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Abstract: The foundational technique of code similarity detection, which underpins plagiarism detec-
tion tools, has already reached a level of maturity where it can be effectively employed for practical
applications, demonstrating commendable performance. However, although the understanding
of code clones—referred to as similar codes—has evolved, there has been a noticeable decline in
the emergence of novel proposals for code similarity detection techniques. The landscape of code
similarity detection techniques is diverse and can be divided based on how codes are represented.
Each method, designed to cater to different types of detectable code similarity instances, has distinct
advantages and drawbacks. Therefore, the selection of an appropriate method is crucial and is
contingent on the specific objectives of the analysis. This paper provides a comprehensive explo-
ration of code similarity detection techniques and illuminates the prevailing trends in plagiarism
detection research. It acquaints readers with a spectrum of distinct code similarity detection methods,
accompanied by the requisite contextual background knowledge. Additionally, it presents a detailed
overview of the trajectory of research trends in plagiarism detection.
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1. Introduction

Modern software development occurs in an environment characterized by knowledge–
sharing and collaboration. New technologies and ideas spread rapidly among developers,
offering significant advantages in terms of innovation and efficiency. However, within this
context, issues related to code similarity arise, requiring careful consideration [1,2]. Encour-
aged by an environment and culture that promote the exchange of information and mutual
learning, developers often leverage code snippets to solve similar problems. However,
these code fragments can exhibit structural and logical resemblances, potentially leading
to problems associated with code duplication [3,4]. The duplication of code increases
maintenance costs and raises the likelihood of bugs and security vulnerabilities. Further-
more, there is a darker side to knowledge sharing: the unauthorized copying or plagiarism
of software code can breach copyright laws and lead to academic misconduct [5]. This
dual problem of potentially infringing upon the rights of the original code authors, while
undermining ethical standards within the development ecosystem, must be addressed [6].

Computer and programming education plays a crucial role in advancing the skills
of developers, offering essential hands-on coding exercises and assignments. However,
these code-based tasks, which are administered and performed using digital files, have
become susceptible to easy replication, compounded by the vast availability of educational
resources on the Internet [7,8]. This has led to growing concerns about plagiarism. More-
over, the global shift toward remote education due to the COVID-19 pandemic has resulted
in a significant increase in online submissions for various assignments. Consequently,
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the use of appropriate techniques and tools to detect plagiarism within these submissions
has gained paramount importance. Thus, tackling code plagiarism has become a critical
challenge within the education sector [9]. It not only underscores the significance of main-
taining academic integrity but also emphasizes the need for robust plagiarism-detection
mechanisms. Educational institutions are recognizing the importance of implementing
effective strategies to curb plagiarism and promote ethical coding practices. These efforts
are essential to fostering a fair learning environment and ensuring that the educational
achievements of students are correctly evaluated and rightfully earned.

In this paper, we begin by providing the foundational knowledge required to com-
prehend the techniques employed to detect similar codes, which form the basis for pla-
giarism detection. These code similarity detection techniques can be categorized into
text-based [10–15], token-based [16–21], tree-based [22–26], program dependence graph
(PDG)-based [27–31], and hybrid methods [32–35], each determined by the approach used
to represent the code structure. We then examine the evolution and current research direc-
tions of these techniques. Building upon this foundation, the primary objectives of this
paper are twofold: first, to outline the ongoing research landscape of plagiarism detection
techniques, highlighting the methodologies being explored; and second, to offer insights
into key considerations and promising avenues for future research in this domain.

Based on the findings of our investigations, the process of plagiarism detection is
composed of identifying potential instances of similar code and subsequently determining
whether plagiarism exists within the identified similarities. Notably, those attempting
plagiarism often employ diverse obfuscation strategies to avoid detection. Nonetheless, our
exploration of code similarity detection techniques reveals that many of these obfuscation
methods can be effectively countered. Given these insights, the trajectory of future research
on plagiarism detection techniques may pivot toward developing decision support systems
capable of assisting in determining plagiarism once suspected instances of similar code
are identified. This avenue suggests a shift away from enhancing already effective code
similarity detection techniques and toward crafting decision-making aids that can offer
comprehensive support for addressing plagiarism-related concerns.

The remainder of this paper is organized as follows. Section 2 explains the background
theory and terminology used in this report. Section 3 examines the trends in code similarity
detection techniques. Section 4 provides additional information on research trends related
to plagiarism detection and on available detection tools. Finally, Section 6 presents the
conclusion and discusses future research directions.

2. Code Clones: Definition and Types

In this section, the concept of “code clone”, which is a general term for similar code,
is defined, and its types are explained. Additionally, background theories and termi-
nologies related to code similarity and plagiarism detection techniques are presented to
provide foundational knowledge for understanding the various techniques explained in
later sections.

Generally, the term code clones refers to two identical code fragments. However, the ad-
jective “same” is not a technical term, and sometimes similar code with some differences,
rather than exact identicalness, is considered a code clone. Depending on how the similarity
of two codes is defined, the method for detecting code clones may differ, and the meaning
of the detected code clones may vary.

Here, we explain the definitions that distinguish code clones from types I to IV, in
accordance with the methods by Davey et al. [36] and Bellon et al. [37], which are widely
used to describe the types of code clones. Table 1 shows brief information about these
different types.
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Table 1. Types of code clones.

Classification Types Explanation

Text Similarity

Type I Code snippets that are identical except for whitespace, com-
ments, etc.

Type II In addition to type I, code snippets that are structurally or
syntactically identical except for identifiers, literals, types, etc.

Type III
In addition to type II, code snippets that include some struc-
tural/grammatical variations of additional statements or ex-
pressions but are nonetheless thought to be copied

Functional Similarity Type IV Code snippets that perform the same computation but differ
in the actual structural/grammatical implementation

If the types of code clones are broadly classified, they can be grouped into type I, II,
and III code clones, which are based on text similarity, and type IV code clones, which
consider functional similarity.

Of all of the four types, type I is the case with the highest textual similarity, in which
code parts are completely identical except for comments and spaces. In types II and
III, the actual textual similarity becomes progressively lower. Finally, in type IV, even if
there is no similarity based on text, functionally similar cases are judged and considered
as code clones. In the following sections, each type of code clone is described in more
detail, and examples and additional methods for classifying code clones besides types I–IV
are introduced.

2.1. Type I Code Clone

Type I code clones, popularly known as ”exact clones”, consider only substantially
identical pieces of code to be code clones. Note that whitespace characters or comments
that are not involved in actual code execution are ignored in this comparison. Thus, type
I code clones may still exhibit differences in the code, when examined using a general
version control system (VCS), or in the text, when examined using the diff command in
Unix systems. Table 2 demonstrates the similarities and differences that can exist between
an original code and its type I code clone.

Table 2. Example of an original code snippet (left) and its type I code clone (right).

i f ( i >= j ) {
s = t + i ; / / comment 1
t = i − j ;

} e lse
s = t + j ; / / comment 2

i f ( i >= j ) {
s= t + i ;
/ / comment 1
t =i − j ; }

e lse / / comment 2
s= t + j ;

In the second code snippet, most of the spaces between the keywords and variables
have been removed, and the positions of comments comment 1 and comment 2 are com-
pletely different, even in their order relative to the actual code. Moreover, “}”, which marks
the end of the if statement, has been moved to the end of the line above it, before else.
This is the result of moving the newline character “\n” in the line above to the end of “}”.
In the case of these two code snippets, the two codes will likely be assessed to be completely
different by a simple text difference detection technique. However, in the context of code
similarity detection, the second code snippet is considered a type I code clone, i.e., the
strictest type, because there is no actual difference between it and the original, except for
spaces and comments.
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Ignoring code style differences, the type I code clone has exactly the same code.
Notably, the identifiers or literals have been preserved. Thus, code similarity detection
targeting type I code clones can be considered (1) when it is meaningful to compare variable
names or function names, or (2) when the same code is detected among codes using the
same literal. However, in such cases, even a slight change in variable names can cause
similar codes to fail to be recognized as code clones.

