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Abstract: Objectives: To develop and validate a machine learning-based CT radiomics classification
model for distinguishing benign renal tumors from malignant renal tumors. Methods: We reviewed
499 patients who underwent nephrectomy for solid renal tumors at our institution between 2003 and
2021. In this retrospective study, patients who had undergone a computed tomography (CT) scan
within 3 months before surgery were included. We randomly divided the dataset in a stratified manner
as follows: 75% as the training set and 25% as the test set. By using various feature selection methods
and a dimensionality reduction method exclusively for the training set, we selected 160 radiomic
features out of 1,288 radiomic features to classify malignant renal tumors. Results: The training set
included 396 patients, and the test set included 103 patients. The percentage of extracted radiomic
features from patients was 32% (385/1218) after the reproducibility test. In terms of the average
Area Under the Receiver Operating Characteristic Curve (AU-ROC) and the average Area Under
the Precision-Recall Curve (AU-PRC), the Random Forest model achieved better performance (AU-
ROC = 0.725; AU-PRC = 0.899). An average accuracy of 0.778 was obtained on evaluation with
the hold-out test set. At the optimal threshold, the Random Forest model showed an F1 score of
0.746, precision of 0.862, sensitivity of 0.657, specificity of 0.651, and Negative Predictive Value (NPV)
of 0.364. Conclusions: Our machine learning-based CT radiomics classification model performed
well for the independent test set, indicating that it could be a useful tool for discriminating between
malignant and benign solid renal tumors.

Keywords: radiomics; renal tumor; renal cell carcinoma; artificial intelligence

1. Introduction

Kidney cancer is a disease that can be treated relatively easily if detected in its early
stages, such as T1a (<4 cm), but the survival rate decreases as the disease progresses [1,2].
Therefore, rapid and accurate diagnosis is very important in the treatment of kidney cancer;
however, it is not easy. It is particularly difficult to accurately predict the type and subtype
of the lesion when the renal mass is small. Recent developments in radiologic modalities
have improved the diagnosis, thus leading to an increase in the prevalence of kidney
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cancer [3]. However, discrimination for a small renal tumor is difficult. In particular,
since the kidneys are covered by Gerota’s fascia, it is unreasonable to perform a biopsy
immediately if a small neoplasm is detected. This is because if this small neoplasm is
malignant, the Gerota’s fascia is opened, and cancer cells that leak during the biopsy may
metastasize [4].

It is more difficult to differentiate between small renal tumors, particularly fat-poor
tumors. If there is a large fat component, we can consider benign diseases, such as angiomy-
olipoma (AML), but it is very difficult to differentiate this disease entity from early-stage
tumors with a small proportion of fat. It is obvious that other attempts and approaches are
needed to overcome these limitations [5].

Differential diagnosis through computed tomography (CT), which was solely depen-
dent on the radiologist, has recently entered a new phase with the advent of artificial
intelligence (AI) technology. Recent radiologic analysis using AI has potential [6,7]. We
have glimpsed this possibility, and hence, we have already attempted to diagnose small
renal tumors using a convolutional neural network (CNN) model [8]. Rapid advancements
in AI research have allowed us to access a technology called radiomics. By relying on this
new technology that can extract data from areas that humans cannot access, we once again
attempted to diagnose small, fat-poor tumors.

2. Methods
2.1. Patients

We used data from patients who underwent total and partial nephrectomy at a single
institution between 2003 and 2021. Cases of clear cell carcinoma and AML, typically with
a fat component of more than 30%, were excluded. Of these, only patients with fat-poor
tumors were selected; thus, a total of 499 patients were selected. The CT used on the patient
may have differed depending on the year, but it was taken using the same protocol from
the same company. (SOMATOM DEFINITION AS+, Siemens, Germany) The mean age of
patients was 56.02 ± 12.18 years, and the mean size of the tumor on CT was 3.515 ± 2.42 cm.
Patients with benign tumors, such as oncocytoma and AML, were included, and among
malignant tumors, patients with clear cell, chromophobe, and papillary type renal cell
carcinoma (RCC) were included. Each patient’s CT consists of one to four phases, and
1548 sets of CT images were acquired in this manner. The composition of patients is
summarized in Table 1. CT configurations were obtained in non-contrast, arterial (20–30 s
after contrast injection), portal (60–70 s), and delayed (>180 s) phases. We collected voxel-
level segmentation labels for each CT scan, where trained annotators manually delineated
the kidneys and tumors in the images, and then a radiologist (with an experience of
11 years) refined the annotations. If the radiologist was adequately confident in the first
diagnosis, a second diagnosis was not established. The performance of radiologists was
assessed using the first diagnosis (top-1 performance) along with both the first and second
diagnoses (top-2 performance).

