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Abstract: This article describes a comparison of the pixel-based classification methods used to
distinguish ice from other land cover types. The article focuses on processing RGB imagery, as
these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial
resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern
approaches (support vector machines, random forests, deep learning) have been compared for image
data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the
Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types.
The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference
values obtained via manual surface identification. Deep learning and Maximum Likelihood were the
best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the
support vector machine was the best classifier for both areas of interest. A comparison of the selected
methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the
potential of their utilization compared to imagery obtained using satellites or aerial technologies for
remote sensing.

Keywords: imagery classification; RGB imagery data; UAV; supervised classification; unsupervised
classification; Iso Cluster; Maximum Likelihood; random trees; support vector machine; deep learning;
pixel-based classification

1. Introduction

Remote sensing is nowadays an essential tool for everyday needs [1], especially with
the use of GIS tools, whether it is logistics, spatial planning, or landscape monitoring [2–4].
Introducing unmanned aerial vehicles (UAVs) as remote sensing carriers has led to a new
era in the industry, especially for applications requiring a high spatial resolution.

Image classification is one of the essential functions of the GIS [5]. It is used to process
data, and, for example, it is also an essential tool for identifying particular land cover types
and monitoring their changes.

There are many methods for automatic image classification, and they can generally be
divided into two groups: unsupervised automatic classification (learning without a teacher)
and supervised classification (learning with a teacher).

The classification of images using automatic methods is highly required, especially for
precision agriculture [6], but it is also widely applied throughout all other socio-economic
and scientific fields. Along with very high spatial resolution, high accuracy for classifi-
cations to particular land cover types is necessary [7,8]. Therefore, this article deals with
this topic.

Over the last ten years, the classification of image data has been a very popular method
of data processing through various industries, even in scientific works. In the last five years,
there has been a significant increase in the number of works dealing with the classification
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of imagery data, see Figure 1. The combination of image classification, “drone”, and
RGB is less covered by the published works than the combination of deep learning with
“drone” and RGB. The focus on particular classification methods is significantly lower, see
Tables 1 and 2. The term “drone” stands for UAV, UAS, drone, RPAS, MAV, unmanned
aerial vehicle, and unmanned aerial system. This low attention is another reason for
research in this area.
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Figure 1. Chart of the evolution of keyword search focusing on image classification and classification
methods (2015–2022).

Table 1. Numbers of records focusing on RGB UAV-borne data classification in WOS and SCOPUS
databases (2000–2022).

Searched Phrases in WOS and SCOPUS (2000–2022) WOS SCOPUS

image classification AND drone AND RGB 56 1878

deep learning AND drone AND RGB 56 4885

maximum likelihood AND drone AND RGB 25 254

random trees * AND drone AND RGB 6 99

iso cluster ** AND drone AND RGB 1 27

SVM *** AND drone AND RGB 91 1873
The term drone represents UAV, UAS, drone, RPAS, MAV, unmanned aerial vehicle, unmanned aerial system; *
random tree and random trees; ** Iso Cluster, isodata; *** SVM— support vector machine.

It is also important to mention that this article focuses on the automatic classification]
of RGB image data obtained from UAVs. Most remote sensing data are obtained as
multispectral or hyperspectral. Such images contain units of up to tens of spectral bands,
each with its own specific spectral behaviour. The advantages of different bands are in
the subsequent classification of an image; e.g., scanning in the NIR band is suitable for
monitoring chlorophyll in vegetation.

The availability of UAVs is very high nowadays. They represent a non-invasive
observation and data collection device. Smaller UAVs allow most users to retrieve their
own data without any problems [9]. The significant advantage of UAVs is the data quality,
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namely a very high spatial resolution in cm × px−1. Smaller UAVs equipped with an RGB
camera can also be considered a low-cost data acquisition solution [10]. The sensor is one
of the main parameters that affect the price and quality of images.

Table 2. Records in WOS and SCOPUS database—summary for the terms.