2.2. Type II Code Clone

Code similarity detection targeting type II code clones is immune to certain transfor-
mations. In many cases, structurally or syntactically identical pieces of code use different
identifiers or literals. Whereas the detection of type I code clones would assess such code
as different, the detection of type II code clones ignores minor variations and focuses on
the grammatical structure of code fragments to determine code clones. Thus, if the code
similarity detection is based on the criteria for type II code clones, both code fragments can
be detected as code clones.

Consider the following code snippet:

if (i >= j) {
s = t + 1;
t = i - j;

} else
s = t + j;

Then, consider the next code snippet, which is a type II code clone of the previous
code snippet:

if(a >= b) {
c = d + 2;
d = a - b;

}else
c = d + b;

Although the code clone has many differences from the original code, and it is consid-
ered a type II code clone of the original code.

As with type I, differences in some whitespace characters are ignored. However,
unlike with type I, the variables i, j, s, and t are changed to a, b, c, and d, respectively,
and the integer literal 1 is changed to 2. Although there may be differences in the actual
calculation owing to the change in the integer literal, the structures of the two codes are
the same, considering the assignment relationship of the variable names. What should be
noted is that considering the grammatical structure of the code, the range of code that is
determined to be a code clone may vary depending on how much variation is allowed for
the value at the same grammatical position in the type II code clone. Consider the following
code snippet:

if(a >= b) {
c = d + 2;
d = b - a;

}else
c = d * b;

In this snippet, the d = a - b; in the third line of the earlier code snippet has been
changed to d = b - a;. In general, the detection of type II code clones distinguishes which
differently named identifiers are the same and which ones are different. Thus, the change in
the order of the identifiers makes this code fragment not a type II code clone of the earlier
code fragment. Similarly, in this snippet, the last line c = +b; of the earlier code snippet is
changed such that the binary operator + is replaced with *. Because the detection of type II
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code clones distinguishes between the binary operators +, -, *, and /, it is determined that
the latter code snippet is not a type II code clone of the earlier code snippet.

However, in the process of detecting similar codes via the analysis of actual codes,
there are cases in which it is necessary to ignore even these variations and track structural
similarities. For example, suppose a piece of code is used in multiple places throughout
the entire codebase. For various reasons, each piece of code may have acquired a slightly
different form as the codebase was modified by multiple developers. If we find a problem
with one piece of code, we may want to review all other similar types of code. Some
developers may have accidentally changed the order of the variables or changed what
should have been + to - during the editing process. If we attempt to detect type II code
clones without ignoring these changes, we may overlook the real problem. In this case,
by reducing the sensitivity of code clone detection to identifiers or operators, all binary
operators are regarded as the same, or identifiers are regarded as the same as variable
names, function names, etc. In this way, the changed code fragments can still be detected
as type II code clones.

2.3. Type III Code Clone

Among the code clone types that consider text similarity, type III code clones are
the type that allows the greatest variation. This type of code clone considers the overall
similarity of code snippets and allows sentences to be changed, added, or deleted. Consider
the following code snippet:

if (i >= j) {
s = t + 1;
t = i - j;

} else
s = t + j;

The following code snippet is a type III code clone of the previous code snippet:

if (i >= j) {
s = t + 1;
u = v + t; //added.
t = i - j;

} else
s = t + j;

Although a new sentence has been added as the third line, the two code snippets show
sufficient similarity, considering that the latter snippet has only six lines of code in total.

The detection of type III code clones is based on the similarity of the overall code,
and thus, code fragments that, at first glance, appear to have many differences are also
identified as code clones. Consider the following code snippets:

Code snippets 1 and 2 in Figure 1 show algorithms that traverse a tree depth-first and
make a list of the labels of its nodes. If we simply compare the code snippets, the two look
very different, except for some matching words. However, upon closer inspection, it can be
seen that except for the addition of sb.append(“,”); in code snippet 2, only the type or
identifier was changed. Therefore, it is determined that of these two code snippets, one is a
type III code clone of the other. If the third line of code snippet 2 had no added statements,
then it could also be determined that of these two code snippets, one is a type II code clone
of the other.

Code fragments are considered type III code clones if there is sufficient similarity
between the actual code fragments, even if there are significant changes. Therefore, when
the goal is specifically to detect this type of code clone, it is possible to find similar codes
that exhibit differences beyond the various changes that occur during code development.
The detection of type III code clones can also determine whether part of the code has been
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divided into detailed pieces and copied. Therefore, many code clone detection studies have
aimed at detecting type III code clones.

Figure 1. Example of a code snippet and its type III code clone.

2.4. Type IV Code Clone

Type IV code clones are discriminated based on semantic similarity, and not on the
similarity of the code itself. Therefore, clones of this type may not have similar code
structures and are less likely to be pieces of code copied from the original, which are
generally agreed upon to be code clones. Type IV code clones can occur when similar logic
is implemented in different forms for the same purpose. Consider this code that calculates
a factorial:

int factorial(int n, int acc){
if(n == 1)
return acc;

else
return factorial(n - 1, n * acc);

}

The code snippet above forms a Type IV code clone with the following code snippet:

int fact(int n){
int f = 1;
for(int i = 2; i <= n; i++)
f = f * i;

return f;
}

The functions presented in the two code snippets have little lexical or syntactic simi-
larities. Therefore, based on the criteria for type I–III code clones presented thus far, we can
conclude that the two code snippets are not at all similar. However, regarding the meaning
of the actual code, both code fragments perform the same function of calculating n! for a
given n. Thus, the occurrence of the type IV code clone is determined based on the semantic
similarity of this form.

Type IV code clones are very difficult to detect because they cannot be determined
using simple textual, lexical, or grammatical similarities. The example presented here is
intended to help in understanding type IV code clones by clearly indicating the purpose of
the code. However, in general, research on detecting this type of code clone aims to find a
piece of code that implements a similar type of logic, regardless of its purpose.

2.5. Gapped Clone

A gapped clone is formed when a certain difference occurs between two pieces of
code; the code portion with this difference is called a gap [38]. When a piece of code is
copied, three different types of gaps can occur:
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• Rename and add code;
• Rename and delete code;
• Rename and change code.

Here, renaming includes cases in which there is no one-to-one correspondence with
the original identifier, such as that shown in the last code snippet of Section 2.2. When
codes are added or deleted, the sentences that have not been added or deleted will have the
same grammatical structure. On the other hand, when a code is changed, the grammatical
structure of the sentence in which the change occurred also changes. Gapped clones are
included among type III code clones, which more clearly classify differences from the
original code snippet. In addition, type III code clones consider the similarity of the whole
code; therefore, even if a gapped clone has differences besides the type of gap presented,
pieces of code with high similarity may belong to this group.

2.6. Reordered Clone

A reordered clone is formed when the order of parts of the code is changed. For
example, consider a case in which the change in order does not change the data or control
dependency of the code, such as that shown by two snippets of bison discovered by
Komondoor and Horwitz [39].

If we swap the first and second lines of code of the two code snippets, and swap fp1
and fp2, as shown in Figure 2, there is no difference, except that the remaining identifiers
are different. Changing the order of the first two lines of code does not affect the execution
of the rest of the code; therefore, semantically, the two code snippets have the same form of
operation. Therefore, it can be considered that of these two code snippets, one is a type
IV code clone of the other. Additionally, the difference between the two code snippets can
be thought of as being due to identifier renaming and sentence change, and thus it can be
determined that of the two codes, one is a type III code clone of the other.

Figure 2. Example of a code snippet and its reordered clone.

3. Code Similarity Detection Techniques

In this section, we introduce code similarity detection techniques. First, the general
code similarity detection process is examined overall, and various proposed methods for
detecting similar codes are presented. These code similarity detection techniques can be
classified in many ways; however, they are usually divided into hybrid methods that
combine a variety of methods, such as text-based, token-based, tree-based, and PDG-based
techniques, depending on how the code is expressed and processed. After examining
these methods, we discuss the types of code clones that each method can detect and their
respective limitations.

3.1. General Code Similarity Detection Process

Techniques for detecting similar codes are generally composed of pre-processing,
transformation, and detection steps.

