
Citation: Yao, M.; Deng, H.; Feng, X.;

Li, P.; Li, Y.; Liu, H. Global Path

Planning for Differential Drive

Mobile Robots Based on Improved

BSGA* Algorithm. Appl. Sci. 2023, 13,

11290. https://doi.org/10.3390/

app132011290

Academic Editors: Nadjim Horri,

William Holderbaum and

Fabrizio Giulietti

Received: 5 September 2023

Revised: 11 October 2023

Accepted: 12 October 2023

Published: 14 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Global Path Planning for Differential Drive Mobile Robots
Based on Improved BSGA* Algorithm
Ming Yao 1, Haigang Deng 2,*, Xianying Feng 1 , Peigang Li 1, Yanfei Li 1 and Haiyang Liu 1

1 School of Mechanical Engineering, Shandong University, Jinan 250061, China; ym1601065487@163.com (M.Y.);
fxying@sdu.edu.cn (X.F.); pgli@vip.sina.com (P.L.); yanfei-li@foxmail.com (Y.L.); 18943653361@163.com (H.L.)

2 School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: hgdeng_hit@163.com

Abstract: The global path planner is an important part of the navigation system for autonomous
differential drive mobile robots (DDMRs). Aiming at the problems such as long calculation time, large
number of search nodes, and poor smoothness of path when A* is applied to global path planning,
this study proposes an improved bidirectional search Gaussian-A* (BSGA*) algorithm. First, the
Gaussian function is introduced to realize the dynamic weighting of the heuristic function, which
reduces the calculation time. Secondly, the bidirectional search (BS) structure is adopted to solve the
problem of nodes’ repeated search when there are large obstacles between the starting point and the
target point. Finally, a multi-layer turning point filter strategy is proposed to further smooth the path.
In order to verify the performance of the improved BSGA* algorithm, experiments are carried out
in simulation environments with the size of 15 × 15 and 30 × 30, respectively, and compared with
the five common global path planning algorithms including ant colony optimization (ACO), D* lite
algorithm, and genetic algorithm (GA). The results show that the improved BSGA* algorithm has
the lowest calculation time and generates the shortest and smoothest path in the same environment.
Finally, the program of the improved BSGA* algorithm is embedded into the LEO ROS mobile robot
and two different real environments were built for experimental verification. By comparing with the
A* algorithm, Dijkstra algorithm, ACO, D* lite algorithm, and GA, the results show that the improved
BSGA* algorithm not only outperforms the above five algorithms in terms of calculation time, length,
and total turning angle of the generated paths, but also consumes the least time when DDMR drives
along the generated paths.

Keywords: differential driven mobile robots; global path planning; improved BSGA* algorithm;
bidirectional structure; Gaussian function; turning point filtering strategy

1. Introduction

DDMRs are widely used in earthwork construction, firefighting, the military, and other
fields because of their ability to operate in high-risk, high-intensity environments [1–3]. At
present, most DDMRs rely on manual control, which requires strict manipulation skills
and experience from the operators. This way of long-term stable operation is difficult, and
due to the relatively harsh working environment, it often brings certain risks to the opera-
tors. Therefore, the autonomous navigation systems of DDMRs have become a research
hotspot [4,5]. Global path planning is the basis of an autonomous navigation system, which
can pre-plan a safe and feasible path according to the environmental information collected
by the sensors in advance to guide their moving process [6].

Global path planning, as a kind of static planning (also called offline planning), refers
to planning an optimal collision-free path from the starting point to the target point for
the robot under the consideration of certain evaluation criteria [7]. It is evaluated in three
main ways. (1) Optimality: it can use path length, number of turns, driving time, and
other standards to evaluate the superiority of the path. (2) Authenticity: the planned path

Appl. Sci. 2023, 13, 11290. https://doi.org/10.3390/app132011290 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011290
https://doi.org/10.3390/app132011290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7614-3863
https://doi.org/10.3390/app132011290
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011290?type=check_update&version=1


Appl. Sci. 2023, 13, 11290 2 of 23

should meet the driving requirements of the mobile robot. (3) Integrity: the path should
connect the starting point and the target point continuously, and achieve the avoidance of
obstacles [8].

