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Abstract: Fault detection is an important step in subsurface interpretation and reservoir charac-
terization from 3D seismic images. Due to the numerous and complex fault structures in seismic
images, manual seismic interpretation is time-consuming and requires intensive work. We applied
a pre-trained CNN model to predict faults from the 3D seismic volume of the Poseidon field in the
Browse Basin, Australia. This field is highly structured with complex normal faulting throughout
the targeted Plover Formations. Our motivation for this work is to compare machine-learning-based
fault prediction to user-interpreted fault identification supported by seismic variance attributes. We
found reasonably satisfactory results using CNN with an improved fault probability volume that
outperforms variance technology. Therefore, we propose that this workflow could reduce time and
be able to predict faults quite accurately in most structurally complex areas.

Keywords: fault detection; reservoir characterization; seismic images; convolutional neural network;
variance attribute

1. Introduction

The interpretation of seismic faults is an essential stage for both the exploration and
development of reservoir characterization [1]. Because manual fault interpretation is time-
consuming, implementing computer-aided techniques is tested in this study. Several ap-
proaches to extract faults from seismic data have been proposed over the past decades [2,3].
Seismic discontinuity attributes were developed to visually detect faults and fractures [4].
To understand stratigraphic and structural geological features in seismic data volumes,
seismic edge-detection algorithms have been very popular and extensively applied in the
industry [5–8]. Many researchers have utilized different attributes for detecting faults
such as the curvature [2,9], variance [10–12], semblance [4,13], coherency [14–17], eigen-
structure [18,19], fault likelihood [19,20], similarity [8,21,22], entropy [23], flexure [3,24,25],
gradient magnitude [26], chaos [26,27], and derivatives [3,18,28,29]. In earlier research,
Rijks et al. (1991) presented how the azimuth and dip magnitude may reveal very tiny
faults with movement substantially lower than that of a seismic wavelet [30]. Reflective
curvature analysis has also been used to discover faults in migrating geological data using
reflector geometry, as well as to map and predict fracture orientations and distribution via
flexure and edge detection [24,31]. However, misclassification is sometimes observed when
attribute-based techniques fail to distinguish the faults from the neighboring unfaulted
features due to the extraction of limited numbers of attributes in seismic data [32,33].

On the other hand, many researchers have tried to incorporate the advanced tech-
niques of machine learning (ML) and deep learning (DL) in detecting faults in seismic
images such as multi-layer perception (MLP), convolutional neural network (CNN), prin-
cipal component analysis (PCA), deep convolutional neural network (DCNN), as well as

Appl. Sci. 2023, 13, 11300. https://doi.org/10.3390/app132011300 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011300
https://doi.org/10.3390/app132011300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-8923-942X
https://doi.org/10.3390/app132011300
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011300?type=check_update&version=1


Appl. Sci. 2023, 13, 11300 2 of 16

CNN pre-trained on synthetic data [2,34,35]. However, the accuracy of these workflows
when compared to multi-attribute-based classification is mostly reliant on the expertise of
the interpreter in selecting a set of attributes to distinguish complex geologic features and
faults. Furthermore, the attribute selection technique must be repeated from one seismic
dataset to the next [36]. Many techniques and procedures for better fault detection have
been proposed because of the severe limitations of the conventional fault interpretation,
and some have been implemented successfully. These approaches include those that solely
focus on enhancing the 3D representation of seismic data using attributes, meta-attributes,
filters, soft computing, and machine-learning algorithms. Machine-learning techniques are
often used in fields where conventional approaches are otherwise time-consuming due to
the allegedly achieved results in these fields [4]. Filtering the data to eliminate the negative
effects of noise may aid in smoothing reflectors and sharping for fault interpretation. Sev-
eral noise attenuation techniques have proved useful in this area, whether utilized during
the acquisition stage or subsequently [1].