Key Word WOS SCOPUS

UAV 28,423 57,575

drone 8308 19,923

UAS 6673 9839

Unmanned aerial vehicle 15,480 53,445

Unmanned aerial system 942 3391

RPAS 657 937

MAV 2476 6692

When looking for relevant contributions in scientific databases, it is necessary to clarify
the terminology [11–13] because many terms are used. UAV, or unmanned aerial vehicle,
is the technical term, which is the most widely used term for these machines. A UAV is
a correct designation only for the machine itself. An unmanned aircraft system (UAS) is
used to describe the entire set. This designation is often used in Anglo-Saxon terms. The
term drone can be found very often as well. It comes from the French designation. The
term drone has gained tremendous popularity for naming machines among the public and
in non-scientific contributions. The most formal and international term is remotely piloted
aircraft system or RPAS [14]. With the development of technology and the downsizing of
the machines themselves, the term micro aerial vehicle (MAV) can also be found.

Therefore, it is necessary to consider these terms when searching for scientific contri-
butions. Table 2 shows the frequency of occurrences of particular terms when searching in
the scientific databases WOS and SCOPUS. Figure 2 shows that it is appropriate to focus
on the terms UAV, UAS, drone, and unmanned aerial system when searching. Other terms
are not used so often compared to the above-stated terms. All the terms are often used in a
supplementary way.
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As mentioned earlier, image classification methods can be divided into two funda-
mental types of methods. The first type is an automatic image classification based on
learning without a teacher or unsupervised classifications. The basis of this approach is the
clustering method, i.e., it is based on the clustering of pixels based on the similarity of a
given classification class. The second type is an automatic classification based on learning
with a teacher or supervised classification. The basis for this approach is the creation of
training sets with the correct classification outputs, i.e., the required classes. After selecting
a training set, they are applied to the testing set [15].
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Unsupervised classification methods are limited by only the clustering method, so
a few methods for classifying image data exist. The most frequently used methods are
ISODATA and the K-means method. The advantage of these methods is that they are given,
as an input criterion, only the number of clusters, and then the methods run on their own.

Supervised methods are based on learning with a teacher, thus on training and test
sets. The required classification classes are selected on a training set, and the selected
methods are taught. Taught training sets are applied to the test set, and the output is
a classified image. The disadvantage of this may be the error rate of entering training
areas when overlaps of different classes may occur on the same data. The most frequently
used supervised method is Maximum Likelihood method, which has been used for a
long time [16]. A newer method for supervised classification is SVMs (support vector
machines). Next, deep learning methods are more often used for image classification in the
GIS, and they were successfully used in various studies: tree species classification using
RGB imagery and deep learning [17] or classification of fluvial scenes [18] may be given
as examples. An automated pipeline based on deep learning was designed to identify
particular animal species [19]. The identification of plant leaf diseases is another useful
application of deep learning [20].

An accuracy assessment ([21], pp. 306–308) is essential to any classification project.
It compares the classified image with another data source considered accurate or ground
truth data. The ground truth can be collected in the field, which is time-consuming and
expensive. The ground truth data can also be derived from interpreting high-resolution
imagery, existing classified imagery, or GIS data layers. The ground truth data can be
provided as a reference layer or created by manual identification. This process is time-
consuming and requires knowledge of the research area.

The most common way to assess the accuracy of a classified map is to create a set of
random points from the ground truth data and compare that with the classified data in a
confusion matrix [22]. A confusion matrix, also known as an error matrix, is a specific table
layout that allows the performance of an algorithm to be visualized, typically a supervised
learning one. Each row of the matrix represents the instances in an actual class, while each
column represents the instances in a predicted class. A confusion matrix is a table with two
rows and two columns (representing actual and predicted classes) that reports the number
of false positives, false negatives, true positives, and true negatives. It allows for more a
detailed analysis than a mere proportion of correct classifications (accuracy).

Output data from a confusion matrix must be represented. Cohen’s Kappa index [23]
measures valid agreement. It indicates the proportion of agreement beyond the one
expected by chance, that is, the achieved beyond-chance agreement as a proportion of the
possible beyond-chance agreement.