Many algorithms have been applied to global path planning for mobile robots, includ-
ing the A* algorithm [9], rapidly exploring random tree (RRT) algorithm [10], ant colony
algorithm (ACO) [11], genetic algorithm (GA) [12], etc. On this basis, many scholars have
carried out extensive and in-depth research. The RRT algorithm is suitable for continuous
domain search because it does not require the discretization of a continuous space during
planning [13]. However, this algorithm focuses more on finding feasible paths rather
than reducing costs, thus the costs of the path tend to be high [14]. Wang [15] proposed
a kinematic constrained bi-directional RRT algorithm (KB-RRT*) for path planning. By
introducing kinematic constraints, KB-RRT* can avoid unnecessary tree growth, but the
global path obtained based on the KB-RRT* algorithm is still a suboptimal solution. ACO
is a heuristic algorithm that simulates the foraging behavior of ant colonies. Although the
algorithm can obtain the optimal path, its convergence speed is slow and it is easy to fall
into the local optimal. Hou et al. [16] proposed an improved ACO algorithm by adopting
the communication mechanism of ants using their antennae to contact each other in nature,
and applied the algorithm to mobile robots. However, the algorithm still has problems
in calculation efficiency. GA can generate a large number of new individuals when the
crossover probability is large, thereby improving the global search scope, but there is a
precocious phenomenon and the results are unstable. Tuncer A et al. [17] proposed an
improved GA using optimized mutation operators, which simultaneously checked all idle
nodes near the mutation nodes, selected nodes according to the fitness value of paths
rather than the direction of mutation nodes, and obtained a higher average fit than other
methods. However, the paths are too close to the obstacles and are less safe. The Dijkstra
algorithm [18] is a single-source path search algorithm that expands outward from the start
point until it reaches the target and obtains the shortest path. With the increase in environ-
mental information, the Dijkstra algorithm will consume a lot of computing time. P. E. Art
et al. [19] proposed the A* algorithm in 1968 by combining the Dijkstra algorithm with the
BFS algorithm. The A* algorithm greatly improves the search efficiency by introducing a
heuristic function and the planned path is optimal. In addition, the path planned by the A*
algorithm based on the grids has a sudden change in turning angle, while the DDMRs can
turn in place by the speed difference between motors on both sides, so the A* algorithm is
more suitable for the global path planning of the DDMRs. However, the A* algorithm still
has the problems of long calculation time, poor smoothness, and low safety when facing a
complex environment.

To solve the problem of the long calculation time of the A* algorithm, many scholars
improve the algorithm structure or optimize the heuristic function. Zhang et al. [20]
proposed an improved A* algorithm containing a bi-directional sector expansion and a
variable-step search strategy, thus improving the computational efficiency. Liu et al. [21]
adopted the Delaunary triangulation algorithm to deal with complex obstacles, took the
generated Voronoi points as the preferred pathfinding nodes, then designed the dynamic
fusion pathfinding algorithm (DFPA) based on the Delaunary triangulation algorithm and
the improved A* algorithm. Jiang H et al. [22] introduced a cosine factor into the heuristic
function of the A* algorithm to optimize the search direction, and adopted a search strategy
that synchronizes the starting point and the target point to realize the path planning for
the electric disinfection vehicle, which has higher computational efficiency, but does not
consider the kinematic model. For the problem of poor path smoothness, scholars optimize
the A* algorithm by improving the heuristic function or adjusting the search step size. Liu
et al. [23] designed a global path yaw angle based on the relationship between the real-time
position and global path, then introduced it into the heuristic function of the A* algorithm
to improve the path smoothness. Tang et al. [9] filter the nodes in the closed list to avoid
the irregular path. Meanwhile, a cubic B-spline curve is adopted to smooth the path and
improve the stability in turning. Li et al. [24] introduced the jump-point search strategy into



