 579-1/ASME FFS-1 and
the ANN model were compared to those obtained from FEA, as listed in Table 3. The
normalized KI values obtained from the Lerp of API 579-1/ASME FFS-1 and the ANN
model exhibit strong agreement with the FEA results. The differences in normalized
KI within the linearity and nonlinearity zones are both less than 1.6%. This confirms the
suitability of both the Lerp of API 579-1/ASME FFS-1 and the ANN model for predicting KI
in pressurized pipes with infinitely long internal surface cracks in the longitudinal direction.

For the BiLerp group, the normalized KI values obtained from the BiLerp of
API 579-1/ASME FFS-1 and the ANN model were compared to those obtained from FEA,
as listed in Table 4. The BiLerp of API 579-1/ASME FFS-1 fails to accurately predict the
normalized KI values, leading to differences of up to 4.3% within the linearity zone and up
to 24% within the nonlinearity zone. However, the ANN model continues to successfully
predict the normalized KI values, with differences within the linearity and nonlinearity
zones both remaining below 2.2%. This reaffirms the applicability of the ANN model
for predicting KI in pressurized pipes with infinitely long internal surface cracks in the
longitudinal direction.
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Table 3. Comparison between the predictions of normalized KI from the linear interpolation of
API 579-1/ASME FFS-1 and the ANN model.

Zone
Testing Data Normalized KI Difference (%)

t/Ri a/t FEA ANN Lerp ANN vs. FEA Lerp vs. FEA

linearity zone
0.002 0.4 4.2120 4.2022 4.2052 −0.23 −0.16
0.15 0.4 3.6844 3.7103 3.6821 0.70 −0.06
0.25 0.4 3.3961 3.3419 3.3976 −1.60 0.04

nonlinearity zone

0.002 0.6 8.0180 8.0103 8.0101 −0.10 −0.10
0.006 0.6 7.9288 7.9085 7.9087 −0.26 −0.25
0.006 0.8 22.1026 22.0536 22.1218 −0.22 0.09
0.012 0.6 7.7972 7.7747 7.7838 −0.29 −0.17
0.02 0.6 7.6293 7.6160 7.6130 −0.17 −0.21
0.02 0.8 18.9014 18.8772 18.9039 −0.13 0.01
0.04 0.8 15.7327 15.7047 15.9116 −0.18 1.14

Table 4. Comparison between the predictions of normalized KI from the bilinear interpolation of
API 579-1/ASME FFS-1 and the ANN model.

Zone
Testing Data Normalized KI Difference (%)

t/Ri a/t FEA ANN BiLerp ANN vs. FEA BiLerp vs. FEA

linearity zone
0.002 0.1 2.3657 2.4114 2.4676 1.93 4.31
0.02 0.1 2.3717 2.4074 2.4578 1.51 3.63
0.25 0.1 2.2993 2.3358 2.3715 1.59 3.14

nonlinearity zone

0.002 0.5 5.6197 5.5627 6.1076 0.59 8.68
0.002 0.7 12.5583 12.6429 15.5746 0.67 24.02
0.012 0.5 5.5399 5.5885 5.9715 0.88 7.79
0.012 0.7 11.9121 11.7481 14.1883 −1.38 19.11
0.02 0.5 5.4693 5.5277 5.8699 1.07 7.33
0.04 0.7 10.3687 10.1446 11.5745 −2.16 11.63

0.075 0.5 5.0328 5.0686 5.2976 0.71 5.26

3.4. Application of ANN Model for the Estimation of Critical Crack Size of a Pipe

In fracture mechanics, the critical crack size (aC) is the maximum size of a crack that
an engineering component can tolerate without failing. The aC is a vital consideration in
engineering design and structural integrity assessments. Engineers need to ensure that
critical crack sizes are adequately controlled and do not reach unsafe levels that could lead
to catastrophic failures. To estimate the critical crack size (aC), the KI at the crack tip is
determined. If the KI is higher than the fracture toughness of the material (KC), the crack
propagates rapidly, and a sudden fracture of an engineering component is possible [4].

As a case study, the aC of a 304 stainless steel cracked pipe with a t/Ri of 0.012, a
thickness of 9.5 mm, and subjected to an internal pressure of 1.5 MPa [25] was estimated
using FEA, API 579-1/ASME FFS-1, and ANN. The relationships between KI and a ob-
tained from FEA, API 579-1/ASME FFS-1, and ANN are shown in Figure 9. It is observed
that KI increases with a. To identify the aC, the fracture toughness (KC) of 304 stainless
steel (i.e., 120 MPa.m1/2 [26]) is indicated in the figure. At the point where the calcu-
lated KI equaled the KC value, the corresponding crack size was determined as the aC.
The aC values obtained from FEA, API 579-1/ASME FFS-1, and ANN are 6.78, 6.50, and
6.82 mm, respectively.
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The BiLerp prediction from API 579-1/ASME FFS-1 fails to accurately predict the aC,
being approximately 4.13% lower than the aC obtained from FEA. However, the ANN
model continues to successfully predict the aC, with a difference of approximately 0.59%
higher than the aC obtained from FEA. The lower BiLerp prediction of aC compared to
the accurate prediction from FEA may lead to premature replacement of cracked pipes,
resulting in increased costs. Moreover, for improving the fracture resistance of pipes and
selecting optimal operating conditions, accurate aC values are essential. This reaffirms the
applicability of the present ANN model for predicting both KI and aC in pressurized pipes
with infinitely long internal surface cracks in the longitudinal direction.

