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Abstract: Remote sensing scene classification (RSSC) is a very crucial subtask of remote sensing image
understanding. With the rapid development of convolutional neural networks (CNNs) in the field
of natural images, great progress has been made in RSSC. Compared with natural images, labeled
remote sensing images are more difficult to acquire, and typical RSSC datasets are consequently
smaller than natural image datasets. Due to the small scale of these labeled datasets, training a
network using only remote sensing scene datasets is very difficult. Most current approaches rely
on a paradigm consisting of ImageNet pretraining followed by model fine-tuning on RSSC datasets.
However, there are considerable dissimilarities between remote sensing images and natural images,
and as a result, the current paradigm may present some problems for new studies. In this paper, to
break free of this paradigm, we propose a general framework for scene classification (GFSC) that can
help to train various network architectures on limited labeled remote sensing scene images. Extensive
experiments show that ImageNet pretraining is not only unnecessary but may be one of the causes
of the limited performance of RSSC models. Our study provides a solution that not only replaces
the ImageNet pretraining paradigm but also further improves the baseline for RSSC. Our proposed
framework can help various CNNs achieve state-of-the-art performance using only remote sensing
images and endow the trained models with a stronger ability to extract discriminative features from
complex remote sensing images.

Keywords: general framework; remote sensing images; representation learning; scene classification;
deep learning

1. Introduction

The goal of remote sensing scene classification (RSSC) is to classify each patch seg-
mented from remote sensing images to a meaningful land cover type [1–5]. RSSC can play a
critical role in tasks such as urban planning [6] and pollution detection [7], as well as many
downstream tasks such as change detection [8] and remote sensing image segmentation
and object detection [9,10]. Although much progress has been achieved in RSSC, it is still a
very challenging task. As shown in Figure 1, remote sensing scenes include large variations
in object/scene scales and the coexistence of multiple ground objects [11]. Furthermore,
remote sensing scenes exhibit high intraclass diversity and interclass similarity.

Many convolutional neural network (CNN)-based methods have been proposed to
improve the classification accuracy of RSSC [12–15]. By virtue of the enormous data
volumes of natural image datasets and the representation capabilities of CNNs, RSSC
performance has been continuously improved. Cheng et al. [16] proposed discriminative
CNNs (DCNNs) to boost performance on RSSC tasks. Lu et al. [17] proposed a feature
aggregation CNN (FACNN) to learn scene representations directly from remote sensing
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scene datasets. Based on feature fusion, Xue et al. [18] proposed the multi-structure deep
feature fusion (MSDFF) framework. However, although many CNN-based methods have
achieved good performance for RSSC, the related studies have mostly followed a paradigm
consisting of ImageNet pretraining followed by model fine-tuning on RSSC datasets. To the
best of our knowledge, there are still relatively few studies that have focused on improving
classification accuracy using only remote sensing images without ImageNet pretraining.
However, this topic is critical for further development in this domain.

（a）

（b）

（c）

Figure 1. Examples of remote sensing scene images from the NWPU-RESISC45 dataset: (a) railways,
(b) railway stations, and (c) rivers. Remote sensing scenes include large variations in object/scene
scales and the coexistence of multiple ground objects. As illustrated, remote sensing scenes exhibit
high intraclass diversity and interclass similarity.

As shown in Figure 1, there are significant differences between remote sensing images
and natural images in terms of image intensity values, wavebands, resolutions, object scales,
etc. As shown in Table 1, the available labeled remote sensing image datasets contain much
fewer images than natural image datasets. Therefore, if a model is trained using only
remote sensing images, a degradation in accuracy will result due to the relative lack of
data, as demonstrated in Figure 2. This gap in performance with and without ImageNet
pretraining may lead to the following problems: (1) most of the widely used models are
pretrained on ImageNet, but some models are not open-access, such as ResNet-9 and
WRN-9, as well as some self-defined models; (2) when the network structure is modified
or a new network structure is designed, pretraining on ImageNet is required to achieve
good results, but such pretraining requires many GPU hours; (3) since fine-tuning does not
change the weights significantly, the feature extraction performance is partially limited by
the features learned from ImageNet and cannot be specifically adapted to remote sensing
images; and (4) the quality of the pretrained model has a significant impact on the results,
especially as the number of available training techniques and new structures increases,
making it difficult to evaluate multiple different networks for the same task. These issues
lead us to consider the following questions: Is ImageNet pretraining necessary? Can we
train CNNs using only remote sensing images?
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Figure 2. Comparison of classification accuracy with ImageNet pretraining and without ImageNet
pretraining.