Appl. Sci. 2023, 13, 11290 3 of 23

A* algorithm and effectively reduced the number of turning points by ignoring unnecessary
nodes. For the problem of low security, some scholars have introduced the influence of
obstacles into the A* algorithm. Zhang et al. [25] converted the distance between the mobile
robot and the obstacles into the time cost, so as to optimize the cost function and improve
the safety. Sang et al. [26] narrow the search scope by imposing constraints of maximum
search distance and maximum path length, then maintain a safe distance by reducing the
search points near the obstacles. Cui [27] predicted the future movement of the target using
Bernstein basis polynomials combined with the information of the obstacle distribution
around the target, then utilized the A* algorithm to search for a safe tracking path. Finally,
in the case of dynamic constraints, a quadratic programming method is used to optimize the
tracking path to improve the smoothness. Dang [28] proposed an Adaptive Back-stepping
Hierarchical Sliding Mode Control (ABHSMC) scheme for three-wheeled mobile robots
(3WMRs) based on RBF neural networks. By aggregating all uncertain components in
specific vectors and estimating using an RBF neural network, the effect of uncertainties
will be minimized. Then, combining it with the TEB local planner and A* global planner
improves the navigation and obstacle avoidance performance.

Although these studies have optimized the performance of the A* algorithm to some
extent, the direct application to DDMRs are still one-sided, because, in addition to the
factors mentioned above, the global path planning of DDMRs also needs to consider the
total driving time. The former is related to the setting of the heuristic function, algorithm
structure, and processor performance, while the latter is related to the motion state, length,
and total turning angle of the path. Therefore, the kinematic model of DDMR is established
to analyze the motion state on the turning point. On this basis, Gaussian functions are firstly
used to dynamically adjust the weight ratio of the heuristic functions, which effectively
reduces the calculation time. Secondly, the BS structure is introduced into the A* algorithm,
which solves the problems of repeated node search when there is a large area of obstacles
between the starting point and the target point. Finally, a multi-layer turning nodes filtering
strategy is proposed to reduce the total turning angle and improve the smoothness of the
path. The simulation results show that the improved BSGA* algorithm has higher efficiency
than the A* algorithm, GA, and ACO algorithm, and can plan a more reasonable driving
route. The LEO ROS robot is used for experimental verification. The experimental results
show that it has better results than the five common global path planning algorithms.

2. Materials and Methods

This section introduces the kinematic modeling of DDMR, the process of environment
modeling using the grid method, and the basic principle of the A* algorithm.

2.1. Analysis of Turning Motion of DDMR

Figure 1 shows the analysis of DDMR’s turning motion. The rectangular coordinate
system XOY is established, the coordinates of DDMR are set as (x, y), the linear velocity is
v, and the angular velocity is ω. The width of DDMR is B, the turning center is ICR, and
the turning radius is R. Because DDMR has nonholonomic constraints [29], its motion can
be described only through linear velocity v and angular velocity ω [30].



Appl. Sci. 2023, 13, 11290 4 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 24 
 

 

Figure 1. Analysis of DDMR’s turning motion. 

The controller makes the DDMR reach the expected motion state by controlling the 

velocities of the drive motors on both sides, the linear velocities of the drive wheels on 

both sides can be expressed as follows: 

( / 2)

( / 2)

in

out

v R B

v R B





= +


= −
 (1) 

where 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 are, respectively, the inner linear velocity and outer linear velocity of 

DDMR. From Equation (1), the linear velocity of the center of mass can be expressed as 

follows: 

( ) / 2in outv R v v= = +  (2) 

Based on Equations (1) and (2), the turning radius 𝑅  and angular velocity 𝜔  of 

DDMR can be expressed as follows: 

( ) /

[ ( )] / [2( )]

out in

out in out in

v v B

R B v v v v

 = −


= + −
 (3) 