The Cohen’s Kappa index is calculated by Equation (1), where Po is the relative
observed agreement among raters; Pc is the hypothetical probability of chance agreement.
The Kappa index is represented in the interval 0 to 1, where 1 means a maximum match.

K =
observed agreement − chance agreement

1 − chance agreement
=

PO − PC
1 − PC

(1)

The aim of this article is a comparison of selected automatic classification methods
for ice detection from RGB imagery. ISODATA and Maximum Likelihood represent an
older approach, and SVM, random forest, and deep learning represent a newer approach.
The methods were used to classify land cover types into two classes (ice and all other
land covers). Very-high-spatial-resolution UAV-borne datasets were used. The following
infographics, see Figure 2, point out the importance of particular topics.

1.1. Iso Cluster

ISODATA computes class means consistently circulated in the data space before
iteratively clustering the continuing pixels utilizing least distance approaches [24]. ArcGIS
software (10.3 version) tools use this method, which is called an Iso cluster.
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The Iso cluster [25] tool uses a modified iterative optimization clustering procedure
known as the migrating means technique. The algorithm separates all cells into the user-
specified number of distinct unimodal groups in the multidimensional space of the input
bands. The Iso prefix of the ISODATA clustering algorithm is an abbreviation for the
iterative self-organizing way of performing clustering. This type of clustering uses a
process in which, during each iteration, all samples are assigned to existing cluster centres
and new means are recalculated for every class. The optimal number of classes to specify
is usually unknown. The Iso Cluster algorithm is an iterative process for computing
the minimum Euclidean distance when assigning each candidate cell to a cluster ([21],
pp. 297–299).

1.2. Maximum Likelihood

The Maximum Likelihood [16] classification assumes that the statistics for each class
in each band are normally distributed and calculates the probability that a given pixel
belongs to a specific class. Unless you select a probability threshold, all the pixels are
classified. Each pixel is assigned to the class with the highest probability (the Maximum
Likelihood). The pixel remains unclassified if the highest probability is smaller than the
specified threshold.

1.3. Random Trees

In its simplest form, a random forest [26] can be thought of as using the bagging and
the random subsets meta-classifier on a tree classifier. The random forest [27] classifier
consists of a combination of tree classifiers. Each classifier is generated using a random
vector, sampled independently from the input vector, and each tree casts a unit vote for the
most popular class to classify an input vector. The random forest introduces randomness
of two types: each tree is built on slightly different rows sampled with repetitions from the
original (bagging), and each column tree (or, in some cases, each branch decision) is built
using a small randomly selected subset of columns [28].

The random trees [29] is the classification method used in ArcGIS software and is
based on the random forest.

1.4. Support Vector Machine

A support vector machine (SVM) [30] is a supervised learning model with associated
learning algorithms that analyse data for classification and regression analyses. SVM is
one of the most robust prediction methods based on statistical learning frameworks, or
the VC theory proposed by Vapnik (1995) and Chervonenkis (1974) [30]. Given a set of
training examples, each marked as belonging to one of two categories, an SVM training
algorithm builds a model that assigns new examples to one category or the other, making
it a non-probabilistic binary linear classifier. SVM [31] maps training examples to points
in space to maximize the gap width between the two categories. New examples are then
mapped into that space and predicted to belong to a category based on which side of the
gap they fall into.

1.5. Deep Learning

Deep learning [32] is a subset of machine learning that uses several layers of algorithms
in the form of neural networks. The input data are analysed through different layers
of the network, with each layer defining specific features and patterns in the data. For
example [33], if you want to identify features such as buildings and roads, the deep learning
model can be trained with images of different buildings and roads, processing the images
through layers within the neural network, and then finding the identifiers required to
classify a building or road.
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2. State of Art

The authors of one article [34] used a different approach to image classification. This
work’s advantage is that image classification methods were used for RGB data from a UAV.
The Iso Cluster and Maximum Likelihood methods are older but widely used methods
and sometimes provide good results. Images were classified into three classes in two time
records. In this article, a 46% accuracy of unsupervised classification (also the worst) and
92% accuracy of supervised classification (also the best) were achieved.