Table 1. Demographic and pathological characteristics of the patients. Training and testing datasets
for the classification of malignant kidney cancer.

Training Dataset Test Dataset p Value

Gender 396 103 0.412
Male (%) 222 (56.3%) 63 (61.2%)

Female (%) 174 (43.7%) 40 (38.8%)
Age (years, range) 57.0 (22, 83) 54.0 (27, 79) 0.708

Cancer size (cm, range) 3.573 (0.7, 17.5) 3.291 (1.0, 9.4) 0.294
Renal tumor 0.9
Benign (%) 99 (25%) 27 (26.2%)

Malignant (%) 297 (75%) 76 (73.8%)
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We used a paired sample t-test or a chi-squared test to test the differences in demo-
graphic and pathological characteristics of continuous variables (i.e., age and cancer size)
and categorical variables (i.e., sex, kidney cancer, and kidney cancer subtype).

2.2. Radiomics Workflow

Radiomics is a quantitative approach for extracting textural information from medical
imaging, which can be used by machine learning algorithms to aid clinical decision-making.
To develop a machine learning-based CT radiomics model that can differentiate between
benign and malignant solid renal tumors, we started by extracting various types of ra-
diomic features from each CT scan. Then, we randomly divided the dataset in a stratified
manner as follows: 75% as the training set and 25% as the test set. In the case of developing
a machine learning model for multi-phase CT radiomic features, only those participants
with single-phase and two-phase CT scans were assigned to the test set. Only the train-
ing set was used for feature selection and model training with 10-fold cross-validation.
We tested the following four most popular machine learning algorithms: Linear Support
Vector Machine (Linear SVM), Radial basis function Support Vector Machine (Rbf SVM),
Random Forest, and XGBoost [9]. We conducted hyperparameter tuning through 200
trials of random hyperparameter search for classification of malignant kidney cancer with
optuna (version 3.1.0) [10]. The relevant codes are freely available for reproducibility
(https://github.com/Transconnectome/Kidney_Radiomics accessed on 30 August 2023).
Given the case-control imbalance as a result of a larger number of patients diagnosed
with malignant kidney tumors than the number of patients diagnosed with benign kid-
ney tumors, as well as a higher proportion of patients having a specific kidney cancer
subtype (i.e., clear cell renal cell carcinoma) than the proportion of those having other
subtypes, we implemented the Synthetic Minority Over-sampling Technique (SMOTE)
with imbalanced-learn (version 0.10.1) [11] during the model evaluation-based feature
selection and development phases. The hold-out test set was only used for evaluating the
final performance. Feature selection, machine learning model development, and model
evaluation processes were implemented along with scikit-learn (version 1.2.1) [12] using
Python 3.10.8.

2.3. Radiomics Feature Extraction and Feature Selection

After resampling each phase of the CT scan with a resolution of 1 mm × 1 mm × 1 mm,
1288 radiomic features from 1548 CT scans were extracted from the segmented regions
of interest (ROIs) in the original CT scans, wavelet-filtered CT scans, and Laplacian of
Gaussian-filtered scans by using the Python package pyradiomics (version 3.1.0) [13] with
Python 3.7. The extracted radiomic features included first-order features, three-dimensional
shape features, the Gray Level Co-occurrence Matrix (GLCM), the Gray Level Run Length
Matrix (GLRM), the Gray Level Size Zone Matrix (GLSZM), the Neighborhood Gray Tone
Difference Matrix (NGTDM), and the Gray Level Dependence Matrix (GLDM).