Over the years, there have been tremendous advancements in the exploration of seis-
mic faults in the context of reservoir characterization, but there is still an obvious research
deficit. Prior research included attribute-based methods and even machine-learning strate-
gies in an effort to improve fault detection methods. These attempts, which frequently
rely primarily on manual attribute selection, have been hampered by the difficulty of
consistently differentiating complex geological structures and faults across several seismic
datasets [32,36]. The critical importance of our study region, the Poseidon field in the
Browse Basin, Australia, is highlighted by this knowledge gap. The distinctive geological
features of the Poseidon field, characterized by complex normal faulting throughout the
target Plover Formations, present a unique mix of difficulties and opportunities for seismic
fault investigation. In this paper, we compared the traditional manual fault interpretation
with a pre-trained CNN model on 3D seismic data from the Poseidon field of the Browse
Basin, Australia. The motivation of this work is to demonstrate that the pre-trained CNN-
based fault prediction is more efficient and time-saving when compared to variance-guided
manually interpreted faults.

This paper’s subsequent sections are organized as follows: Section 2 describes the geo-
logical setting of the chosen area. Section 3 describes the research methodology, including
the variance-guided manual fault picking and pre-trained CNN-driven fault prediction.
Section 4 presents an in-depth analysis and comparison of the findings of CNN with vari-
ance. Section 5 provides a discussion of the feasibility of the pre-trained CNN model.
Finally, Section 6 concludes with a concise summary of the study’s contributions and a
discussion of the future prospects of the pre-trained CNN model.

2. Geological Setting

The Australian North-West Shelf (NWS) Browse Basin is a passive continental margin
that stretches between the latitudes of 21◦ and 13◦ S from the SW to the NE. The Browse
Basin is located in the southern edge of the Timor Sea, between the Scott Plateau to the west,
the offshore Kimberley Block to the north, and the Scott Plateau to the east. It covers an
area of over 140,000 km2, and its sedimentary depth exceeds 15 km (Figure 1). On the NWS,
it is one of several lengthy sedimentary basins. The area evolved via six geological periods,
from early Carboniferous to Late Jurassic inversion to late Cretaceous inversion. Thermal
subsidence occurred during the Permian and Triassic ages. The central Browse Basin is a
margin-parallel half-graben system that structurally dips towards the continent [37]. The
break-up of Greater India from Western Australia resulted in either a single phase or two
phases of rifting, which led to the development of the NWS [38]. A thick succession of
passive edge sediment was deposited in the Browse Basin after tectonic activity in the
Aptian had halted, burying the old structural relief [39]. Several petroleum systems have
been determined, implying that at least three major petroleum systems exist.
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Figure 1. (A) Location of Browse Basin, Australia, on the world map. (B) Location of different sub-
basins (Poseidon, Crown, Torosa, Brecknock, Calliance, and Caswell) where the rectangular red 
block represents the Poseidon field that is our study area (modified after [40]). Reprinted with per-
mission from Springer Nature. 

The primary structural patterns in the Browse Basin were likely produced by the final 
stage of rifting that occurred in the Middle Jurassic-Early Cretaceous (Figure 2). The 
Plover Formation is made up of a series of stacked fluvio-deltaic and shallow marine 
sands, shales, and silts, as well as trace amounts of carbonate and volcanic materials dur-
ing active faulting of the Jurassic extension [40]. As a result, the thickness and lateral con-
tinuity of this formation range approximately 200–450 m thick; sandstones are extensively 
variable throughout the basin. A regional unconformity is marked at the base of the Plover 
Formation whereas the top of Plover is defined as Late Callovian age unconformity. A 
significant volcanic province is present in the Browse Basin throughout the Early to Late 
Jurassic [41]. Most traps in the area are structural; however, there is potential for chrono-
logical traps on the margins of existing structures and alluvial/submarine fans dumped 
on the hanging wall of significant horsts. The rifting is related to volcanic activity, which 
might deteriorate reservoir quality and absorb habitation space, inhibiting sandstone dep-
osition [40]. The research area’s source rocks were deposited in the broad fluvial-deltaic 
channels that spanned most of the basin. Prodelta shales, coaly shales, and shallow coals 
harboring abundant marine organic materials are examples. Applying well data, the Near 
Top Plover Formation has been examined and is interpreted as an upward increase in 

Figure 1. (A) Location of Browse Basin, Australia, on the world map. (B) Location of different
sub-basins (Poseidon, Crown, Torosa, Brecknock, Calliance, and Caswell) where the rectangular
red block represents the Poseidon field that is our study area (modified after [40]). Reprinted with
permission from Springer Nature.