The article [18] compares selected supervised classification methods to classify fluvial
scenes. Data were in RGB spectre from the existing dataset. The dataset was formed by
11 rivers worldwide (Japan, Italy, Canada, the UK, and Costa Rica) in the RGB images.
In the first phase, they compare Maximum Likelihood, random forest, and a multilayer
perceptron with a 70–80% F1 result. In the second phase, they use the CSC method and
obtain a 92–95% F1 result. This demonstrates the suitability of deep learning or methods
based on deep learning.

The study [35] introduces a technique to use UAV-acquired RGB images coupled
with ground information for a reliable and fast estimation of sugarcane yield for two
popular varieties in Thailand. This article is interested in two first approaches (OBIA and
ExG). OBIA provided better results with 92 and 96% accuracy. The pixel-based method
provided 84 and 88% accuracy. The utilization of the UAV with a standard camera with an
RGB sensor and the OBIA method are the contributions of this study. The OBIA method
was identified as a good classifier for heterogeneous data.

The study’s primary goal [36] was to measure the accuracy of the selected methods
(SVM, ML) to assess historical, current, and future land use and land cover patterns. The
data were based on satellite imagery (river Birupa), and the methods were compared. The
data were obtained from Landsat with a 30 m spatial resolution. From the results, it is
possible to observe that both classifiers in some land covers (build-up area and fallow land)
have identical accuracy. Furthermore, you can see in other land cover types that the results
are very different. According to Kappa statistics, the SVM is a better classifier with an 86%
average accuracy.

This article [37] describes an automatic method of identifying soil and water conser-
vation measures from the centimetre-resolution imagery of UAVs. The authors chose an
object-based image analysis (OBIA) approach, machine learning models, and a support
vector machine (SVM). Data were obtained from a UAV with a low-cost RGB camera. The
images from a UAV provide have very high spatial resolution in cm*px−1. After obtaining
the data, they used vegetation indices as the first step. They obtained 91% accuracy.

The article [38] classifies sea ice from high-resolution observations. Data were collected
during OIB Arctic summer campaigns with the nominal flight altitude. They obtained RGB
images from a Canon EOS 5D camera with a high spatial resolution of 10 cm*px−1. They
are classified into selected classes by histograms. This article focused on classifying ice and
water in the RGB spectre.

The article [39] investigates the potential of SAR imagery for sea ice classification. This
article classified the imagery into two approaches (pixel-based and region-based). The
classification accuracy of ice ranges from 80 to 90%, depending on the set of classification
classes used.

The classification of sea ice images was the aim of the authors [40]. In this article,
hyperspectral data obtained from satellites were used. As a classifier, deep learning was
used, specifically, 3D-CNNs. They reach very high accuracy, around 98%.

The authors of another study [41] focused on differentiating snow and rock in colour
imagery (RGB). They used unsupervised and supervised approaches. The Maximum
Likelihood classification and a new approach, Polynomial Thresholding were used as
supervised methods. Both supervised approaches reach an accuracy of around 95%.

3. Data Collection, Preprocessing and Methodology

The procedure used in this study consisted of the following steps:
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• Data collection:
• Flight planning
• Flight itself
• Data preprocessing—mosaics creation
• Data processing—classifications
• Results visualization

The aim was to compare the used methods, but there was no specific order of the
classification methods set.

3.1. Used Hardware and Software

Experiments, calculations, and visualization were performed on a machine with an
Intel Core i7 at 2.6 GHz and 16 GB of RAM, which represents acceptable computational
requirements for the used data. The only exception is deep learning. Its performance can
be improved by using a GPU (Nvidia GTX 960) for computation. Using a GPU provides
much more effective processing of data. The GPU calculation of the deep learning method
provides faster processing, from 6 h for only a CPU-based calculation to 30 min using both
CPU and GPU.

DJI GS PRO, ENVI OneButton, and ArcGIS software were used for the following: DJI
GS PRO (on iOS, version 2.0.13) was used to plan and control flights, and ENVI OneButton
(version 5.0.0.181) was used to create mosaics from collected images. ArcGIS for Desktop
(version 10.6) and ArcGIS PRO (version 2.7) are GIS software used for image classification
by unsupervised and supervised methods and for accuracy assessment.