By using various feature selection methods and a dimensionality reduction method
exclusively for the training set, we selected 160 radiomic features from 1288 radiomic
features to classify malignant renal tumors. First, we conducted the ANOVA F-test for
1288 z-score normalized radiomic features while applying the FDR correction with the
Benjamini-Hochberg procedure (αfdr = 0.05). This method selected 801 features for the
classification of malignant renal tumors. Second, we applied model evaluation-based fea-
ture selection methods with stratified 10-fold cross-validation. We performed the Principal
Component Analysis (PCA) of the selected radiomic features to reduce the overall feature
space dimensionality. By evaluating the accuracy of the predictions made by the models
in the validation set, we decided to set the number of principal components at 20% of the
number of radiomic features selected earlier (160 features) for malignant renal tumor classi-
fication. We tested various ratios (0.1, 0.2, and 0.3) of the number of principal components
to the total number of radiomic features selected in the earlier feature selection step. Then,
we standardized these principal components (i.e., PCA whitening) for further analyses. We
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also utilized Sequential Feature Selection (SFS) for standardized principal components to
select principal components that could maximize the model evaluation performance for
the validation set. Through a sequential removal process, the SFS systematically selected
the features based on their impact on the model performance for the validation set.

2.4. Ethic Statement, Statistics, and Machine Learning

This study was conducted in accordance with the IRB and the Declaration of Helsinki,
and it was approved by the Institutional Review Board of the Catholic University of Korea,
Seoul St Mary’s Hospital (Protocol code KC22RISI0753). p < 0.05 was considered statistically
significant. Statistical calculations were performed with IBM SPSS statistics, version 24
(IBM Corp., Armonk, NY, USA) software.

We followed the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [14]
to ensure the reproducibility of our study.

3. Results
3.1. Demographic Characteristics of the Patients

A cohort of 499 patients was enrolled, and we divided the patients into training and
test datasets, while patients with single-phase and two-phase CT scans were only assigned
to the test set. For malignant renal tumor classification, patients were divided based on a
stratified approach for malignant renal tumor classification (Ntraining = 396, Ntest = 103) as
follows: 75% as the training dataset and 25% as the test dataset. There was no significant
difference in the demographic characteristics or pathological characteristics between the
training and test datasets (p > 0.05) (Table 1).

3.2. Multi-Phase CT Radiomic Features-Based Machine Learning Model

We calculated the average test performance of each model in 10-fold cross validations
for a hold-out test set, and then we compared the test performance across various machine
learning algorithms based on multiple metrics. In terms of the average Area Under Receiver
Operating Characteristic Curve (AU-ROC) and the average Area Under the Precision-
Recall Curve (AU-PRC), the Random Forest model achieved better performance (AU-ROC:
mean = 0.725, standard error = 0.023; AU-PRC: mean = 0.693, standard error = 0.015) than
the other ML models for classifying malignant renal tumors using principal components
derived from selected radiomic features (Table 1, Figure 1A,B). An average accuracy of
0.778 was obtained on evaluation with the hold-out test set (Table 2). At the optimal
threshold, the Random Forest model showed an F1 score of 0.746, precision of 0.862,
sensitivity of 0.657, specificity of 0.651, and Negative Predictive Value (NPV) of 0.364
(Table 2B, Figure 1C). Meanwhile, Rbf SVM achieved the second-highest AU-ROC of 0.702,
and it showed better performance than the Random Forest model in the following metrics
at its optimal probability threshold: F1 score of 0.781, precision of 0.885, sensitivity of 0.699,
specificity of 0.698, and NPV of 0.411. These results are summarized in Table 2.
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Table 2. Model performance of multi-phase CT radiomic feature-based machine learning models for
malignant renal tumor classification.

AU-ROC AU-PRC ACC

Linear SVM 0.625 ± 0.031 0.577 ± 0.017 0.765 ± 0.005
Rbf SVM 0.702 ± 0.034 0.649 ± 0.028 0.77 ± 0.011
XGBoost 0.679 ± 0.017 0.662 ± 0.016 0.79 ± 0.006

Random Forest 0.725 ± 0.023 0.693 ± 0.015 0.778 ± 0.009

Probability
Threshold F1 Score Precision Sensitivity Specificity

(PPV) NPV

Linear SVM 0.7555 0.661 ± 0.003 0.808 ± 0.037 0.559 ± 0.180 0.558 ± 0.209 0.276 ± 0.028
Rbf SVM 0.8044 0.781 ± 0.008 0.885 ± 0.030 0.699 ± 0.155 0.698 ± 0.082 0.411 ± 0.065
XGBoost 0.715 0.704 ± 0.003 0.837 ± 0.011 0.608 ± 0.031 0.605 ± 0.036 0.317 ± 0.017

Random Forest 0.79 0.746 ± 0.005 0.862 ± 0.019 0.657 ± 0.036 0.651 ± 0.065 0.364 ± 0.022
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We compared the model performance of four different types of machine learning algo-
rithms for classifying malignant renal tumors. Sensitivity, precision, specificity (Positive
Predictive Value; PPV), and Negative Predictive Value (NPV) were calculated at the optimal
probability threshold for each model. The average and standard errors over test perfor-
mance of each model in 10-fold cross-validations for a hold-out test set were calculated.