3.1.1. Pre-Processing

In the pre-processing step, the code is prepared for subsequent steps by processing
into a desired shape. The code to be analyzed is selected from the entire codebase, and the
unit to be analyzed is determined. For example, a code file containing constants to be used
in a program may contain many similar codes; however, in many cases, these are not of
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interest. Additionally, files that are not subject to analysis, such as those containing data
other than the source code, are excluded. An important aspect of this step is determining
the unit of code to be analyzed. The unit to be subjected to code similarity detection may
be influenced by the purpose of detection and the type of code clone. To detect similar
code by file, function, or sentence, the code is divided accordingly. These actions are often
combined with the next step, which is transformation.

3.1.2. Transformation

In the transformation step, the pre-processed code is re-expressed as an expression
method for code similarity detection. This is one of the key steps in code similarity
detection, because the next step, i.e., detection, is significantly influenced by how the
code is represented in the transformation step. Classification of code similarity detection
techniques is also often based on this transformation step. Depending on the technique,
the code is broken into strings of appropriate units, turned into a list of tokens through
lexical analysis, and converted into an abstract syntax tree (AST) through parsing or into a
PDG through more complex static/dynamic analysis. In this process, blank characters or
comments that are not of interest in the analysis are removed.

In many cases, this transformation is processed mechanically using several proven
programming language techniques; however, each technique makes some difference in
the expression depending on the type of code clone to be detected. For example, in text-
based techniques, each identifier is replaced and used for identifier normalization [10]. In
addition, as discussed in Section 2, even when a code is expressed in token or tree form,
the sensitivity of the expression is adjusted whenever the design of a technique is applied.

3.1.3. Detection

In the detection step, the transformed code representation is examined and searched
for similar codes. This is the step of the process that demonstrates the largest differences
between code similarity detection techniques; it can be said that each technique applies a
distinct design for finding the target code clone. A matching algorithm is applied to the
transformed code representation to create a list of clone pairs determined to be similar. The
algorithms used for matching code expressions include hash value comparison [22,32,40],
algorithms [10,16,33] that use suffix trees [41,42], and dynamic pattern matching (DPM).
Recently, deep learning [34] and methods for extracting and comparing n-grams from lists
of tokens [43] have also been used.

3.2. Text-Based Techniques

Text-based techniques consider code as a form of string enumeration. These techniques
compare codes in units of predetermined strings to determine whether they match and
generally operate in a way as to find the longest matching string. Text-based techniques
tend to have the least transformation of code before the matching algorithm for detection is
applied. However, because these techniques are purely string-based or use lexical analysis,
the detected code clone may not correspond well with the grammatical structure of the code.

The advantage of text-based techniques is that they do not require complex code
transformation; therefore, they are mostly language-independent and have fast execution
times. In many cases, text-based techniques use the original code as a string without
changing it into another form, and thus, the implementation of the technique itself is not
affected by a change in language. Some techniques that use lexical analysis also use pattern
matching to transform the necessary part of the code into a token form; consequently,
the burden required to implement them in a new programming language is not significant.

A weakness of text-based techniques is that for similar code to be found, it must
exhibit high textual similarity. Therefore, code clones detected using purely text-based
techniques are mostly of type I. Nonetheless, when the detection targets discontinuous code
clones via the division of the code into word- or line-based character strings, it becomes
possible for type III code clones to be detected also, assuming that there is no identifier
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change. However, these techniques, which require text matching in many cases, have
limited detection performance and are unable to detect certain cases of similar codes that
are affected by slight deformations.

One example of a purely text-based technique is Johnson’s technique [11,12]. Its
working principle is to divide the code line-by-line to extract and compare fingerprints.
To extract the fingerprints, the Karp–Rabin algorithm [44,45] is used. To find additional
matching codes, the conversion process removes spaces, etc., and replaces consecutive
alphanumeric characters with a single character, i, for normalization. For example, if we
have code avg = sum/count, it is converted to i = i/i. In this case, many false positives
can occur, because the identifiers are mostly ignored. Nonetheless, including the condition
that at least 50 lines of code must match, the number of falsely detected code clones can
be reduced.

Baker’s Dup [10,13] is a text-based technique that uses lexical analysis to apply regular-
ization. This technique removes whitespace characters and comments; changes variables,
functions, and type names to special parameters; and concatenates into a single line all the
lines of the code unit that we want to subject to comparison. Subsequently, hash values are
extracted from each line and compared, and a suffix tree algorithm is used to find the pair
of longest matching lines. Although type II code clones can be detected using this method,
this technique exhibits low overall detection performance and partial influence on the code
style depending on the location of “{”. To solve this problem, Baker devised a method that
uses the token of each line when comparing the lines [46]. Because it uses tokens, it can be
classified not only as a text-based technique but also as a token-based technique.

Another text-based technique is that of Ducasse et al. [14,15]. This technique reads a
file, divides it into line units, removes spaces and comments, and applies DPM to detect
similar code. The output is the line number of the clone pair, including a line deleted
in the middle to indicate a gap clone. This method can be easily implemented in other
programming languages because it does not perform language-dependent conversions
such as parsing. However, this technique can only detect type I code clones. Furthermore,
its language-independent characteristic makes it difficult to guarantee that the detected
code clones truly represent meaningful similar codes.

3.3. Token-Based Techniques

Token-based techniques regard code as a sequence of tokens during the transformation
and detection steps. After tokens are extracted from the code using lexical analysis, the way
this information is used can vary significantly depending on the nature of the technique.
Token-based techniques follow a method of finding matching sub-sequences in the entire
token sequence and outputting the corresponding code parts as a code clone. Because codes
are converted into token sequences, token-based techniques have an advantage in that
they are not sensitive to minor changes, such as differences in code style, unlike text-based
techniques, and have a high possibility of detecting meaningful similar codes because
they include lexical analysis. However, because lexical analysis is required, token-based
techniques cannot be applied completely independently of language, unlike text-based
techniques, although it is still easier for token-based techniques to support new languages
than it is for tree-based techniques.

One of the most famous token-based techniques is CCFinder [16], which supports a
variety of programming languages, such as Java, C/C++, COBOL, VB, and C#. A new
version, CCFinderX [17], was recently released [47]. CCFinder uses a lexical analyzer
to extract tokens from each line of code and integrates tokens from the entire code into
a sequence of tokens. Thereafter, the tokens are converted in two ways. The first is
to modify the tokens according to the rules defined for each supported language. This
is carried out to discriminate between codes with different grammatical structures but
similar meanings. The second is a transformation that replaces identifiers corresponding
to variables, functions, and type names with special tokens. The suffix tree-matching
algorithm [48] is then used to find matches in this transformed token sequence.
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Baker’s techniques [10,13,46], which were introduced in Section 3.2, can also be clas-
sified as token-based techniques because they use lexical analysis. In particular, Baker
applied a parameterized matching technique that replaces the same identifier with the same
fully qualified name, as described in Section 2.2. For example, code snippets max(a,b,a)
and min(a,a,b) on different lines can be converted into method0(var0, var1, var0) and
method0(var0, var0, var1), respectively. Using this transformation method, code clones
can be detected by distinguishing between different parameter sequences, etc.

CP-Miner [18,19] uses a frequent subsequence mining algorithm called CloSpan [49]
to find matching token sequences differently from the previously introduced techniques.
A closed subsequence implies that the support of the subsequence is different from that
of the sequence containing it, which CloSpan efficiently finds. CP-Miner uses extended
CloSpan to detect gap clones without being affected by the addition or deletion of sentences.
This overcomes the limitations of CCFinder and Baker’s techniques, which are affected
by the order in which tokens appear. CP-Miner has succeeded in detecting more than
150,000 clone pairs in a large-scale codebase, demonstrating that it can efficiently detect
copy-pasted code, given a large amount of code.

Token-based techniques are also widely used in plagiarism detection because of their
ease of supporting multiple languages and detecting code clones in multiple files. Among
the techniques discussed in Section 4, those that employ token-based methods include
Winnowing [50] (used by MOSS), JPlag [20], and SIM [21]. In the case of Winnowing, its
method of using the fingerprint of the code in plagiarism detection is less affected by the
partial addition, deletion, and modification of code; however, the fundamental limitations
of token-based techniques still exist.