3.2. Area of Interest

This study is focused on two small areas during the winter term. The first one
is situated close to the village of Neratov (next to the city of Lázně Bělohrad and near
Pardubice) in the Pardubický region, the Czech Republic. The north-western part of the
pond Skříň was monitored (see Figure 3). The total area of the pond is 269,000 m2, and the
pond is used for fish farming. Pond Baroch was chosen as the second area of interest (see
Figure 4). Pond Baroch is part of a nature reserve with evidence number 1926. The pond is
situated south to southwest of the village of Hrobice, near Pardubice. The Regional Office
of the Pardubice Region manages the area. The size of the nature reservation is around
30,000 m2. The reason to protect this nature reserve is its grounded pond, adjacent reeds,
forest and meadow communities, and ornithological locality.
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Figure 3. Pond Skříň, data source: [42]. The red box bounds the area of interest.



Appl. Sci. 2023, 13, 11400 8 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 
Figure 3. Pond Skříň, data source: [42]. The red box bounds the area of interest. 

 
Figure 4. Reservation Baroch, data source: [42]. The red box bounds the area of interest. 

4. Data Collection 
Phantom 3 Pro was used for the data collection. The characteristics of this UAV are 

as follows: weight, 1216 g, four motors, max. flight time, 25 min. The flight with UAV is 
performed under suitable weather conditions. The drone contains a built-in ultra HD cam-
era. The camera has an F2.8 lens with a 20 mm focal length and a viewing angle of 94 
degrees. The built-in camera is attached to the drone by a three-axis gimbal. The drone 
itself costs approx. 700–800 Eur; this can be taken as a low-cost solution [43]. 

The planned flight was used for comprehensive data collection. The planned flight 
ensures low data redundancy, selects the optimal points for capturing images (way-
points), and ensures a smooth flight of the desired area. The flight was planned in DJI 
software, DJI GS PRO for iPad (version 2.0.16), and according to the rules for obtaining 

Figure 4. Reservation Baroch, data source: [42]. The red box bounds the area of interest.

4. Data Collection

Phantom 3 Pro was used for the data collection. The characteristics of this UAV are
as follows: weight, 1216 g, four motors, max. flight time, 25 min. The flight with UAV
is performed under suitable weather conditions. The drone contains a built-in ultra HD
camera. The camera has an F2.8 lens with a 20 mm focal length and a viewing angle of
94 degrees. The built-in camera is attached to the drone by a three-axis gimbal. The drone
itself costs approx. 700–800 Eur; this can be taken as a low-cost solution [43].

The planned flight was used for comprehensive data collection. The planned flight
ensures low data redundancy, selects the optimal points for capturing images (waypoints),
and ensures a smooth flight of the desired area. The flight was planned in DJI software,
DJI GS PRO for iPad (version 2.0.16), and according to the rules for obtaining high-quality
data [43]. The data from the planned flight are collected in the form of individual images
with a 60% overlap with each other, a 60 m altitude, and a 90-degree angle of view (per-
pendicular to the drone); see Figure 5. In addition, the flight itself is subject to legislation
on the operation of unmanned aerial vehicles. The rules on flying are administered by the
CAA, called ÚCL Czechia [44].
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5. Data Preprocessing and Processing

After obtaining the data, the next step is preprocessing. The individual data (images)
must be composed into a mosaic. For mosaicking data, Icaros OneButton was used.
Atmospheric correction does not need to be performed because the flight is performed at
a low altitude and under very similar lighting conditions (same light conditions—sunny,
beginning of the same month, around 10 am). Figures 6 and 7 represent the selected frame
of individuals’ areas of interest with 2.6 cm × px−1. Processing was based on the default
setting of methods with some modifications; see Table 3.
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Table 3. Parameters of methods.