3.3. Single-Phase CT Radiomic Feature-Based Machine Learning Model

For further analysis, we also developed a radiomic feature-based machine learning
model for single-phase CT scans and compared these results to those of a multi-phase
CT radiomic feature-based machine learning model in terms of the AU-ROC, AU-PRC,
accuracy, and F1 score. As seen in Table 3, for all test performance metrics, utilizing
radiomic features derived from non-contrast phase CT scans consistently achieved the
highest performance, regardless of the type of machine learning algorithm. Specifically, the
Random Forest model using non-contrast phase CT radiomic features showed an average
AU-ROC of 0.603, an average accuracy of 0.729, and an average F1 score of 0.843. The
XGBoost model using non-contrast-phase CT radiomic features showed the highest average
AU-PRC of 0.594.

Table 3. Model performance of single-phase CT radiomic feature-based machine learning models for
malignant renal tumor classification.

AU-ROC AU-PRC

CT Phase Arterial Delayed Non-
Contrast Portal Arterial Delayed Non-

Contrast Portal

Sample Size
(Train/Test) 236/82 252/88 318/101 360/81 236/82 252/88 318/101 360/81

Linear SVM 0.395 ± 0.068 0.443 ± 0.054 0.419 ± 0.061 0.412 ± 0.08 0.447 ± 0.038 0.472 ± 0.032 0.467 ± 0.029 0.466 ± 0.043
Rbf SVM 0.530 ± 0.048 0.5 ± 0.0 0.514 ± 0.056 0.515 ± 0.079 0.548 ± 0.042 0.5 ± 0.0 0.514 ± 0.034 0.525 ± 0.05
XGBoost 0.415 ± 0.038 0.351 ± 0.037 0.583 ± 0.026 0.471 ± 0.034 0.466 ± 0.023 0.434 ± 0.021 0.594 ± 0.016 0.492 ± 0.022
Random

Forest 0.431 ± 0.063 0.527 ± 0.045 0.603 ± 0.061 0.473 ± 0.043 0.487 ± 0.035 0.553 ± 0.027 0.592 ± 0.043 0.511 ± 0.027

ACC F1 Score

CT Phase Arterial Delayed Non-
Contrast Portal Arterial Delayed Non-

Contrast Portal

Sample Size
(Train/Test) 236/82 252/88 318/101 360/81 236/82 252/88 318/101 360/81

Linear SVM 0.659 ± 0.003 0.681 ± 0.019 0.695 ± 0.022 0.702 ± 0.023 0.792 ± 0.023 0.810 ± 0.014 0.820 ± 0.015 0.824 ± 0.015
Rbf SVM 0.706 ± 0.013 0.693 ± 0.0 0.721 ± 0.012 0.728 ± 0.0 0.825 ± 0.09 0.818 ± 0.0 0.837 ± 0.08 0.843 ± 0.0
XGBoost 0.668 ± 0.012 0.633 ± 0.013 0.728 ± 0.016 0.725 ± 0.008 0.798 ± 0.008 0.773 ± 0.01 0.840 ± 0.01 0.840 ± 0.005
Random

Forest 0.696 ± 0.07 0.693 ± 0.0 0.729 ± 0.05 0.729 ± 0.005 0.821 ± 0.005 0.819 ± 0.01 0.843 ± 0.003 0.840 ± 0.04

On comparing the results obtained from machine learning models utilizing single-
phase and multi-phase CT radiomic features, it became evident that the Random Forest
algorithm outperformed the other types of algorithms, including linear SVM, rbf SVM, and
XGBoost, for classifying malignant renal tumors based on CT radiomic features. Neverthe-
less, it is important to note that machine learning models using single-phase CT radiomic
features consistently showed lower test performance than multi-phase CT radiomic feature-
based machine learning models.

4. Discussion

We have previously classified renal tumors using a CNN model and data set frame-
work [8]. Compared to the results of prior works, the results obtained in this study are
significant. In the previous study, the results obtained by six radiologists and AI were com-
pared, but the predictive rate of fat-poor tumors was only about 50%. It can be said that it is
very encouraging that the prediction rate has gradually increased with the development of
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AI technology. Thus, the ultimate goal of this study was to determine the need for surgery
through a single CT scan.