The primary structural patterns in the Browse Basin were likely produced by the
final stage of rifting that occurred in the Middle Jurassic-Early Cretaceous (Figure 2). The
Plover Formation is made up of a series of stacked fluvio-deltaic and shallow marine sands,
shales, and silts, as well as trace amounts of carbonate and volcanic materials during active
faulting of the Jurassic extension [40]. As a result, the thickness and lateral continuity of
this formation range approximately 200–450 m thick; sandstones are extensively variable
throughout the basin. A regional unconformity is marked at the base of the Plover Forma-
tion whereas the top of Plover is defined as Late Callovian age unconformity. A significant
volcanic province is present in the Browse Basin throughout the Early to Late Jurassic [41].
Most traps in the area are structural; however, there is potential for chronological traps on
the margins of existing structures and alluvial/submarine fans dumped on the hanging
wall of significant horsts. The rifting is related to volcanic activity, which might deteriorate
reservoir quality and absorb habitation space, inhibiting sandstone deposition [40]. The re-
search area’s source rocks were deposited in the broad fluvial-deltaic channels that spanned
most of the basin. Prodelta shales, coaly shales, and shallow coals harboring abundant
marine organic materials are examples. Applying well data, the Near Top Plover Forma-
tion has been examined and is interpreted as an upward increase in acoustic impedance.
The structure of the rocks above and below this barrier is thought to be varied, with the
possibility of sand on shale, shale on shale, and shale on sand interfaces. As a result, the
seismic marker at the Near Top Plover Formation varies spatially [42]. The Near Top Plover
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horizon is distinguished by underlying complex faulting. Normal faults resulted in a series
of fault ridges and grabens. This makes detecting and delineating the Plover Formation’s
gas saturated reservoir extremely challenging for the Browse Basin [43].
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3. Materials and Methods
3.1. Dataset

The available data for this study were provided by the Society of Exploration Geo-
physicists. The dataset includes 3D seismic data in SEG-Y format that have 1600 and
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1800 inlines and crosslines with a sample interval of 4 ms and a number of samples per trace
of 501. The inline interval is 18.75 m whereas the crossline interval is 12.50 m. Also, the time
interval of this seismic cropped volume is from 2000 ms to 4000 ms with normal polarity.

The dataset also includes six wells (Boreas-1, Kronos-1, Pharos-1, Poseidon-1, Poseidon-2,
and Proteus-1) with petrophysical logs in ASCII las format, and formation markers, de-
viation survey, and five velocity check-shots in ASCII format. These wells were used to
conduct a structural interpretation of a cropped Poseidon field of the Browse Basin. Five
types of wireline logs (gamma ray, resistivity, density, neutron, and sonic logs) are available
with this dataset.

3.2. Methodology

The study followed the workflow shown in Figure 3. The workflow commenced with
well correlation and synthetic seismogram generation to establish a robust seismic-to-well
tie. Subsequently, horizons and faults were manually picked throughout the entire 3D
volume. Two horizons, namely the Top and Base of the Plover Formation, representing the
interval of interest within the highly faulted synrift deposits, were interpreted. Additionally,
faults that intersected with the interval of interest were picked. The variance attribute,
a widely used discontinuity attribute for highlighting faults, fractures, and stratigraphic
boundaries, was generated in Petrel Software (version 2020) with an IL 3 by XL 3 and
15 samples of vertical smoothing with no dip correction and displayed along the top of the
Plover Formation to provide constraints and assist in fault interpretation. A 3D Gaussian
filter was applied prior to the computation of the variance to reduce random noise. A time
structure map was then constructed using the manually interpreted faults and horizons to
illustrate the faulting system and structural configuration of the rifted interval. This part of
the study is predominantly interpreter-driven, relying on knowledge and experience as it
has a lot of uncertainties and is time-consuming.
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The second part of the study was entirely data-driven, involving the application of
pre-trained deep-learning models to filtered seismic amplitude data for the automatic
prediction of faults within the entire seismic volume. The final step in the workflow was
to validate and compare the outputs of both the traditional interpreter-guided and the
CNN-driven approaches.