Table 1. Comparison of RSSC datasets and natural image datasets.

Dataset Classes Total Images Images/Class

Natural Image Datasets:

ImageNet (2012) [19] 1000 1,431,167 ∼1000
MNIST [20] 10 60,000 6000

CIFAR-10 [21] 10 60,000 6000

RSSC Datasets:

NWPU-RESISC45 [22] 45 31,500 700
AID [23] 30 10,000 200–420

PatternNet [24] 38 30,400 800
UC-Merced [25] 21 2100 100

Researchers have long been accustomed to improving performance based on back-
bone networks pretrained on ImageNet, but ImageNet pretraining may, in fact, limit the
performance of methods based on it. To explore possible solutions to address the decrease
in accuracy caused by model training without ImageNet pretraining, we propose a general
framework to help train various CNNs using only remote sensing images. Accordingly,
we answer the previous questions as follows: ImageNet pretraining is not necessary, and
state-of-the-art results can be achieved using only remote sensing images. The proposed
framework comprises three steps, as shown in Figure 3: (1) self-supervised learning for
weight initialization, (2) learning specific data augmentation strategies, and (3) training
under regularization strategy. Our experiments suggest that our proposed general frame-
work for RSSC (GFSC) allows CNNs to achieve comparable state-of-the-art results when
trained only on RSSC datasets. At the same time, the models trained under GFSC can
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extract more discriminative features than the models using ImageNet pretraining. We
note that almost all individual components of our framework have appeared in previous
work, although their specific implementations may be different. The superiority of our
framework relative to previous work is not explained by any single design choice, but
rather by their combination. The main contributions of this paper are as follows:

1. We propose a general training framework, GFSC, for training RSSC models without
ImageNet pretraining. This framework can achieve results that surpass those of
methods based on ImageNet pretraining using only remote sensing images.

2. Compared with ImageNet pretraining, GFSC enables the extraction of more discrimi-
native features with less consumption of computational resources.

3. Our proposed framework is easy to implement, exhibits good generalizability to
different CNN structures, and yields consistent performance improvements.
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Figure 3. Overview of GFSC. To make more effective use of remote sensing image data, we seek im-
provements in several respects. For the initialization of the weights, we employ SSL. SSL encourages
the representations of an image I and its transformed counterparts It1 and It2 to be similar. For data
augmentation, we search for suitable data augmentation strategies specific to RSSC datasets. For
regularization, we use Mixup as the regularization strategy.

The rest of this paper is organized as follows. Section 2 reviews the related work of
this paper. Then, the proposed GFSC is introduced in Section 3. Experiments conducted
to test the proposed method are described in Section 4. Finally, we conclude this article in
Section 5.

2. Related Work

In this section, we give a brief review of existing related works on the development
of CNN architectures, transfer learning in RSSC, and self-supervised learning of image
representations.

2.1. Modern CNN Architectures

Since the emergence of ImageNet [26] and AlexNet [27], CNN-based methods have
undergone rapid development. In particular, CNN-based methods have dominated re-
search on image classification and many downstream tasks. GoogLeNet [28] adopts 1× 1
convolutional layers to learn nonlinear combinations of the feature map channels and uses
a global average pooling (GAP) layer in the place of heavy fully connected layers. By repeat-
edly stacking 3× 3 small convolutional kernels, VGG-Net [19] built very deep networks.
Building on the success of these pioneering studies, the authors of ResNet [29] introduced
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the design of residual learning to ease the degradation problem in stacking more layers
and empower networks to increase depth. To improve the performance, a wide residual
network (WRN) [30] is proposed as a novel architecture to increase the width of residual
networks. Xie et al. [31] proposed the ResNeXt architecture based on aggregated residual
transformations. These network architectures are widely used as backbone networks for
RSSC tasks.

2.2. Transfer Learning in RSSC

The purpose of transfer learning is to leverage knowledge from the source domain to
boost the learning ability in the target domain [32–34]. Pretrained models on large-scale
datasets have been reported to have better generality than randomly initialized models.
Fine-tuning [35,36] is one powerful method for transfer learning. For RSSC tasks, the
majority of state-of-the-art approaches rely on a paradigm consisting of pretraining on
ImageNet and then fine-tuning on the target dataset. The marginal center loss [37] was
proposed to overcome the challenges presented by large intraclass variations. Liu et al. [38]
proposed a Siamese CNN that combines identification and verification models based on
CNNs. A multisource compensation network (MSCN) [39] has been proposed to address
the problems of distribution discrepancy and category incompleteness by using pretrained
CNNs. Based on bilinear pooling [40] and hierarchical attention [41], Yu et al. [5] presented
a feature fusion framework for RSSC. Most of these advanced approaches do not use the
CNN backbone directly but build on it with a lot of careful design.