3.4. Tree-Based Techniques

Tree-based techniques convert target programs into parse trees or ASTs, identify
common subtrees, and detect them as clones. For these, syntax analysis based on the
grammar of the programming language in which the target program is written is required.
Therefore, these techniques are dependent on the language used, and adding support for a
new language requires more work than those needed for the text- or token-based techniques
discussed earlier. However, if a parser for the language already exists, the process of
applying the matching algorithm to the obtained AST will not change significantly. Adding
support for a language that already has a parser is not much more difficult than for a
token-based technique.

Unlike text-based or token-based techniques, which must undergo a process such
as normalization to avoid being affected by specific identifiers, etc., AST reflects only
the grammatical structure of the code (Figure A1), and thus this effect can be ignored
without any special measures. However, if specific identification is required, such as
for certain partial identifiers or types of operators, it is necessary to express these parts
through the inclusion of additional information in the AST. A method widely used in actual
implementations is to configure the label of the AST node with the addition of the specific
property value shown in the actual code to the AST node type that represents the syntactic
meaning, which is then used to find similar nodes in partial tree matching.

The greatest advantage of tree-based techniques is that the detected code clones
are highly precise because two code fragments that are compared must have a similar
grammatical structure to be considered a match. In token-based techniques, the comparison
is between sequences of tokens, and thus, similar token sequences can be detected by chance.
By contrast, in tree-based techniques, information for the grammatical structure is added;
therefore, there is a high probability that the detected clone pairs have more grammatically
significant similarities.

In addition, tree-based techniques have the advantage of capturing similarities be-
tween modified codes. Even if sentences are added, deleted, or changed, these changes are
limited to a partial tree, and thus the remainder of the AST can be matched and determined
to be a clone. For this reason, it is more resistant to transformations than token-based
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techniques, where a significant number of tokens, and consequently the token sequence,
can be changed when a sentence is changed. Therefore, tree-based techniques often aim to
detect type II code clones without significant difficulty, and type III code clones.

However, a limitation of tree-based techniques is that they require parsing and tree-
based comparisons to identify similar code. As previously mentioned, the need for pars-
ing can be a stumbling block in supporting a new language, especially when a well-
implemented parser does not yet exist. Moreover, the need for tree-based comparison
implies that these techniques must employ algorithms applicable to two-dimensional data
structures, which have a greater time complexity, instead of algorithms applicable to fast
and efficient strings or sequences, which can affect their overall execution performance.
This problem can affect the scalability of these techniques to large-scale codes. To overcome
this, tree-based techniques also use a method for finding common parts that transform the
AST into another form [23,24,32].

CloneDR [22] is a pioneer among tree-based techniques. After obtaining the AST
from the target code, CloneDR analyzes the subtree. To overcome small transformations
and detect similar subtrees, the subtrees are classified into buckets using a hash function.
After a similarity metric is calculated for subtrees included in the same bucket, a similar
subtree is detected if the similarity exceeds a certain threshold. This similarity metric is
calculated using a simple method in which the proportion of nodes shared between two
subtrees is divided by the proportion of all nodes, which is a method often used to calculate
the similarity of trees. CloneDR has commercially available implementations [51] and
supports the most popular languages, including C, C++, C#, Java, Python, and ECMAScript.
Considering that the implementations of most techniques are not open, or that existing
implementations support only some languages for proof of concept, CloneDR has an
advantage in terms of accessibility, aside from its performance.

Another tree-based technique is that of Wahler et al. [23]. This technique further
abstracts the AST, changes it into an XML expression [25], and uses a method for detecting
similar codes based on frequent item set mining [26]. Another technique, proposed by
Evans and Fraser [24], uses a higher level of abstraction. This technique parameterizes an
arbitrary subtree to further abstract the AST.

For example, consider the following parameterized code clone:

if(s > ?)
return t;

Two ways it can occur are as follows:

if(s > t)
return t;

if(s > t * 2)
return t;

In the first code snippet, the parameter ? is simply replaced with t. Thus, it can be
regarded as a leaf node change in the AST. However, in the second code snippet, t * 2
corresponds to InfixExpression, which includes binary operators. In general, it appears
in the form of a partial tree on the AST with child nodes corresponding to two operands
attached to the parent node. In other words, because the parameter ? in the aforementioned
parameterized code clone is replaced with a partial tree, it can be said that it has a higher
level of abstraction than if it were simply parameterized in the form of a one-to-one
correspondence of nodes. Taking advantage of this, Evans and Fraser’s technique can be
used to detect gap clones.

3.5. Pdg-Based Techniques

PDG-based techniques analyze a given code to create a PDG representing the data flow
and control flow of a program and then detect similar codes by applying an isomorphic
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subgraph matching algorithm between their PDGs. Compared to the code representations
of tree-based techniques, where the syntactic structure of the code remains intact, PDGs
are more abstract and less subject to syntactic changes. Tree-based techniques can ignore
small variations in detecting similar codes. However, as can be seen from the similarity
metric used by CloneDR, described in Section 3.4, a certain level of syntactic similarity is
still required to detect code clones. Beyond these limitations, PDG-based techniques can
detect discontinuous clones or resequencing clones that lack grammatical similarity and
are, thus, likely to detect type IV clones.

Although PDG-based techniques can overcome the weaknesses of other techniques
and detect more complex clones, they have several limitations. The biggest problem is
that regardless of the technique used, we need a tool that can write PDGs. Because the
languages supported by currently available tools for creating PDGs are quite limited, this
method of detecting code clones is not suitable when support for various languages is
required. Additionally, because the overhead of creating a PDG is greater than that of other
techniques that rely on tokens and trees, the overall performance of PDG-based techniques
is inevitably inferior. Another problem is that because the PDG is a graph, detecting similar
patterns is more difficult than when other representations are used. Compared to other code
expressions for which efficient matching algorithms already exist, the isomorphic subgraph
problem is an NP-complete problem, and although there are methods that can approximate
it at a practical level, there is not yet a method to solve this problem efficiently. Therefore, it
is difficult to apply this method to a large codebase, owing to its poor scalability.

Nevertheless, attempts have been made to develop PDG-based techniques that over-
come the limitations of existing techniques. For example, Komondoor and Horowitz’s
PDG-DUP [27] detects code clones by finding PDG subgraphs using program slicing. Based
on this, they also proposed a technique in which codes of similar functional units are auto-
matically extracted by grouping the detected code clones while preserving the meaning
of the original code [28,29]. On the other hand, Krinke proposed a method for detecting
code clones that finds a maximal similar subgraph in a fine-grained PDG in an iterative
manner [30]. Whereas techniques that consider only the grammatical structure of codes
generally have a tradeoff, in that recall is lowered when precision is increased, the proposed
technique has produced results with both high precision and recall when using a detailed
PDG. GPLAG [31] is a plagiarism detection technique based on PDG. Its creators attempted
to develop a technique that is resistant to attempts to avoid plagiarism detection using
the characteristics of PDG-based techniques that are resistant to modification. In GPLAG,
a search-space pruning method for plagiarism detection is used to compensate for the
disadvantages of the PDG-based technique, which has poor scalability.

3.6. Hybrid Approaches

Hybrid methods refer to techniques that use a combination of the various code expres-
sion methods introduced thus far. However, these techniques may be classified as token-
or tree-based techniques based on the main code expressions. Classification based on
precise and rigorous code representation is not a simple problem, because many techniques
proposed in practice attempt to combine various methods to employ the advantages of
various code representations while avoiding their respective disadvantages.

Deckard [32] is a code clone detection technique, proposed by Jiang et al., that first
writes an AST in a given code and then converts it into a node-type vector. The node-
type vector contains elements for all the possible AST node types and the number of
node types that actually appear. Figure 3 shows the AST written for the code snippet
if(a >= b) swap(a, b); and its node-type vector. In the AST, nodes of type if, infix,
and func_call appear only once each, whereas nodes of type name appear five times. These
numbers appear as elements of a vector. On the other hand, the return type shown in blue
is marked with the number 0 to indicate that it does not exist in the current AST, although it
is a node type that can actually appear.
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Figure 3. AST and node-type vector.