Deep-Learning-Based Fault Prediction

A pre-trained CNN model was trained by Geophysical Insight in their Paradise
software on the SEAM (SEG Advanced Modelling) model which is a large synthetic dataset.
Numerous sub-volumes were extracted from the impedance model and faults were inserted.
These were used as the realistic synthetic training dataset. The CNN model attempts to
identify locally reflected seismic patterns ignoring numerous artefacts and noise present in
the segy 3D in the process. A general CNN workflow used for automatic fault prediction
is shown in Figure 4. This workflow normally consists of a simple 1-layer CNN network
followed by one fully connected layer for fault classification. Seismic input images are 32 by
32 pixels. The convolution masks (kernel) are 9 × 9 pixels in size. In the convolutional
layer, 16 features are produced. The dimensions of the output features after convolution
are reduced using 2 × 2 maximum pooling, which also controls overfitting. The SoftMax
cross entropy is performed to determine the probability error between the classification
and the true labels, and the fully connected layer contains 1024 neurons. The model is a
binary classification identifying the presence/absence of a fault.
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In this study, pre-trained CNN models, available in the Paradise software, were applied
to automatically predict faults. The workflow in Paradise involves applying structurally
oriented filtering (named SOF3D) to sharpen the discontinuities of the seismic amplitude
volume before applying the CNN models. It is a useful strategy for eliminating incoherent
noise and enhancing event continuity without smoothing over dipping planes [45,46]. Three
different architecture models operated on the data, known as aggressive, conservative, and
mixed-angle engine. Both conservative and aggressive models were trained on synthetic
faults with high angles, while the mixed-angle model was trained on faults with varying
angles. The conservative CNN model produced fewer false positives and mostly identified
continuous faults, whereas the aggressive model revealed more discontinuities in seismic
amplitude data with shorter and less continuous fault identification in 3D. The mixed-angle
model generally works well on data of varying angle faults. In the current study, we found
that the result of the mixed-angle model is geologically meaningful.
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4. Results

Three-dimensional seismic imaging does not usually offer sharp imaging of faults
and is sometimes ambiguous regarding fault geometry and continuity. In Figure 5C, we
present the results of our interpreted horizons alongside manually picked faults to delineate
geological features on inline 2940. Figure 5D reveals the outcome of our CNN model on the
same inline which displayed remarkable resemblances to the manually picked faults.

Fault polygons were created manually after picking the horizon of the top and base
of the Lower Plover Formation (LPF) and a Two-Way Time (TWT) structure map was
generated from the picked horizons (Figure 6). From the structure map it is observed that
most of the faults are trending in a NW to SE direction. The reservoir zone lies between
3250 ms and 3500 ms on average, but the northern block is down-faulted to about 3700 ms.

A deep-learning (DL) automatic fault detection pre-trained CNN algorithm was also
applied to same 3D. The DL-identified faults are compared to the conventionally picked
faults and variance lineaments. Deep-Learning CNN fault identification is shown in
Figure 7B at a time slice of 3464 ms.

There were three fault interpretation cases observed and investigated on both variance
and CNN automatic fault detection.

Case 1 represents faults that are clearly visible in both variance and CNN, Case 2
represents faults that are clearly visible in CNN but not in variance, and lastly Case 3
represents faults that are visible in variance but not detected or identified on CNN. In the
following sections, a few examples from each case are shown.

To facilitate the comparisons, a time slice of 3464 ms from both variance (Figure 7A)
and CNN cubes (Figure 7B) was selected due to its proximity to the horizon of the Top
Plover Formation. A few 3D arbitrary seismic sections crossing some faults were selected
to demonstrate the clarity of event terminations for fault detection.

Case 1. Faults clearly visible on both variance and CNN cubes.

As expected, almost all faults fell in this category. A few examples were selected to be
presented. In Figure 8, clear continuous N-S trending fault (F) is seen on CNN (E) whereas
it is seen as two disconnected segments on variance. In the vertical sections the faults show
clearly. Spatial fault continuity is not clear on the variance slice as compared to that of the
CNN. Another 3D arbitrary seismic section that crosses the gap between the two variance
fault segments clearly shows the event terminations.

In Figure 9, a different area showing two faults detected on both variance and CNN
automatic fault detection. On the vertical seismic section (a′-b′), F1 fault is clearly seen
whereas F2 fault is not. It is observed that a fault detected on the CNN time slice (F2) is
not observed on the vertical seismic section. On the other hand, that same fault (F2) is also
not observed on the variance slice. This raises a question as to the validity of the detected
lineament on the CNN slice.