2.3. Self-Supervised Learning of Image Representations

Self-supervised learning (SSL) is a new paradigm that focuses on designing pretext
tasks to learn a good representation [42,43]. SSL learns directly from unlabeled data and
does not require labeled data. This will eliminate the requirement for large amounts of
labeled data, which can be expensive to acquire. Many training approaches have been
proposed for learning image representations via SSL. Chen et al. [44] proposed SimCLR,
which is a simple contrastive learning framework for visual representations. He et al. [45]
proposed Momentum Contrast (MoCo) for SSL with a contrastive loss. Bootstrap Your
Own Latent (BYOL) [46] is designed to use only positive pairs and achieves state-of-the-art
results under the linear evaluation protocol on ImageNet.

3. Proposed Method
3.1. Overview of the Proposed Framework

Learning good feature representations from limited data is a very challenging task.
To address this challenge, we attempt to make full use of the original data. As mentioned
previously, remote sensing images are different from natural images in many respects, so
it is important to design specific methods consistent with the characteristics of remote
sensing images. Indeed, some methods designed for application to natural images can even
compromise the performance on RSSC tasks if they are used inappropriately. To this end,
the end-to-end GFSC is proposed to help train CNNs on limited data. Figure 3 illustrates
the core idea of our proposed framework, GFSC. The goal of our method is to help various
backbones achieve results comparable to those of models with ImageNet pretraining using
only RSSC datasets.

As shown in Figure 3, Starting from the overall training process, we consider vari-
ous elements of the process to address the degradation of RSSC model training without
ImageNet pretraining. For the initialization of the weights, we employ SSL to learn the
characteristics of the remote sensing images themselves. Data augmentation and regu-
larization strategies are also important when the amount of data is insufficient. For data
augmentation, we learn suitable data augmentation strategies specific to RSSC datasets.
For regularization, we use Mixup as the regularization strategy.
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3.2. SSL for Weight Initialization

Recently, SSL has received considerable attention and has enabled much progress in
the field of natural images. Inspired by these studies, we use BYOL for the initialization of
the weights.

BYOL is a new algorithm for the SSL of image representations [46]. Its target is to learn
a good representation yθ that can then be used for other downstream tasks. This algorithm
is composed of two networks: an online network and a target network. The two networks
interact with and learn from each other.

The online network is defined by a set of weights θ and is composed of three stages:
an encoder yθ , a projector gθ , and a predictor qθ . The target network is similarly defined by
a set of weights ξ but is composed of only two stages: an encoder yξ and a projector gξ .

As shown in Figure 4, the target network provides the regression targets to train the
online network, and its parameters ξ are exponential moving averages of the online param-
eters θ. It achieves this goal by minimizing the L2 loss between the two representations
qθ(zθ) and z′ξ . During backpropagation, the target network is subjected to a stop-gradient
operation. More specifically, after each training step, the following update is performed:

ξ ← mξ + (1−m)θ (1)

where m is a target decay rate such that m ∈ [0, 1], θ represents online parameters, and ξ
are exponential moving averages of the online parameters θ.

encoder
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Augment

Online Network

Target Network
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Average
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Figure 4. Architecture of the SSL algorithm BYOL. BYOL attempts to construct image representations
that are invariant with respect to image augmentation. It encourages the representations of an image
x and its transformed counterparts v and v′ to be similar.

Let image x be sampled uniformly from a set of images D, and let T and T ′ be two
distributions of image augmentations. First, by applying image augmentations t ∼ T
and t′ ∼ T ′, we can obtain two augmented views v and v′, respectively. Next, the online
network outputs a representation yθ and a projection zθ from the first augmented view
v, and the target network outputs the target representation y′ξ and the target projection
z′ξ from the second augmented view v′. Then, we can obtain two representations qθ(zθ)

and z′ξ . Since we need to compute the distance between these two representations, L2
normalization is applied to both qθ(zθ) and z′ε. After L2 normalization, we obtain the two
corresponding representations qθ(zθ) and z′ξ .