After Deckard converts the AST to an integer vector in this manner, it uses locality-
sensitive hashing (LSH) [52] to place similar vectors into one bucket.

LSH is designed such that similar elements can be placed in the same bucket, unlike
hash functions, which are generally designed to avoid collisions as much as possible.
Figure 4 shows this characteristic of LSH in a comparison with normal hashing. Each circle
indicates one element. The closer the distances of these elements to each other in the vector
space, the greater their similarity. Whereas conventional hash methods place all elements
in different buckets, LSH places two elements that are sufficiently close to each other in the
first and last buckets. Using LSH in this manner, the effect of clustering using the Euclidean
distance can be obtained very efficiently. Because ASTs placed in the same bucket are close
in distance, they are detected as code clones.

Figure 4. Difference between normal hashing and LSH.

The method of converting ASTs into node-type vectors, as employed by Deckard,
and the method of using LSH for fast code similarity detection are useful in many ways.
First, instead of comparing the ASTs, they are converted into integer vectors such that even
if there are changes in some nodes, it will appear that some elements of the vector are
changed. Therefore, if sufficiently close vectors are detected as code clones, similar codes
can be found regardless of minor code changes. Furthermore, although this integer vector
contains AST information, its structural information is abstracted into numbers. Even in
the case of a reordered clone, in which the order of the code is changed, the range of similar
codes that can be detected is wide because it has the same integer vector if its components
are not changed. In addition, scalability is excellent because, using LSH, it is possible
to quickly check whether there is a code similar to each vector instead of calculating the
Euclidean distance of all pairs of vectors to detect nearby vectors.
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White et al. [34] proposed a learning-based technique based on deep learning. This
technique trains a model using information from the lexical analysis of a large amount of
code and a model containing grammatical structures, by converting the AST into a vector.
To identify code clones, this technique uses a method that converts a given code into an
AST and infers whether there is similar code using the trained results. In their evaluation
results, type I, II, III, and IV code clones were detected using a method that combined
lexical and grammatical structure information. However, there are weaknesses in terms of
efficiency; for example, the time required for learning was up to one hour, and the duration
of the reasoning process for discriminating code clones ranged from several seconds to
several tens of seconds. Furthermore, detection was performed only for clones in file and
method units to secure code units for appropriate training.

Another hybrid method is a technique proposed by Koschke et al. [33], which visits
AST nodes in a preordered sequence and arranges them in rows. For this, a suffix tree
is constructed to derive the longest AST node sequence. As in tree-based methods, this
technique constructs an AST but converts it into a token sequence and applies a suffix tree
algorithm, like in token-based techniques. The grammatical structure information of the
tree is used; however, instead of finding a matching partial tree to find similar code, this
method converts it to linear data and processes it, which has the advantage of being able to
detect similar codes very efficiently.

Tairass and Gray [35] proposed a technique for detecting functional-level code clones
based on Microsoft’s Phoenix framework. Like that by Koschke et al., this technique
constructs a suffix tree using AST nodes and allows for analysis in linear time. How-
ever, this method requires a specific framework and is limited to detecting only exact or
parameterized clones in functional units.

3.7. Evaluation of Code Similarity Detection Techniques

Thus far, we have examined a variety of code similarity detection techniques. In
this section, the characteristics of each type of detection technique are summarized and
evaluated, and trends in the research on code clone detection techniques are discussed.

3.7.1. Characteristics of Code Similarity Detection Techniques

Table 3 summarizes the characteristics of each code similarity detection technique.
The level of abstraction impacts both the accuracy and generality of detection, whereas
language dependency affects the diversity of detection targets. Efficiency governs the
detection speed and resource utilization, whereas extensibility ensures applicability across
various project scales and environments. These factors are pivotal in determining the
quality and practicality of code similarity detection, rendering them indispensable in
software development and maintenance. Given their significance, we have detailed each of
these features in Table 3.

The level of abstraction indicates the abstraction of the code expression. The detected
clone types are code clone types that are expected to be detected by each technique. Of
course, because the types of code clones that can be detected differ even among techniques
using the same code expression, this is a rough summary of the types that each technique
can detect. Language dependency refers to the dependency of each technique on the
language of the target code. The higher the language dependency, the greater the difficulty
of adding support for a new language. Efficiency is generally a summary of the efficiency of
techniques that use each code expression. Finally, extensibility refers to whether a technique
of this type can be applied to a larger codebase or a larger set of code snippets.
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Table 3. Characteristics of code similarity detection techniques.

Feature Text-Based Token-Based Tree-Based PDG-Based Hybrid

Abstraction Level low middle high very high middle

Detected Clone
Types

Type I, II,
parameterized

clone, limited gap
clone

Type I, II,
parameterized

clone, limited type
III and gap clone

Type I, II,
parameterized

clone, limited type
III and gap clone

Type I, II, III, IV
and reordering

clone

Type I, II, III, IV
and parameterized,
gapped, reordered

clones, etc.

Language
Dependency low middle high very high high

Efficiency high high middle low middle

Extensibility high high middle low middle

Excluding hybrid techniques, the level of abstraction increases from left to right.
However, language dependence tends to increase to obtain such code representation.
Additionally, even if the level of abstraction is high, the amount of information contained in
the actual code expression increases as the information is obtained through lexical, syntax,
and static/dynamic analyses. Therefore, efficiency is partially reduced, and scalability is
limited to properly handle this situation. Hybrid methods combine various techniques
to properly compensate for and offset these strengths and weaknesses, thereby securing
appropriate efficiency and scalability at an intermediate level of abstraction.

When deciding on which code similarity detection technique to use in practice, it is
important to comprehensively evaluate the following aspects: (1) whether the type of code
clone that can be detected by the technique to be used is suitable for the targeted similar
code, (2) whether support for the target language is possible, and (3) whether the technique
is appropriate for the size of the code to be inspected, i.e., is efficient and scalable.

3.7.2. Research Trends on Code Similarity Detection Techniques

Proposals for new code similarity detection techniques were actively made from the
1990s to the early 2000s. However, from the mid-2000s, proposals for new techniques
began to decrease rapidly. Code clone detection tools such as CCFinder (2002) [16], CP-
Miner (2006) [19], and Deckard (2007) [32], which are often used in research requiring
code similarity detection, were all published in the early to mid-2000s. It is appropriate to
consider that this trend resulted from a change in attitude toward code clones, rather than
from technical limitations encountered in the development of code similarity detection
techniques. In the past, after Fowler referred to code clones as code smell [53], there was
a strong opinion that they impacted maintenance. Code clones are considered to occur
because of reuse due to copying and pasting code; thus, if there is a defect in the code clone,
the defect is propagated. Therefore, it is opined that there is a need to manage the same
code during maintenance. However, as [54–57] revealed in research studies conducted to
analyze the characteristics of code clones and their impact on maintenance, code clones
tend to be more stable because they are reusable codes and are less likely to change to
complete codes or require maintenance. In this way, it was discovered that developers
have been managing them properly. Accordingly, interest in the development of a code
clone detection technique, which is aimed at helping to detect and remove such code
clones through refactoring or separate management, has decreased. In addition, already
developed code clone detection techniques are diverse and have been evaluated to be
of sufficiently usable performance. Therefore, unless a new requirement for detecting
similar codes emerges, or an idea for a code similarity detection technique using a highly
differentiated method is presented, it will be difficult for researchers to develop a code
similarity detection technique with a high contribution.
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4. Research and Tools Related to Plagiarism Detection

This section discusses various issues related to plagiarism detection and related research,
and introduces techniques and tools that can be used to detect source-code plagiarism.

4.1. Definition of Plagiarism

Plagiarism and code clones are similar in that they occur in the form of similar codes
and are generally known to be the result of copy–pasting; however, there are clear dif-
ferences between the two. One of their most significant distinctions is that the proper
reuse of code is encouraged in the software development process, whereas plagiarism is
discouraged under all circumstances. As discussed in Section 3.7.2, the perception that
code clones are unconditionally bad and should be eliminated is blurred. On the other
hand, in the case of plagiarism, the plagiarist is likely already aware of the injustice of
the act; therefore, efforts are made to modify the code copied in various forms to make it
appear different from the original code.