Faults detected on both variance cube and CNN model are shown in Figure 10. The
lateral extent of the fault on the CNN slice is quite shorter than that seen on the variance
slice, even though the fault is quite distinct on the vertical seismic section.

Case 2. Faults clearly visible on CNN but not on variance cubes.

This case demonstrates the value of CNN-identified lineaments that are not detected
by the variance. Figure 11 represents an example of a fault that is detected on both variance
and CNN, but does not extend far enough on the variance, even though it is quite clear on
the vertical seismic section (a′-b′).

Case 3. Faults clearly visible on variance but not on CNN cubes.

In Figure 12, the fault under consideration is seen on the variance cube but does not
exist on the CNN slice. The vertical section supports the existence of the fault, which was
missed on the CNN slice.
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detection (F1), and a fault only visible on the CNN time slice (F2).
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Figure 12. (A,B) Map view of 3464 ms variance seismic attribute and CNN automatic fault detection
TWT slice showing the location of the a′-b′ 3D arbitrary seismic section. (C) Three-dimensional
view of 3464 ms variance seismic attribute TWT slice. (D) Three-dimensional view of 3464 ms CNN
automatic fault detection TWT slice. (E) Transparent dummy slice at TWT (3464 ms). The black
ellipsoid shows a clear fault on variance and the vertical 3D seismic arbitrary a-b section whereas it is
not seen on CNN automatic fault detection.
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5. Discussion

Most of the faults identified by variance and/or CNN can be interpreted using con-
ventional and manual picking but these are more time-consuming and demand high
interpretation skills and structural geology domain experience. The CNN-based approach
has significant advantages over traditional fault detection techniques. With the traditional
approach, we need to apply fault enhancement, e.g., variance, to optimize fault detection.
Even though the CNN model can efficiently pick almost all lineaments, it is still dependent
on the broad coverage of the training dataset. A pre-trained CNN model of Paradise
software was trained on synthetic data. Out of the three architectures of this model known
as aggressive, conservative, and mixed-angle engine, only the mixed-angle engine results
were found to be geologically accurate. In terms of comparison of manually interpreted
faults with ML, Figure 5A shows a vertical slice with many major listric normal faults
that were manually interpreted (Figure 5C) on seismic inline 2940 to a lesser extent than
the CNN results (Figure 5D) on the same inline. The CNN fault results provide cleaner
fault anomalies by capturing all subtle faults that are unable to be mapped easily by a
human interpreter. Moreover, from the critical analysis of the three cases demonstrated in
Figures 8–12, the pre-trained CNN model shows slightly more continuous faults (Figure 7B)
than the variance cube shown in Figure 7A. These findings highlight the effectiveness of
the pre-trained CNN-based fault prediction in strengthening fault identification in seismic
data. In addition, this pre-trained CNN model does not require any manual interpretation
of faults and needs approximately three hours (which might vary depending on data size)
to provide the fault prediction findings of the seismic volume. This approach was demon-
strated in real-world applications of CNN using transfer learning in seismic fault detection.
Exploring the feasibility of employing transfer learning, especially fine tuning a pre-trained
CNN model with the actual seismic data of the Poseidon field, offers a promising avenue
for further improving the fault prediction accuracy in this complex geological setting.

6. Conclusions

The accurate identification of faults and fractures from 3D seismic data is essential for
subsurface interpretation, mapping, and reservoir characterization. The effectiveness of
fault identification using the CNN framework strongly depends on the expansiveness of the
training dataset and the associated labeling. The synthetic samples can ensure the accuracy
of the labels but might not cover all features encountered in the actual seismic data recorded
in the field. Pre-training on real seismic images would require labeling a great number
of images, which would have been a major undertaking for such a project. Opting for a
pre-trained CNN model to predict and interpret seismic faults on the 3D seismic volume
and using the UNET topology offered the most pragmatic approach. Faults identified by
the pre-trained CNN were expressed better than those of manual interpretation guided by
the variance attribute. The three seismic interpretation scenarios that were detailed above
demonstrate that, although most of the major faults identified on CNN are seen on the
variance cube, some minor faults are seen on one and not on the other. The automated fault
identification using the pre-trained CNN on the seismic dataset significantly reduced the
interpretation time when compared to that of the manual fault identification and would be
the preferred approach in future interpretation projects.
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