The goal of our network is to push the prediction of the online network, qθ(zθ), closer
to the target network’s projection, z′ξ . Thus, the loss function can be defined as follows:

Lθ,ξ , ‖qθ(zθ)− z′ξ‖2
2 = 2− 2 ·

〈qθ(zθ), z′ξ〉
‖qθ(zθ)‖2 · ‖z′ξ‖2

(2)
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where θ and ξ denote the parameters of the online and target networks, respectively, zθ

represents the input data, and Lθ,ξ denotes the loss function.
During the training phase, we can also feed v′ into the online network and v into the

target network to make fuller use of the data, and this loss can be symmetrized, yielding L̃θ,ξ .
In each step of training, we perform stochastic optimization to minimize LTotal

θ,ξ = Lθ,ξ + L̃θ,ξ
with respect to the online network θ only. It should be noted that the target network ξ is
subjected to a stop-gradient operation to prevent network collapse, and we retain only the
encoder fθ .

3.3. Learning Specific Data Augmentation Strategies

Data augmentation is an important technique to improve the generalization ability of
CNN models, and this technique is especially important in the case of insufficient labeled
remote sensing images. Due to the differences between natural images and remote sensing
images, it is important to learn data augmentation strategies that are specific to remote
sensing images. However, in the absence of sufficient annotated remote sensing images,
related data augmentation techniques have received relatively little attention. Considering
the GPU hours consumed by searching for candidate policies, in this paper, we adopt
an algorithm called Fast AutoAugment (FAA) [47] that can find effective augmentation
policies via a relatively efficient search strategy based on density matching.

The whole process is illustrated in Figure 5. First, the training dataset Dtrain is split
into K folds, each of which consists of two datasets, D(k)

M and D(k)
A . For each fold, we train

a model based on D(k)
M and obtain the model parameters θk. After the parameters θk are

trained, B bundles of augmentation policies are sampled from sets of predefined data
augmentation operators. Then, based on the evaluation results for model θk, the top N
policies in B are selected to obtain T(K)

∗ on D(k)
A . Finally, the top N policies T(K)

∗ obtained
from each of the K folds are appended to an augmentation list T∗.

.

.

.
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Sample B

Selected Augm
entation Policies

Sample B
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apply

Sets of Operations
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evaluate
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Figure 5. Overall augmentation search procedure using the FAA algorithm. FAA splits the training

dataset Dtrain into K folds, each of which consists of two datasets, D(k)
M and D(k)

A . Then, the model

parameters θ are trained in parallel on each D(k)
M .

Unlike previous methods such as AutoAugment [48], FAA does not train the model
parameters θ many times, so it can find data augmentation strategies that are suitable for
RSSC datasets in less time.
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3.4. Mixup Strategy for Regularization

The diversity of the training samples is directly influenced to the generalization
power of deep convolutional neural networks [49]. Many studies have demonstrated that
constructing virtual samples can effectively improve the generalization ability of deep
convolutional networks and prevent network overfitting [50,51].

However, due to the gap between natural images and remote sensing images, a
regularization strategy that works on natural images may not be suitable for remote sensing
images. Based on preliminary experiments, Mixup [52] is adopted as the regularization
strategy in this paper.

Mixup is used in the training phase and not in the testing phase. In each iteration of
training phase, we randomly select two samples, (xi, yi) and (xj, yj). Then, we form a new
sample by performing weighted linear interpolation of these two samples:

x̂ = λxi + (1− λ)xj
ŷ = λyi + (1− λ)yj

(3)

where λ is a random number in [0, 1]. λ is sampled from the Beta(α, α) distribution. This
manner brings more randomness and makes the model more robust to such generated
samples. In Mixup training phrase, we use only the new sample (x̂, ŷ).

In each iteration of training phase, a mixed sample (x̂, ŷ) is generated by combining
two randomly selected training samples in a mini-batch. This strategy can be utilized to
efficiently train any network architecture.

In addition to Mixup, we have also tested patch-based regularization strategies, such
as CutMix [53]. Compared with objects in natural images, objects in remote sensing images
often exist against more complex backgrounds. Consequently, patch-based methods often
fail to construct meaningful samples and can even cause the accuracy to degrade.

4. Experiments

In this section, the proposed GFSC is performed on different representative RSSC
datasets for evaluation. First, the experimental settings are described in Section 4.1. Second,
the effectiveness of SSL is investigated in Section 4.2. Third, several ablation experiments
are reported in Section 4.3. Fourth, GFSC is compared with other state-of-the-art methods
in Section 4.4. Finally, visualizations are presented, and the effectiveness of the method is
analyzed.

4.1. Experimental Settings
4.1.1. Datasets

In this paper, we report experiments conducted on several datasets widely used in
RSSC. The details of these datasets can be found in Table 1.