This study showed a robust ML pipeline intended to enhance the effective learning
of diverse radiomic features (i.e., a wide column of data) and the generalizability of pre-
diction. This approach included an oversampling technique (i.e., SMOTE) to overcome
the imbalance between cases and controls, a combination of various feature selection
methods (i.e., the mass univariate statistical test, the Principal Component Analysis, and
automated Sequential Feature Selection) to select radiomic features rigorously, and an
automated hyperparameter tuning tool (i.e., optuna) to identify the optimal ML models.
Through the combinatorial use of various techniques, we developed robust and accurate
radiomics-based ML pipelines. The optimized pipeline used in this study is expected to aid
in designing future radiomics-based ML pipelines. However, in the end, feature-based ML
will eventually be replaced by end-to-end deep learning models for improved accuracy,
interpretation, and generalizability. Indeed, the recent combinations of foundation models
and generative AI models have had a deep impact across business enterprises and scientific
domains [15–17]. For example, radiomics will greatly benefit from the foundation models
for visual segmentation [18] that can easily be adapted to any kind of computer vision task,
including segmentation, interpretation, and prediction, or the model for text-image learning
that can be applied to integrate cancer cell image data with clinical data (e.g., EMR) [19].
Our results will serve as a baseline model for the further development of end-to-end deep
learning models for medical imaging.

Compared to existing studies, the biggest strength of the current study is the composi-
tion of the data set. Even in a multicenter study, it is not easy to construct a data set that
is fat-poor and diverse, i.e., one that includes all five types of renal cancer. Our research
team is managing this dataset to make it more balanced, and we are attempting further
research based on it. For example, the next study will be a study that uses deep learning as
a follow-up to this radiomics study.

As mentioned above, the data set in this study included only renal tumors of a size of
about 3.5 cm. This is because most renal tumors that are very large are ccRCC, or anyone
can easily predict that they are malignant. Further, by screening only renal tumors with
less than 10% fat component, it was possible to exclude renal tumors that could be easily
distinguished by radiologists. Therefore, the results obtained through this study can be
said to support the feasibility of prediction through AI.

Of course, this is not the first study in this area. For example, Pie Nie et al. presented
a multi-center study on ccRCC through this technique, and the predictive rate was 0.921
with a ROC. However, this study included only ccRCC, and it did not show a significant
difference from the assessments made by radiologists [20]. Shengxing Feng et al. also
published a study similar to ours. That study assessed a small renal mass of less than 4 cm,
and it predicted AML, fat-free AML, and other malignancies [21]. However, this study
targeted general AML and was conducted on a small scale of 150 patients, which is different
from our study, which only targeted fat-free tumors. It is encouraging and worthwhile
that these initiatives are being implemented in many domains. We look forward to the day
when all new tumors can be identified solely through image reading.

Recent studies have shown the potential for integrating radiomics with various data
sources, such as medical history and other types of omics data, in developing a machine
learning model for classifying malignant renal tumors. Jie Xu et al. showed that combining
radiomics features with clinical data, including demographic information and clinical
history, can improve the prediction performance of machine learning algorithms compared
to utilizing radiomics features alone [22]. Klontzas et al. leveraged both radiomics and
metabolomics features to develop a machine learning model, resulting in improved predic-
tion performance [23]. We expect that the integration of data from multiple modalities into
our machine learning model could further enhance its predictive capacity.

This study has several limitations. First of all, our prediction rate was about 70%,
which is superior to the predictions made by radiologists, but it is clear that there are still
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limitations to the application of this model in actual clinical practice. In addition, our
research used machine learning and not deep learning. It is the result of the researcher
combining and learning the features extracted through the radio mix technology. Our
research team expects that this process can be fully automated through deep learning
technology, such as CNN.

5. Conclusions

The prediction of malignancy in renal tumors by using CT radiomics is found to be
feasible. Based on this technology, it is expected that there will be future advances in the
diagnosis of renal tumors.

6. Code Availability

The prediction of malignancy in renal tumors by using CT radiomics is found to be
feasible. Based on this technology, it is expected that there will be future advances in
the diagnosis of renal tumors. The relevant codes are freely available for reproducibility
(https://github.com/Transconnectome/Kidney_Radiomics accessed on 30 August 2023).
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