According to Equation (3), when 𝑣𝑜𝑢𝑡=−𝑣𝑖𝑛 , 𝑅 = 0, DDMR can realize in place turn-

ing. Assuming that the angular velocity of DDMR is constant in the turning process, the 

turning angle 𝜃  is proportional to the turning time ∆𝑡 . Many studies [31] have lower 

driving time by reducing the number of turns, but this is not comprehensive. The direct 

factor affecting the turning time is the total turning angle, and there is no direct functional 

correspondence between it and the number of turns. Since the DDMR realizes turning 

through the speed difference of the drive motors arranged on both sides of the body, when 

the total turning angle is too large, it will aggravate the wear of the drive motors, conveyor 

belts, and other components, and even reduce the service life. Secondly, the turning of the 

DDMR is a relatively slow process, which includes three decomposition actions: deceler-

ation, turning, and acceleration, and consumes more time than that of the straight motion. 

Therefore, reducing the total turning angle can effectively shorten the time required for 

the DDMR to drive along this path. So the total turning angle should be used as the eval-

uation index to reduce the turning time. 

2.2. Grid Modeling 

Based on the driving characteristics of DDMR that can be turned in place, the grid 

method is used to establish the environment map. The work space is projected as a two-

dimensional plane and discretized into a square grid of uniform, continuous, and non-

Figure 1. Analysis of DDMR’s turning motion.

The controller makes the DDMR reach the expected motion state by controlling the
velocities of the drive motors on both sides, the linear velocities of the drive wheels on both
sides can be expressed as follows:{

vin = (R + B/2)ω
vout = (R− B/2)ω

(1)

where vin and vout are, respectively, the inner linear velocity and outer linear velocity of
DDMR. From Equation (1), the linear velocity of the center of mass can be expressed as
follows:

v = ωR = (vin + vout)/2 (2)

Based on Equations (1) and (2), the turning radius R and angular velocity ω of DDMR
can be expressed as follows:{

ω = (vout − vin)/B
R = [B(vout + vin)]/[2(vout − vin)]

(3)

According to Equation (3), when vout=−vin, R = 0, DDMR can realize in place turning.
Assuming that the angular velocity of DDMR is constant in the turning process, the turning
angle θ is proportional to the turning time ∆t. Many studies [31] have lower driving time
by reducing the number of turns, but this is not comprehensive. The direct factor affecting
the turning time is the total turning angle, and there is no direct functional correspondence
between it and the number of turns. Since the DDMR realizes turning through the speed
difference of the drive motors arranged on both sides of the body, when the total turning
angle is too large, it will aggravate the wear of the drive motors, conveyor belts, and other
components, and even reduce the service life. Secondly, the turning of the DDMR is a
relatively slow process, which includes three decomposition actions: deceleration, turning,
and acceleration, and consumes more time than that of the straight motion. Therefore,
reducing the total turning angle can effectively shorten the time required for the DDMR to
drive along this path. So the total turning angle should be used as the evaluation index to
reduce the turning time.

2.2. Grid Modeling

Based on the driving characteristics of DDMR that can be turned in place, the grid
method is used to establish the environment map. The work space is projected as a
two-dimensional plane and discretized into a square grid of uniform, continuous, and non-
intersecting. According to the environmental information, the grids with obstacle projection



Appl. Sci. 2023, 13, 11290 5 of 23

can be set as obstacle grids, represented by 1; the grids without obstacle projection can be
set as free grids, represented by 0. A Cartesian coordinate system is established in the grid
map, with the lower left corner as the origin of coordinates, the horizontal axis for the X
axis, with values increasing from left to right. The vertical axis for the Y axis, with values
increasing from bottom to top. The position of each grid is represented by the coordinate
p(xi, yj) in the upper right corner of the grid, where i, j = 1, 2, 3 . . . . . . , n.