The NWPU-RESISC45 dataset [22] is a publicly available benchmark dataset for RSSC
task. It contains 45 types of remote sensing scene images with an overall size of 31,500.
Each scene class of this dataset contains 700 images with 256× 256 pixels. The common
training ratio of this dataset is 10% and 20%. The Aerial Image Dataset (AID) dataset [23]
contains 10,000 scene images divided into 30 remote sensing scene classes. Each scene class
of the AID dataset contains 200 to 400 images with 600× 600 pixels. The common training
ratio of this dataset is 20% and 50%.

The UC-Merced dataset [25] contains 2100 scene images divided into 21 land-use
classes. Each scene class of this dataset contains 100 images with 256× 256 pixels. The
common training ratio of this dataset is 50% and 80%.

PatternNet [24] is a large-scale benchmark dataset for remote sensing image retrieval.
Different from above datasets, PatternNet is designed specially for the task of remote
sensing image retrieval. The images of this dataset were collected from Google Earth
imagery or via the Google Maps API for US cities. It contains 38 remote sensing scenes.
Each scene class of this dataset contains 800 images with 256× 256 pixels.
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The NAP (NWPU-RESISC45+AID+PatternNet) dataset is an unlabeled dataset for
self-supervised pretraining. It is a combination of the AID, NWPU, and PatternNet datasets.
The total number of images in this dataset is 71,900.

The NAP+ dataset is a large-scale unlabeled remote sensing image dataset built on top
of the NAP dataset. Since unlabeled data are easier to collect than labeled data, we collected
numerous unlabeled remote sensing images from the Google Maps API with the aim of
exploring the boundaries of SSL. The total number of images is 200,000 in this dataset.

4.1.2. Implementation Details

All models in the experiments were implemented using the deep learning framework
PyTorch. The experiments were performed on a workstation with 32 GB of memory and
two 2.6 GHz ten-core CPUs. Two NVIDIA RTX Titan GPUs with 24 GB memory were used
for acceleration. In the phase of SSL for pretraining, the images were randomly cropped to
a size of 96× 96 pixels, the learning rate was 0.6, and the optimizer was LARS [54]. In the
fine-tuning stage, the images were resized to 256× 256 pixels. Stochastic gradient descent
(SGD) was used as optimization method. The learning rates for ImageNet pretraining
and SSL-based pretraining were 0.001 and 0.01, respectively. The learning rates were first
warmed up for 5 epochs, followed by a cosine leaning rate decay in the rest of epochs [55].
All networks were trained for 100 epochs in order to ensure fair comparisons. In order to
have a better convergence of the CNNs, we only used Mixup for the first 80 epochs. To
obtain reliable results, we performed each experiment 5 times. The means and standard
deviations of the five experiments are reported.

4.2. Effectiveness of SSL

Well-labeled remote sensing data are very expensive to acquire, but unlabeled remote
sensing scene images are easy to obtain. Using SSL for model initialization is one of the
keys to the success of our proposed framework. In this section, to verify the effectiveness
of SSL as a model initialization strategy, we report experiments conducted on several
representative backbone networks, including ResNet, ResNeXt, and WRN. The models
were pretrained on the ImageNet dataset for 120 epochs and on the NAP and NAP+
datasets using SSL for 300 epochs. To ensure fair comparisons, all methods were fine-tuned
on the NWPU dataset for 100 epochs using the default data augmentation strategy on
ImageNet. It is important to note that other components of GFSC are not used at this stage.

4.2.1. Influence of the Cropped Image Size on SSL

In SSL, the size to which the images are cropped is an important factor affecting the
time and computational effort of training. Because of the large dissimilarities between
remote sensing images and natural images, to explore the effects of different image res-
olutions on the characterization ability of the network, we compare the top-1 accuracies
achieved under different random crop sizes in Figure 6. From the results in this figure, it
is obvious that SSL is not highly sensitive to the crop size for remote sensing images. If
the crop size is increased, it will bring more GPU hours and memory usage. Considering
training time and resource consumption, we adopted a crop size of 96 in the subsequent
SSL experiments.

4.2.2. Comparison with Random Initialization

We performed experiments on three representative backbone networks and found
that using SSL for network initialization yielded significant improvements compared to
random initialization. We needed only a very small number of GPU hours for initialization
to obtain much better results than those achieved with random initialization. The consistent
performance gains obtained on the three backbone networks indicate that our proposed
framework is effective for different network designs, reflecting the robustness of our
approach to some extent.
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Figure 6. Using ResNet-50 as the backbone network, we compare the performance of self-supervised
models fine-tuned on the NWPU-RESISC45 dataset with a training ratio of 20% for five different
image sizes: 96, 128, 160, 192, and 224.