3.5. Discussion

Based on 45 training data and 16 validation data, the current ANN model with
eight neurons in a sub-layer successfully predicted the normalized KI values and aC for a
pressurized pipe with an infinitely long internal surface crack in the longitudinal direc-
tion. The differences from FEA results were lower than 2.2% and higher than 0.59% for
normalized KI values and aC, respectively. It is understood that the performance of the
ANN model depends on various parameters, with the impact of the number of training
data and validation data being considered one of the most significant [15]. If additional
training data and validation data are utilized in the construction of the ANN model, an
enhancement in the model’s performance can be expected.

The influences of interpolation methods (i.e., linear and nonlinear interpolations)
on the estimated KI in pressurized pipes with infinitely long internal surface cracks in
the longitudinal direction have been investigated by Seenuan et al. [27]. They found
that cubic spline interpolation (i.e., a mathematical technique that uses piecewise cubic
polynomials to create a continuous curve representing a set of discrete data points) can
offer a better prediction of normalized KI from API 579-1/ASME FFS-1 when compared
to linear interpolation and other nonlinear interpolations. However, the normalized KI
values estimated by cubic spline interpolation was still significantly different from those
obtained from FEA, i.e., the maximum difference was up to 7.3% within the nonlinearity
zone. Given its lower accuracy compared to the estimation using the present ANN model,
it would be more appropriate to estimate the KI in pressurized pipes with infinitely long
internal surface cracks in the longitudinal direction using the ANN model.

As the main practical applications of this work, the ANN model can be applied for
predicting KI in a pressurized pipe with an infinitely long internal surface crack in the longi-
tudinal direction. Because the severity of a crack was quantified by KI, the ANN model can
be applied to any pipes made of linear-elastic materials. In addition to the cases presently
investigated, determining the normalized KI values and aC for pipes exhibiting alterna-
tive crack shapes (e.g., circumferential cracks, inclined cracks, free cracks), diverse pipe
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geometries (e.g., elbow pipes, T-shape pipes), and/or varied mechanical loading scenarios
(e.g., bending, tension, torsion) presents significantly greater complexity. Generally, the
normalized KI values and aC for these problems can be numerically calculated using FEA.
However, FEA demands advanced numerical skills and prolonged computational time.
Consequently, the application of ANN could yield benefits in estimating the normalized KI
values and aC for these complex problems. As a result, further investigation is imperative
for guiding future research in this field.

4. Conclusions

In this study, an artificial neural network (ANN) model was developed and employed
to predict the normalized stress intensity factor (KI) for a pressurized pipe with an infinitely
long internal surface crack in the longitudinal direction. The predictions of normalized
KI from both API 579-1/ASME FFS-1 and the ANN model were compared with those
obtained from the finite element analysis (FEA), which provides an accurate solution for
normalized KI. The key findings related to the ANN model formulation are as follows:

• Among the ANN models with 6 to 12 neurons in a sub-layer, the model with 8 neurons
exhibited the lowest mean squared error (MSE) and the smallest maximum difference
in validation data. Therefore, the suitable number of neurons for the present ANN
model was determined to be eight in the sub-layer.

• The ANN model that selected nonlinear validation data demonstrated a lower MSE
and a smaller maximum difference in testing data compared to uniformly selecting
validation data among the training data. This observation suggested that choosing
nonlinear validation data improved the performance of the ANN model.

• Regarding the performance of the ANN model:
• The ANN model successfully predicted normalized KI values, with differences from

FEA results lower than 2.2%. Thus, the applicability of the ANN model for predicting
KI in pressurized pipes with infinitely long internal surface cracks in the longitudinal
direction was confirmed. On the other hand, the bilinear interpolation (BiLerp) of
API 579-1/ASME FFS-1 failed to accurately predict normalized KI values, resulting in
differences up to 4.3% within the linear zone and up to 24% within the nonlinearity zone.

• The ANN model also effectively predicted the critical crack size (aC), showing a
difference of 0.59% higher than the aC obtained from FEA. Conversely, the BiLerp
of API 579-1/ASME FFS-1 inaccurately predicted aC, being 4.13% lower than the aC
obtained from FEA. This reaffirmed the applicability of the present ANN model for
predicting both normalized KI and aC in pressurized pipes with infinitely long internal
surface cracks in the longitudinal direction.
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