However, to actually detect plagiarism, especially in an automated way, it is necessary
to define plagiarism more clearly. In situations where code reuse is encouraged, particularly
in programming and software development, simply referring to similar codes may not
adequately address the problem of plagiarism. What we are interested in here is how
plagiarism is recognized in studies related to actual plagiarism detection, rather than the
dictionary definition of plagiarism. It is necessary to understand how plagiarism is defined
in related studies to properly understand how they deal with it.

Many studies related to plagiarism [2,58–63] have defined plagiarism in various ways.
What is commonly mentioned in these definitions is that plagiarism is an act of deceiving
“as if it were one’s own” without proper notation that the code was “someone else’s”.
Interestingly, the definition of plagiarism itself does not explicitly mention similar codes.
To determine whether someone else’s code was imported, a method for implicitly checking
for similar code is used.

To detect plagiarism according to this definition, it is first necessary to examine for
similar codes and then check whether the similar codes have appropriate marks that
indicate that the other codes have been reused. Therefore, the detection of similar code is
only a prerequisite or side branch of the process, and the actual judgment and detection of
plagiarism depend on whether code reuse is indicated. However, even if there is no notation,
if several similar code snippets exist, the question of which one is the original remains.
That is, because plagiarism is the use of someone else’s work without the acknowledgment
of reuse, plagiarism detection results in the problem of sorting out the original, which is
important to identify, because the original, which is owned by its author, is considered to
be the plagiarism-free version of the code.

A more unique definition is provided by Brixtel et al. [64], who stated that a document
is considered suspicious if its similarity to other documents is significantly higher than
the similarity between documents on average. Here, the term “document” refers to a
document with source code; therefore, it is no different from a file containing the code. This
definition directly refers to code similarity, and plagiarism-suspected code that conforms to
this definition can be detected using the definition itself. Of course, detecting plagiarism-
suspected code does not free the investigator from the problem of identifying the original.

In the end, the core of plagiarism detection, to properly detect plagiarism in any form,
is to define a method for finding similar codes and identifying the original among them (if
the original exists).

subsectionObfuscation Methods Plagiarism is an undesirable act, of which most actors
are aware; thus, in many cases, obfuscation is applied to the copied code to avoid suspicion
or detection of plagiarism. Obfuscation methods are intentionally used to avoid code
similarity detection techniques and can range from a simple code style or grammatical
structure change to complicated methods for implementing the same logic in a different
form. Considering the types of code clones described in Section 2, we can estimate what
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types of original and copied codes will appear when such obfuscation is applied, and what
techniques should be used to detect them.

Table 4 is an extract of obfuscation methods reported in various plagiarism-related
studies and organized by Novak et al. [6] into a table, presented with the corresponding
code clone types. The “*” mark on a code clone type indicates that only some of the
codes changed by the proposed obfuscation method are applicable or that an additional
appropriate preprocessing/transformation process is required for detection.

Table 4. Obfuscation methods and corresponding code clone types.

Research Obfuscation Method Details Clone Type

Faidhi and Robinson [65]

Code format change Changing the code style, such
as spaces Type I

Annotation change Changing annotation within code Type I

Merge lines of code Merging of multiple unit and type
codes into one Type I *

Change to equivalent
control structure

Changing the control type, such as
changing for to while

Type III *, IV

Ðurićand Gašević [66] Translation of parts of the program
Translating variable names or
comments from one language

to another
Type I *, Type II

Donaldson et al. [67]

Change program output Changing only the lines of code that
indicate something Type III *, IV *

Identifier change Changing identifiers such as variable
names and function names to others Type II

Change order of independent lines Changing the order of the lines
without affecting the logic Type III *, Reordering

Disconnect the code
Splitting a unit of code, e.g., a line,

function, class, etc., into
multiple pieces.

Type I *, II *, III *

Prechelt et al. [20] Change of constant value Changing constant values that do
not affect logic Type II *

Grier et al. [68]
Add unnecessary lines Adding a line that has no meaning to

the execution Type III

Code simplification Eliminating unnecessary or
non-critical lines Type III

Whale [69]

Replace function calls with code
Inserting code corresponding to the

body of a function instead of
calling it

Type IV

Operators, accessors, and data type
changes

Changing operators to equivalent or
acceptable forms, modifiers, data

types, e.g., int to long
Type II *, III *

Combine copied code with own
Changing the syntax structure and
logic by combining the copied code

with own code
N/A

There are a total of 15 obfuscation methods outlined in Table 4. If a detection technique
appropriate for type III code clones is used, similar codes can be expected to be detected,
even in cases wherein 13 of the obfuscation methods, i.e., excluding two cases, are applied.
Therefore, from a technical perspective, even if a certain level of obfuscation is applied, it is
not very difficult to identify suspicious codes using code similarity detection techniques.

Cases that are difficult to find using general code similarity detection techniques
include “replace function calls with code” and “combine copied code with original code”.
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In the case of replacing function calls with code, directly inserting the contents of a function
into the code, instead of calling the function, may not be detected in code similarity
detection, because the scale of code change with respect to the original can be very large,
depending on the size of the function. Nonetheless, even in this case, plagiarism can be
determined based on detecting the code of the copied and inserted function itself as similar
code; specifically, a type I code clone. In the case of combining the copied code with one’s
code, the grammatical structure and logic are also changed; therefore, it is considered a
very difficult case in which to determine plagiarism. This may or may not be detected by
code similarity detection, depending on the extent to which the copied code maintains its
original form. If the degree of similarity is remarkably lowered by transformation, it may
not be possible to determine plagiarism, besides by understanding the actor’s intention.

4.2. Source-Code Plagiarism Detection and Tools

As discussed in Section 4.1, plagiarism detection can be divided into two stages. In
the first stage, suspected plagiarism candidates are identified based on searches for similar
codes. In the second stage, it is necessary to determine whether a case of plagiarism from
the plagiarism candidate group is actually plagiarism, that is, whether someone else’s code
is copied, and acknowledgment marks are omitted. A problem at the first stage is that
plagiarists use various obfuscation methods to hide their intentions. However, this problem
can be solved without significant difficulty using code similarity detection techniques,
as discussed in Section 4.1. In the end, the problem that remains is determining whether a
similar code is the result of an actual plagiarism act, which is difficult to solve mechanically
using an automation-based technique.

Various source-code plagiarism detection techniques and tools focus on helping people
make judgments in the second stage by solving the problem at the first stage, but not at
the second stage. In other words, although a plagiarism detection technique or tool is
named as such, there is essentially no significant difference between it and code similarity
detection techniques. Of course, because the purpose is different, it may be possible to
detect similar codes in cases wherein plagiarism detection techniques are less affected by
known obfuscation methods.

To address this question, we considered the experimental results of the evaluation
study conducted by Burd and Bailey on clone detection tools [70]. Among the experiments
they conducted, we can find the precision and recall measurement results for plagiarism
detection tools JPlag and Moss, which were briefly introduced in Section 3.3, together with
those for clone detection tools CCFinder and CloneDR, which were discussed in Section 3.
According to Novak et al., JPlag and Moss are the most frequently used plagiarism detection
tools in plagiarism-related research studies [6]. In the original study, the results of Cavet [40],
which are metric-based techniques, are also included. However, this study does not deal
with metric-based techniques, and thus, these results are omitted. In the case of detecting
similar codes, precision is determined by how many similar codes actually exist among the
codes reported by the tools as similar codes, whereas recall is determined by how many
of the total existing similar codes are detected by the tool. As mentioned in Section 3.5,
a tradeoff exists between the two figures.

The results of gathering information on plagiarism detection tools and adding infor-
mation on code clone detection tools are shown in Table 5. Supported languages denote
representative languages supported by tools; OSS indicates open-source software. Rather
than indicating whether the actual code was disclosed, the OSS column is marked with a
yes if the detection technique itself was disclosed, and no if only a simple explanation was
provided. Several plagiarism detection tools have not been included here but have been
presented in several studies. However, except for the details, there are no significant differ-
ences from the tools presented in Table 5 because they are essentially tools for detecting
similar codes.
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Table 5. Information on plagiarism detection tools.