4.2.3. Comparison with ImageNet Pretraining

ImageNet is a very large dataset that requires not only a large storage space but also a
very large number of GPU hours to initialize a model on it, and in general, it is difficult to
train models on this dataset. As shown in Table 2, compared to ImageNet pretraining, our
framework needs a much smaller amount of storage space and much fewer GPU hours for
training to obtain comparable results on the NAP dataset. With SSL on such limited remote
sensing images as pretraining, WRN-50 obtains even better results than those achieved
with ImageNet pretraining.

Table 2. Comparisons of random initialization, ImageNet pretraining, and SSL, where T.R. is an
abbreviation for training ratio.

Method Param (M)
Pretraining Details NWPU-RESISC45

Total Images Storage (GB) Epochs Pretraining GPU Hours T.R. = 10% T.R. = 20%
Random Initialization:
ResNet-50 23.60 — — — — 65.89± 1.25 81.44± 0.24
ResNeXt-50 23.07 — — — — 72.10± 0.64 82.26± 0.28
WRN-50 66.93 — — — — 65.78± 0.41 81.82± 0.58
ImageNet Pretraining:
ResNet-50 23.60 1,431,167 155.38 120 227.52 89.99± 0.11 92.95± 0.19
ResNeXt-50 23.07 1,431,167 155.38 120 270.76 91.04± 0.19 93.59± 0.13
WRN-50 66.93 1,431,167 155.38 120 338.86 90.52± 0.24 93.53± 0.18
SSL on NAP:
ResNet-50 23.60 71,900 4.59 300 4.15 89.58± 0.25 92.21± 0.12
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Table 2. Cont.

Method Param (M)
Pretraining Details NWPU-RESISC45

Total Images Storage (GB) Epochs Pretraining GPU Hours T.R. = 10% T.R. = 20%
ResNeXt-50 23.07 71,900 4.59 300 5.92 89.98± 0.13 92.96± 0.12
WRN-50 66.93 71,900 4.59 300 6.19 90.70± 0.15 93.41± 0.19
SSL on NAP+:
ResNet-50 23.60 200,000 17.81 300 10.55 91.55± 0.12 93.79± 0.16
ResNeXt-50 23.07 200,000 17.81 300 14.55 92.70± 0.19 94.48± 0.12
WRN-50 66.93 200,000 17.81 300 14.61 92.80± 0.17 94.55± 0.13

4.2.4. Beyond ImageNet Pretraining

Intuitively, training on more data can improve the representational and generalization
capabilities of a model. To explore the boundaries of our proposed method, we also con-
ducted experiments on a larger dataset, NAP+. One exciting finding is that we can obtain
better results than with ImageNet pretraining while incurring much less consumption
of computational resources. Without any modifications to the network, self-supervised
training on the NAP+ dataset followed by fine-tuning on the NWPU dataset yields better
results than ImageNet pretraining. Taking the ResNet-50, ResNeXt-50, and WRN-50 net-
works as examples, we achieved improvements of 0.84%, 0.89%, and 1.02%, respectively,
compared with ImageNet pretraining at a 20% training ratio on the NWPU dataset. These
experimental results reflect that better representations can be learned by using only remote
sensing images. The CNN backbones learned in this manner are more specific for the
remote sensing images.

4.3. Ablation Study

In addition to the method of weight initialization, two major improvements are
introduced in the framework proposed in this paper to help train models on limited remote
sensing images: the specific data augmentation strategy search and the regularization
strategy. In this section, we explore the effectiveness of these two improvements. We
investigated each component of GFSC by designing several controlled experiments on
NWPU-RESISC45. For convenient performance comparisons, ResNet-50 initialized via SSL
on NAP+ was used to explore the performance of the different components.

4.3.1. Data Augmentation in GFSC

We analyzed the effect of the search for data augmentation strategies with different
weight initialization methods. From Table 3, we find that the proposed data augmen-
tation strategy search is more effective than the default data augmentation strategy on
ImageNet. The data augmentation strategy search results in higher probabilities of color
transformations and rotation operations, while cropping operations are rarely used. This
may be related to the high background complexity of remote sensing images compared to
natural images.

Table 3. Ablation study on NWPU-RESISC45 with a training ratio of 20%.

Method FAA Mixup CutMix Accuracy

ResNet-50 (SSL) — — — 93.79± 0.16
ResNet-50 (SSL) — —

√
93.60± 0.11

ResNet-50 (SSL)
√

— — 93.98± 0.17
ResNet-50 (SSL) —

√
— 94.01± 0.14

ResNet-50 (SSL)
√ √

— 94.16± 0.08

4.3.2. Regularization Strategy in GFSC

Table 3 also shows the experimental results obtained with and without the regulariza-
tion strategy. From the results, it can be seen that the regularization strategy can effectively
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improve the accuracy. By contrast, CutMix [53] does not work well on remote sensing
images; we conjecture that this is because unlike in natural images, the objects in remote
sensing images are often not in the middle, so this patch-based method of constructing
samples is ineffective.