Method Parameters

Manual Identification Manual vectorization of areas into 2 classes
Iso Cluster Classification into 2 classes; 20 iterations

Maximum Likelihood Train set based on manual selection of each class; 5 samples per class

Random Trees Same train set as Maximum Likelihood; number of trees: 50; tree depth: 30; maximum number of
samples per class 1000

SVM Same train set as Maximum Likelihood; number of samples per class: 500

Deep Learning Same train set as Maximum Likelihood; U-net (convolutional neural network) pixel classification;
ResNet-34 (convolutional neural network with 34 layers) as Backbone model; 10 epochs

6. Results and Discussion

ArcGIS PRO was used for the calculations for all the methods. ArcGIS for Desktop
was used to perform the accuracy assessment and data visualization. The calculations of
the Kappa index were carried out in Supplementary File S1 to make the calculation easier.
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The following methods were used: Iso cluster, Maximum Likelihood, random trees,
support vector machine (SVM) and deep learning (supported by ArcGIS PRO version 2.6).
Both collected images were used for image classification by selected the methods. The
methods were set to classify land covers into two classes, only allowing their comparison
from the point of view of ice surface differentiation from all other land covers. Thus, the
chosen classes were ice and all other covers. Generally, supervised methods provide better
results, but it highly depends on the selected training sets. In the case of Skříň, deep
learning was the best classifier, with a 92% classification success, see Figure 8. The worst
classification method was the Iso cluster, with a 69% classification success, see Figure 9. In
the case of Baroch, Maximum Likelihood was the best classifier, with a 93% classification
success. The worst classifier was the Iso cluster, with an 88% classification success.
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Figure 9. Skříň, the worst classification.

There was a problem with the classification of the edge of islands in the case of the
Baroch image, see Figure 10. The edge consisted of frozen vegetation and pieces of pure
ice. In the RGB spectre, the combination looks like pure ice and has almost the same pixel
colour as ice. In this case, the worst method had a slightly worse result.

Table 4 shows the results of all the classification methods. The support vector machine
can be considered as the best method on average. The SVM provided the second-best
results in both areas, with an accuracy of around 90%.

Results of all classifications for both areas of interest are visualized, see Figure 11.
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Table 4. Classification results—Kappa coefficient.

Method Pond Skříň Pond Baroch

Manual identification—reference data 1 1
Iso Cluster 0.6946 0.8842

Maximum Likelihood 0.8464 0.9312
Random Trees 0.8175 0.9175

Support Vector Machine 0.8940 0.9225
Deep Learning 0.9212 0.8889
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The results are in agreement with other authors. Overall, the supervised methods
provide better results than the unsupervised methods. The classification accuracy of
the supervised methods is around 90%, in line with the article [34]. Remarkably, the
deep learning method provided the highest level of accuracy in our study. This result
aligns with other authors [37,40]. The unsupervised method provided worse results than
supervised methods, and its accuracy was around 70%. On the other hand, unsupervised
methods can provide similar results to supervised methods in specific cases of input data
(e.g., homogeneous areas).

7. Conclusions and Future Work

Today, it is essential to classify particular land cover types to support environmental
protection, water management, and sustainable development. This article is focused on
UAV-borne very-high-spatial-resolution monitoring of the ice surface.

UAVs can provide very-high-spatial-resolution data on demand, of course, with
respect to the legal and weather conditions. On the other hand, cheaper UAVs may be
equipped with a standard RGB camera only. In this case, not all standard remote sensing
methods can be used for data processing; e.g., many spectral indices require other bands;
RGB bands are insufficient.

The article provides a comparison of various pixel-based classifications, which were
used to classify RGB imagery. The classification aimed to identify and distinguish the ice
surface from the other land cover types.

The direct focus on identifying only ice surfaces represents a fundamental limitation
of this study. We did not distinguish between different types of ice (e.g., dry and wet).
RGB bands do not allow the utilization of many spectral indices and the full range of the
reflectance curve.

Future work can expand on this work by including object-based classification methods,
e.g., OBIA or an object-based version of deep learning, and comparing these methods.

Next, there is space to improve the deep learning training phase to prevent classifica-
tion mistakes, e.g., based on frozen edges.
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