The environmental information in the grid maps will be different from the actual maps,
which mainly depends on the size of the grids. If the grids are too large, the resolution of
the environment maps will be reduced, which may make the planned paths deviate from
the theoretical optimal paths seriously, or even fail to search for feasible paths. If the grids
size are too small, the resolution of the environment maps will be too high, which will
occupy a lot of computational resources. In order to simplify the planning problem, DDMR
is regarded as a square with side length ledge = 1, and the side length l of the grid is also set
as 1. In order to improve the safety of the path, DDMR should keep away from obstacles
during the driving process. Therefore, the obstacles are puffed up as shown in Figure 2, the
grids with only partial obstacles are also set as obstacle grids.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 24 
 

intersecting. According to the environmental information, the grids with obstacle projec-

tion can be set as obstacle grids, represented by 1; the grids without obstacle projection 

can be set as free grids, represented by 0. A Cartesian coordinate system is established in 

the grid map, with the lower left corner as the origin of coordinates, the horizontal axis 

for the 𝑋 axis, with values increasing from left to right. The vertical axis for the 𝑌 axis, 

with values increasing from bottom to top. The position of each grid is represented by the 

coordinate 𝑝(𝑥𝑖 , 𝑦𝑗) in the upper right corner of the grid, where 𝑖, 𝑗 = 1,2,3 ······ ，𝑛. 

The environmental information in the grid maps will be different from the actual 

maps, which mainly depends on the size of the grids. If the grids are too large, the resolu-

tion of the environment maps will be reduced, which may make the planned paths deviate 

from the theoretical optimal paths seriously, or even fail to search for feasible paths. If the 

grids size are too small, the resolution of the environment maps will be too high, which 

will occupy a lot of computational resources. In order to simplify the planning problem, 

DDMR is regarded as a square with side length 𝑙𝑒𝑑𝑔𝑒 = 1, and the side length 𝑙 of the 

grid is also set as 1. In order to improve the safety of the path, DDMR should keep away 

from obstacles during the driving process. Therefore, the obstacles are puffed up as shown 

in Figure 2, the grids with only partial obstacles are also set as obstacle grids. 

  
(a) (b) 

Figure 2. Obstacle puffing process. They should be listed as follows: (a) Before puffing process; (b) 

After puffing process. 

2.3. Procedure of A* Algorithm 

As a heuristic path planning algorithm, the A* algorithm is used to find the optimal 

path in the static environment [32]. This algorithm searches from the starting point ac-

cording to the predetermined search strategy, calculates the actual cost of each feasible 

node around the current node to the starting point and the heuristic cost to the target point, 

and selects the node with the minimum total cost as the next extended node. The algo-

rithm ends when the extended node is overlapped with the target point [33]. The core of 

the A* algorithm lies in the cost function, which is as follows: 

( ) ( ) ( )f n g n h n= +  (4) 

where 𝑓(𝑛) represents the total cost from the starting point (𝑋𝑠, 𝑌𝑠) to the target point 

(𝑋𝑒 , 𝑌𝑒) through the current point (𝑋𝑛 , 𝑌𝑛); 𝑔(𝑛) represents the actual cost from the start-

ing point (𝑋𝑠, 𝑌𝑠)  to the current point (𝑋𝑛, 𝑌𝑛) ; and ℎ(𝑛)  represents the heuristic cost 

from the current point (𝑋𝑛 , 𝑌𝑛) to the target point (𝑋𝑒 , 𝑌𝑒). The traditional A* algorithm 

adopts the 4-neighborhood search strategy. Because DDMRs can realize in-place turning, 

it can be reasonably considered to complete the diagonal movement of the grids. In order 

to make the path generated by the A* algorithm more realistic, the search neighborhood 

is extended to 8 neighborhoods, as shown in Figure 3, with 8 turning angles ( 0°,

Figure 2. Obstacle puffing process. They should be listed as follows: (a) Before puffing process;
(b) After puffing process.