When both the Mixup regularization strategy and the data augmentation strategy
search method are used simultaneously, the accuracy is consistently improved, and better
results are achieved.

4.4. Comparison with State-of-the-Art Methods

In this section, the performance achieved with the proposed GFSC is compared with
that of several other state-of-the-art methods. To ensure fair comparisons, several meth-
ods were chosen, including DCNN [16], EAM [14], MGCAP [56], FACNN [17], CNN-
CapsNet [57], DDRL-AM [58], and HABFNet [5]. Most state-of-the-art methods use
ImageNet-pretrained CNNs to generate the scene representations for RSSC. It should
be emphasized that many of these models are carefully designed, and many are based on a
feature fusion approach; in contrast, our approach uses only common CNNs.

Table 4 shows the results obtained on three RSSC datasets. The proposed GFSC
achieved accuracies of 94.82%, 97.56%, and 99.46% on the NWPU, AID, and UC-Merced
datasets, respectively. In addition to high accuracy, we can see that our method also
exhibits small standard deviations, indicating that it is more stable and robust than the
other methods. Better results may be achieved if the feature fusion methods are used on
the basis of our CNN backbones.

Table 4. Comparison of the classification accuracies (%) achieved with our GFSC framework, CNN-
based baselines, and state-of-the-art methods.

CNN-Based Methods
NWPU-RESISC45 AID UC-Merced

T.R. = 10% T.R. = 20% T.R. = 20% T.R. = 50% T.R. = 50% T.R. = 80%
DCNN [16] 89.22± 0.50 91.89± 0.22 90.82± 0.16 96.89± 0.10 — 98.93± 0.10

MG-CAP (Bilinear) [56] 89.42± 0.19 91.72± 0.16 92.11± 0.15 95.14± 0.12 — 98.60± 0.26
MG-CAP (Sqrt-E) [56] 90.83± 0.12 92.95± 0.13 93.34± 0.18 96.12± 0.12 — 99.00± 0.10

CNN-CapsNet [57] 89.03± 0.21 92.60± 0.11 93.79± 0.13 96.63± 0.12 97.59± 0.16 99.05± 0.24
FACNN [17] — — — 95.15± 0.11 — 98.81± 0.24

DDRL-AM [58] 92.17± 0.08 92.46± 0.09 92.36± 0.10 96.25± 0.05 — 99.05± 0.08
ResNet-50+EAM [14] 90.87± 0.15 93.51± 0.12 93.64± 0.25 96.62± 0.13 — 96.62± 0.13
ResNet-101+EAM [14] 91.91± 0.22 94.29± 0.09 94.26± 0.11 97.06± 0.19 — 99.21± 0.19

HABFNet [5] 92.75± 0.18 94.54± 0.06 95.48± 0.26 96.95± 0.17 98.47± 0.47 99.29± 0.35
ResNet-50 (ours) 92.08± 0.17 94.16± 0.08 95.59± 0.22 97.02± 0.11 98.06± 0.32 99.03± 0.27

ResNeXt-50 (ours) 92.94± 0.13 94.73± 0.10 95.97± 0.15 97.39± 0.12 98.39± 0.29 99.22± 0.16
WRN-50 (ours) 93.13± 0.08 94.82± 0.05 96.37± 0.13 97.56± 0.09 98.57± 0.23 99.46± 0.15

The NWPU-RESISC45 dataset is still a challenging dataset, on which the performance
achieved has not yet been saturated. Even for this dataset, WRN-50+GFSC achieved
remarkable performance, with overall accuracies of 93.13% and 94.82% for training ratios of
10% and 20%, respectively. We show an example of the category-level classification results
in Figure 7.

For the experiments using the AID dataset, the training ratios were set to 20% and
50%. The performance comparisons between our method and the other state-of-the-art
methods are shown in Table 4. Our proposed framework achieved consistent improvements
with both training ratios. The improvement is more obvious when the amount of data
for training is relatively small. Compared with the previous approaches, GFSC enables
considerable improvements using only common backbone networks.
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Figure 7. Confusion matrix for NWPU-RESISC45 with a training ratio of 20%, we have hidden all
zero values in this matrix to highlight important data.