Tool Support Language OSS Feature URL

JPlag
C, C++, C#, Java,
Scheme, Natural
language

yes Major language and nat-
ural language support

https://github.com/
jplag/jplag [71]

MOSS
C, C++, Java, C#,
Python, and many
more

yes

Code submission re-
quired for service, sep-
arate license for com-
mercial use

http://theory.
stanford.edu/~aiken/
moss [72]

CCFinderX Java, C, C++, COBOL,
VB, C# yes Provides an interac-

tive interface
https://github.com/
gpoo/ccfinderx [47]

CloneDR
Java, C#, C++, Python,
JavaScript and many
more

yes

Technique is public,
but tools implemented
are commercially
available

http://www.
semdesigns.com/
products/clone/index.
html [51]

Codequiry Java, C, C++, Python,
and many more no

Commercial online ser-
vices and provide com-
parison with code col-
lected from the web

https://codequiry.
com [73]

Copyleaks Java, C, C++, Python,
and many more no

Commercial online ser-
vices and provide im-
proved results by ma-
chine learning

https://copyleaks.
com/code-plagiarism-
checker [74]

The first two tools in Table 5 are widely used plagiarism detection tools, the next
two are code clone detection tools, and the latter two are commercial plagiarism detection
tools available online. The strengths of JPlag and MOSS are that they were developed
specifically for plagiarism detection from the beginning and that the actual techniques
are transparently disclosed for non-commercial use, allowing the detection results to be
predicted. In the case of CCFinderX and CloneDR, additional work may be required to
use them for plagiarism detection, because they were developed for code clone detection
rather than plagiarism detection. However, code similarity detection has the advantage of
yielding better performance than those of the previous two tools. Codequiry and Copyleaks
have advantages in that they provide a convenient interface, given that they are commercial
products, and provide code similarity detection results using their own database. However,
these tools are expensive and have a weakness in that the actual detection method or
performance is not transparently disclosed.

As discussed in Section 4.1, the final judgment of plagiarism must be made by a
person after seeing the code similarity detection result; against this human judgment, it is
difficult to demonstrate overwhelmingly better results in plagiarism detection, regardless
of which tool is selected. Therefore, it is desirable to select a tool that comprehensively
considers other requirements, such as convenience and cost, rather than only plagiarism
detection performance.

5. Discussion

The domain of code similarity and plagiarism detection faces challenging issues
such as code obfuscation, semantic comprehension, cross-language detection, scalability,
and false positives. Relevant questions that remain open within this domain pertain to
the utilization of deep learning, integration of semantic analysis, management of code
evolution, identification of behavioral cloning, assurance of privacy, establishment of
benchmarks, and consideration of legal and ethical aspects. By addressing these challenges
and questions, the precision and robustness of code similarity and plagiarism detection
techniques can be enhanced, benefitting both research endeavors and practical applications
in the field.

https://github.com/jplag/jplag
https://github.com/jplag/jplag
http://theory.stanford.edu/~aiken/moss
http://theory.stanford.edu/~aiken/moss
http://theory.stanford.edu/~aiken/moss
https://github.com/gpoo/ccfinderx
https://github.com/gpoo/ccfinderx
http://www.semdesigns.com/products/clone/index.html
http://www.semdesigns.com/products/clone/index.html
http://www.semdesigns.com/products/clone/index.html
http://www.semdesigns.com/products/clone/index.html
https://codequiry.com
https://codequiry.com
https://copyleaks.com/code-plagiarism-checker
https://copyleaks.com/code-plagiarism-checker
https://copyleaks.com/code-plagiarism-checker
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As discussed in Section 3, various techniques for detecting similar code demonstrate
unique strengths and weaknesses, with each method excelling in identifying specific types
of similar code instances. Therefore, the choice of an appropriate technique necessitates
a comprehensive evaluation of the particular code type intended for identification. The
progression of code similarity detection techniques has reached a mature stage, resulting in
a reduced frequency of new methods emerging. Furthermore, the introduction of novel
code similarity detection methods substantially enriches academic discourse only when
they represent a revolutionary departure from existing methods.

In Section 4, we define plagiarism and thoroughly examine obfuscation strategies in
the context of plagiarism detection. Additionally, we compiled and presented a range of
tools and services designed for plagiarism detection. As indicated, plagiarism detection
can be broadly categorized into two types: code similarity and comprehensive plagiarism
detection. Most existing tools primarily concentrate on code similarity detection, which
often requires human intervention for the final assessment of plagiarism. However, given
the maturity of code similarity detection technology, a shift toward methods that offer more
precise and user-friendly assessments of plagiarism based on the detected similar code is
now needed to advance the field of plagiarism detection.

Research in the field of code clone and plagiarism detection has mostly stagnated
since the mid-2010s, which can be attributed to several factors, including the maturation of
existing technologies, the increasing complexity of the problem domain, challenges related
to accessing and maintaining large-scale real-world code and plagiarism datasets, and a
shift toward more specialized applications, such as security-focused plagiarism detection
or code clone detection within specific programming languages or domains. However, it is
important to clarify that this stagnation does not imply a complete cessation of research, but
rather a concentration on refining mature technologies and exploring applications within
specialized domains. The field continues to evolve, leaving room for future innovations,
albeit at a more measured pace.

Several key areas remain open as important future research directions in the field of
code clone and plagiarism detection. First, enhancing semantic comprehension in code
detection and developing methods that better leverage semantic information. Second,
implementing effective techniques to detect code similarities across multiple programming
languages. Third, integrating code evolution and version control systems to incorporate
code change history into detection methods. Fourth, detecting behavioral cloning, where
code exhibits similar behavior but is not directly copied. Fifth, developing methodologies
and tools to preserve privacy during the code detection process, especially in collabora-
tive work environments. Sixth, establishing appropriate benchmarks, evaluation metrics,
and standardized datasets to facilitate research comparisons and assessments. Lastly, ad-
dressing legal and ethical considerations concerning intellectual property and plagiarism,
aiming for more transparent and equitable approaches to plagiarism detection while man-
aging legal issues. These research directions are anticipated to contribute significantly to
the advancement of improved methods and tools in the field of code clone and plagiarism
detection, ultimately enhancing software quality and safeguarding intellectual property.

6. Conclusions

In this study, we consolidate the foundational theories and terminologies pertinent
to code similarity detection techniques. Building on this groundwork, we introduce and
compare various approaches for code similarity detection. Furthermore, our investigation
extends the domain of plagiarism detection by exploring how code similarity detection
techniques can be leveraged within this context. Nonetheless, we have not yet consolidated
a summary of the findings from the studies we reviewed, presenting them cohesively to
aid readers in making informed choices when selecting a detection technique, if necessary.
Furthermore, we have not included individual practical examples from the studies we
reviewed. These limitations will be subject to more comprehensive investigation and
resolution in our future work.
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The inherent challenge lies in the fact that the mechanized evaluation of plagiarism
cannot rely merely on extracted technical information. A comprehensive assessment ne-
cessitates consideration of plagiarism policies, the context of code similarity generation,
and the intent of the individual. This holistic approach underlines the prominence of
plagiarism detection research within computer education conferences, as opposed to soft-
ware and programming language forums. Therefore, directing research efforts toward the
development of decision-making support systems that present diverse information for
informed plagiarism evaluation is recommended over attempting to fully automate the
process through purely technical means.
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Appendix A

Here, terms and concepts related to programming languages used to describe code
similarity and plagiarism detection techniques are briefly described.

Appendix A.1. Token

The token indicates the type and attribute value of a lexeme obtained by lexical
analysis of the code. Types of tokens include keywords or identifiers corresponding to
reserved words in programming languages, operators, space characters, and literals. A
lexical analyzer analyzes a given piece of code, or a stream of strings, and turns it into a
sequence of tokens. For example, a token obtained by the lexical analysis of code, such
as return x * y + 2, is <return> <id, x>, <mul_op> <id, y> <add_op> <num, 2>. In the
case of the id token representing an identifier or the num token representing a number,
an attribute value representing an actual lexical item is shown together. When checking
code similarity, the array of tokens is compared using various methods.