2.3. Procedure of A* Algorithm

As a heuristic path planning algorithm, the A* algorithm is used to find the optimal
path in the static environment [32]. This algorithm searches from the starting point accord-
ing to the predetermined search strategy, calculates the actual cost of each feasible node
around the current node to the starting point and the heuristic cost to the target point, and
selects the node with the minimum total cost as the next extended node. The algorithm
ends when the extended node is overlapped with the target point [33]. The core of the A*
algorithm lies in the cost function, which is as follows:

f(n) = g(n) + h(n) (4)

where f (n) represents the total cost from the starting point (Xs, Ys) to the target point
(Xe, Ye) through the current point (Xn, Yn); g(n) represents the actual cost from the start-
ing point (Xs, Ys) to the current point (Xn, Yn); and h(n) represents the heuristic cost
from the current point (Xn, Yn) to the target point (Xe, Ye). The traditional A* algorithm
adopts the 4-neighborhood search strategy. Because DDMRs can realize in-place turn-
ing, it can be reasonably considered to complete the diagonal movement of the grids. In
order to make the path generated by the A* algorithm more realistic, the search neigh-
borhood is extended to 8 neighborhoods, as shown in Figure 3, with 8 turning angles
(0◦, 45◦,−45◦, 90◦,−90◦, 135◦,−135◦, 180◦). There are mainly three heuristic functions, in-



Appl. Sci. 2023, 13, 11290 6 of 23

cluding Euclidean distance function [34], Chebyshev distance function [35], and Manhattan
distance function [36]. They can be expressed, respectively, as follows:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 24 
 

45°,−45°, 90°,−90°, 135°,−135°, 180°). There are mainly three heuristic functions, includ-
ing Euclidean distance function[34], Chebyshev distance function [35], and Manhattan 
distance function [36]. They can be expressed, respectively, as follows: 

  
(a) (b) 

Figure 3. Extended search neighborhood. They should be listed as: (a) 4 search neighborhood; (b) 8 
search neighborhood. 

Euclidean distance function: 

2 2( ) ( ) ( )e n e nh n X X Y Y= − + −  (5) 

Chebyshev distance function: 

( ) | | | |e n e nh n X X Y Y= − + −  (6)

Manhattan distance function: 

( ) max(| |,| |)e n e nh n X X Y Y= − −  (7)

For the heuristic function, if ℎ(𝑛)  is the same as the actual cost 𝑃(𝑛)  from the (𝑋 ,𝑌 ) to the (𝑋 ,𝑌 ), all nodes extended by the A* algorithm are on the optimal path, it 
will not expand any remaining unarticulated points, and the search speed is the fastest at 
this time, but this is difficult to achieve. For the Manhattan distance, its value is often less 
than 𝑃(𝑛), although the optimal path can be found, the search speed will decrease. For 
the Chebyshev distance, its value is often greater than 𝑃(𝑛), although it searches faster, 
there is no guarantee that the optimal path can be found. Since the 8-neighborhood search 
strategy is adopted in this study, ℎ(𝑛) obtained by using Euclidean distance is closer to 𝑃(𝑛), which ensures that the search speed can be improved on the basis of finding the 
optimal path. Therefore, Euclidean distance is adopted as the heuristic function. 

The A* algorithm divides all extended nodes into two sets: 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡: Stores all extension nodes to be detected in the search process, and sorts 
them according to the 𝑓(𝑛). 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡: Stores all detected extension nodes in the search process to prevent re-
peated search. 

On the basis of the above concepts, the steps of the A* algorithm are shown in Figure 
4. 

Figure 3. Extended search neighborhood. They should be listed as: (a) 4 search neighborhood; (b) 8
search neighborhood.