The UC-Merced dataset is a small dataset with relatively few training samples. Al-
though the accuracy of previous methods has been saturated on this dataset, our method
still achieved some improvement. In particular, with a training ratio of 50% and a training
set of only approximately 1000 images, our model still achieved a top-1 accuracy of 98.57%.

4.5. Visualization and Analysis
4.5.1. Image Embedding Visualization

Figure 8 shows t-distributed stochastic neighbor embedding (t-SNE) [59] visualiza-
tions of the remote sensing image representations learned by WRN-50 with ImageNet
pretraining, WRN-50 with SSL pretraining, and WRN-50 with ImageNet pretraining fol-
lowed by fine-tuning and WRN-50 trained with GFSC. Specifically, we chose all 10k images
from AID, and the image-level representations were then projected into two-dimensional
space using t-SNE. It can be clearly seen from the visualization results that SSL allows a
model to learn more features of remote sensing images, and the extracted features already
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have good discriminative properties without fine-tuning. It is also clear that the image
representations learned by WRN-50 trained with GFSC (ours) are better semantically sepa-
rated than those learned by WRN-50 with ImageNet pretraining followed by fine-tuning.
The visualization results reflect the ability of our framework to help a network learn more
discriminative features.

(a) (b) (c) (d)

Figure 8. Visualizations of image representations learned by WRN-50 with ImageNet pretraining,
WRN-50 with SSL pretraining, WRN-50 with ImageNet pretraining followed by fine-tuning and WRN-
50 trained with GFSC on the AID dataset with a training ratio of 20%, generated using t-SNE [59].
Each image is visualized as one point, and the colors represent different classes. (a) ImageNet
pretraining; (b) SSL pretraining; (c) previous paradigm; (d) GFSC.

4.5.2. Class Activation Visualization

To further investigate whether the CNN networks have learned discriminative features
in complex context, we employ Grad-CAM [60] to visualize class activation of different
networks. Grad-CAM, standing for gradient-weighted class activation mapping, is a tech-
nique devised to provide visual explanations from models in computer vision, particularly
convolutional neural networks (CNNs). Through Grad-CAM, it is feasible to produce
a heatmap for a specific class over the input image, highlighting regions critical for the
model’s prediction.

As shown in Figure 9, these selected scene images are sampled from the NWPU-
RESISC45 validation set. These samples are very difficult to distinguish and the baseline
model cannot classify them correctly. Specifically, we compared the prediction labels and
confidence scores obtained using a GFSC-trained network (WRN-50+GFSC) with those of
the corresponding baseline model (WRN-50) based on ImageNet pretraining. As Figure 9
shows, the networks trained under GFSC have stronger abilities of feature extraction.
It is clear that GFSC-trained network better captures the details representing semantic
features in complex contextual scenes. Compared with the baseline model, it not only
classifies correctly but also obtains higher confidence in the classification results for some
difficult scenes.
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Figure 9. Visualization results of Grad-CAM [60]. The input images are sampled from the NWPU-
RESISC45. Under each image, the prediction and ground-truth labels are shown. P denotes the
softmax possibility of each network for the prediction class. We compare the class activation visu-
alization results obtained from a GFSC-trained network (WRN-50+GFSC) and the corresponding
baseline model (WRN-50) based on ImageNet pretraining.

5. Discussion

ImageNet pretraining followed by fine-tuning on remote sensing image datasets is a
classical paradigm for training RSSC models, and a large amount of work has focused on
using pretrained CNNs to continuously improve the performance on RSSC tasks. However,
this conventional paradigm presents many problems hindering attempts to achieve further
improvements. Limited by the capabilities of feature extractors pretrained on ImageNet,
there may be an upper bound on the performance that is achievable based on the original
paradigm. In this study, we started by considering various aspects of the overall process
of CNN training in an attempt to utilize the data more effectively. We propose a general
learning framework, GFSC, that allows models to be trained using only remote sensing
images. In the design of the framework, we have considered specific characteristics of
the remote sensing images. Our work bridges the gap in model performance achievable
with and without ImageNet pretraining. Our framework attempts to force various CNN-
based methods targeting remote sensing images to extract more discriminative features.
Compared to networks pretrained on ImageNet, the method we propose allows the network
to focus more on the characteristics of remote sensing images, achieving better performance.
Our experiments indicate that this framework successfully helps different CNN backbones
obtain more discriminative feature representations using only remote sensing images, thus
achieving state-of-the-art results.

In future work, with the rapid development of SSL, there is still great potential to
further improve the performance of RSSC. We will continue to focus on SSL and on
extending our approach to other remote sensing interpretation tasks.
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