Lexical analysis is performed by matching patterns defined by regular expressions;
thus, defined tokens are obtained. Depending on the definition of the pattern, various
parts of the code can be expressed in an appropriately abstracted form. For example,
as discussed in Section 2.2, to treat all binary operators as equal, it is defined that both
<mul_op> and <add_op> resolve to <add_op> in the example token. Thus, the code does
not show any difference in the sequence of tokens, even if different lexical items appear,
and this difference can be ignored.

Appendix A.2. Abstract Syntax Tree

An abstract syntax tree (AST) represents the syntactic structure of code in the form of
a tree. AST is generally obtained by analyzing the structure of code based on the grammar
of a programming language in the parsing process. In the case of a token, a pattern
corresponding to a given code is searched, and a word corresponding to the vocabulary
appearing at the corresponding position is created such that the strings of the actual code
and the array of tokens are matched. However, AST expresses the grammatical structure of
leaf nodes that correspond to actual codes through internal nodes. These internal nodes
often do not appear as the corresponding strings in the code.
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Figure A1. AST example.

Figure A1 is the AST obtained by parsing the code snippet if(a >= b) swap(a, b);
The five name nodes corresponding to the leaf nodes correspond to the variable and function
names of a, b, swap, a, b. Unlike the leaf node, where there is a clear correspondence,
the inner node func_call does not have a clear code part corresponding only to this
node. However, this node shows information that its child nodes, swap, a, b, form code
corresponding to a function call.

Compared to the list of tokens, the AST even shows the grammatical structure of the
code, so we can compare codes using more information. Like tokens, in the case of AST,
it is possible to create a code expression whose sensitivity varies depending on whether
to use only the type of node, if, infix, name, to distinguish each node, or whether to
consider the identifier represented by this node in a node such as name.

Appendix A.3. Program Dependence Graph

A program dependence graph (PDG) is a graph representing the data and control
dependencies of codes that displays the semantic relationships between code parts. Starting
from the entry point of the code, we draw the edges from one code part A to another code
part B based on the code using dependencies.

Figure A2b presents the PDG obtained by analyzing the code in Figure A2a. Each node
corresponds to one sentence except for the entry node, which indicates the starting point of
the code. Among the edges, those marked with T represent control dependencies, meaning
that if the condition is true, the program control moves through the corresponding edge. For
example, the first three lines of the code are always executed after execution starts, unless an
exception occurs; therefore, the entry node, which indicates code entry, and the trunk line,
which indicates execution if true, are connected. Similarly, the node indicating if(a >= 0)
in the third line and the node corresponding to the fourth line, which is executed only
when a >= 0 is true, are also connected. In the node representing sum = a + b in line 5,
the value of sum in this node depends on the values of a, b; therefore, the values of these
two variables can change. These three nodes are connected by an edge, which indicates a
data dependency.

As the PDG expresses semantic relationships regardless of the grammatical structure
of the code, changes in the structure of the code do not affect the PDG if the meaning
is maintained. For example, PDG appears the same as in Figure A2b, even if read()
in the first two lines of Figure A2a code is replaced with a different variable or integer
literal, or sum = a + b and print(sum) in lines 5–6 are changed to avg = (a + b)/2 and
print(avg).

Because analyses such as program slicing are required to obtain a PDG from the code,
it is more expensive than obtaining an abstract syntax tree based on lexical analysis or
grammar using simple pattern matching. In addition, compared to displaying code as a
list of tokens or expressing a grammatical structure in the form of a tree, displaying it as a
graph is more difficult and has higher costs.
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Figure A2. PDG example.

Appendix A.4. Level of Abstraction

The level of abstraction, whether high or low, denotes the extent to which a specific
task or concept is articulated in broader or high-level terms, distancing itself from specific
details. The assessment of the level of abstraction can be based on the following criteria:

1. Concreteness vs. generality: Low-level abstraction is concrete and emphasizes specific
details, whereas high-level abstraction is more general and pertains to overarching
principles, patterns, or concepts. For instance, working with specific regular expres-
sion patterns exemplifies low-level abstraction, while addressing general patterns like
email addresses represents high-level abstraction.

2. Specific details vs. core concepts: low-level abstraction refers to specific implemen-
tation details of a task, whereas high-level abstraction addresses core concepts and
principles, offering ideas or methodologies that are applicable in diverse situations.

3. Complexity vs. simplicity: Low-level abstraction is employed when confronting
intricate and detailed tasks. Conversely, high-level abstraction offers simpler and
more abstract methods to conceal complexity.

4. Dependency on specific tools or technologies vs. independence: low-level abstraction
may rely heavily on specific tools or technologies, whereas high-level abstraction is
more autonomous and can be employed across various tools or environments.

5. Detailed implementation vs. general interface: low-level abstraction often encom-
passes specific implementation details, whereas high-level abstraction is typically
presented as an interface or abstract concept, concealing specific implementation
factors.

The selection of an appropriate level of abstraction hinges upon the complexity of the
task, objectives, context, and requirements. Certain tasks demand low-level abstraction,
whereas others may favor high-level abstraction. Consequently, the level of abstraction can
vary depending on the specific use.
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66. Ðurić, Z.; Gašević, D. A source code similarity system for plagiarism detection. Comput. J. 2013, 56, 70–86. [CrossRef]
67. Donaldson, J.L.; Lancaster, A.; Sposato, P.H. A plagiarism detection system. In Proceedings of the Twelfth SIGCSE Technical

Symposium on Computer Science Education, St. Louis, MO, USA, 26–27 February 1981.
68. Grier, S. A tool that detects plagiarism in Pascal programs. ACM Sigcse Bull. 1981, 13, 15–20. [CrossRef]

http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1145/5657.5658
http://dx.doi.org/10.1147/rd.312.0249
https://github.com/gpoo/ccfinderx
http://dx.doi.org/10.1145/270563.571472
http://www.semdesigns.com/products/clone/index.html
http://dx.doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1145/2133797.2133799
http://dx.doi.org/10.1016/0360-1315(87)90042-X
http://dx.doi.org/10.1093/comjnl/bxs018
http://dx.doi.org/10.1145/953049.800954


Appl. Sci. 2023, 13, 11358 26 of 26

69. Whale, G. Identification of program similarity in large populations. Comput. J. 1990, 33, 140–146. [CrossRef]
70. Burd, E.; Bailey, J. Evaluating clone detection tools for use during preventative maintenance. In Proceedings of the Second IEEE

International Workshop on Source Code Analysis and Manipulation, St. Montreal, QC, Canada, 1 October 2002.
71. JPlag. Available online: https://github.com/jplag/jplag (accessed on 11 August 2023).
72. MOSS. Available online: http://theory.stanford.edu/~aiken/moss (accessed on 11 August 2023).
73. Codequiry. Available online: https://codequiry.com (accessed on 11 August 2023).
74. Copyleaks. Available online: https://copyleaks.com/code-plagiarism-checker (accessed on 11 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/comjnl/33.2.140
https://github.com/jplag/jplag
http://theory.stanford.edu/~aiken/moss
https://codequiry.com
https://copyleaks.com/code-plagiarism-checker

	Introduction
	Code Clones: Definition and Types
	Type I Code Clone
	Type II Code Clone
	Type III Code Clone
	Type IV Code Clone
	Gapped Clone
	Reordered Clone

	Code Similarity Detection Techniques
	General Code Similarity Detection Process
	Pre-Processing
	Transformation
	Detection

	Text-Based Techniques
	Token-Based Techniques
	Tree-Based Techniques
	Pdg-Based Techniques
	Hybrid Approaches
	Evaluation of Code Similarity Detection Techniques
	Characteristics of Code Similarity Detection Techniques
	Research Trends on Code Similarity Detection Techniques 


	Research and Tools Related to Plagiarism Detection
	Definition of Plagiarism
	Source-Code Plagiarism Detection and Tools

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	References