Euclidean distance function:

h(n) =
√
(Xe − Xn)

2 + (Ye −Yn)
2 (5)

Chebyshev distance function:

h(n) =|Xe − Xn|+|Ye −Yn| (6)

Manhattan distance function:

h(n) = max(|Xe − Xn|, |Ye −Yn|) (7)

For the heuristic function, if h(n) is the same as the actual cost P(n) from the (Xn, Yn)
to the (Xe, Ye), all nodes extended by the A* algorithm are on the optimal path, it will
not expand any remaining unarticulated points, and the search speed is the fastest at this
time, but this is difficult to achieve. For the Manhattan distance, its value is often less than
P(n), although the optimal path can be found, the search speed will decrease. For the
Chebyshev distance, its value is often greater than P(n), although it searches faster, there is
no guarantee that the optimal path can be found. Since the 8-neighborhood search strategy
is adopted in this study, h(n) obtained by using Euclidean distance is closer to P(n), which
ensures that the search speed can be improved on the basis of finding the optimal path.
Therefore, Euclidean distance is adopted as the heuristic function.

The A* algorithm divides all extended nodes into two sets:
OpenList: Stores all extension nodes to be detected in the search process, and sorts

them according to the f (n).
CloseList: Stores all detected extension nodes in the search process to prevent repeated

search.
On the basis of the above concepts, the steps of the A* algorithm are shown in Figure 4.



Appl. Sci. 2023, 13, 11290 7 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 

Figure 4. Program flow of A* algorithm. 

3. Improved BSGA* Algorithm 

The traditional A* algorithm is improved to design a new global path planner, whose 

inputs include the values of grids, the starting point, the target point, and the attitude of 

the DDMR. The global path calculated by the improved BSGA* algorithm is divided into 

a series of waypoint coordinates as the outputs of the algorithm, which are relied upon to 

generate the linear velocity and angular velocity to guide the DDMR to move to the target 

point. In this planner, the constraints include kinematic constraints, that is, the maximum 

velocity of 0.6 m/s and the maximum angular velocity of π/6 rad/s. The environmental 

constraints, that is, the side lengths of the grids and the locations of the obstacles. Cost 

constraints: the sum of the actual costs and heuristic costs of each grid. 

3.1. Improved Heuristic Functions 

The heuristic function determines the quality of the A* algorithm [37]. As shown in 

Figure 5, the A* algorithm, using Euclidean distance as the heuristic function, can search 

a feasible path, but there are too many search nodes and the calculation time is too long. 

Therefore, this study addresses the above shortcomings by improving the heuristic func-

tion. When ℎ(𝑛) = 0, the A* algorithm is transformed into a Dijkstra algorithm, and a 

large number of nodes will be searched. Although the total cost in the planning process is 

the same as the actual cost, it is inefficient [38]. When 𝑔(𝑛) = 0, the A* algorithm is trans-

formed into the Breadth-First Search (BFS) algorithm, which has high planning efficiency 

but not an optimal path [39]. In order to make the path planning process both efficient and 

qualitative, ℎ(𝑛) should usually occupy a larger weight in the beginning of the planning, 

so that the algorithm can search near the target point more quickly. At the end of the plan-

ning process, 𝑔(𝑛) should occupy a larger weight, so as to avoid repeated searches of 

Figure 4. Program flow of A* algorithm.

3. Improved BSGA* Algorithm

The traditional A* algorithm is improved to design a new global path planner, whose
inputs include the values of grids, the starting point, the target point, and the attitude of
the DDMR. The global path calculated by the improved BSGA* algorithm is divided into a
series of waypoint coordinates as the outputs of the algorithm, which are relied upon to
generate the linear velocity and angular velocity to guide the DDMR to move to the target
point. In this planner, the constraints include kinematic constraints, that is, the maximum
velocity of 0.6 m/s and the maximum angular velocity of π/6 rad/s. The environmental
constraints, that is, the side lengths of the grids and the locations of the obstacles. Cost
constraints: the sum of the actual costs and heuristic costs of each grid.

3.1. Improved Heuristic Functions

The heuristic function determines the quality of the A* algorithm [37]. As shown in
Figure 5, the A* algorithm, using Euclidean distance as the heuristic function, can search
a feasible path, but there are too many search nodes and the calculation time is too long.
Therefore, this study addresses the above shortcomings by improving the heuristic function.
When h(n) = 0, the A* algorithm is transformed into a Dijkstra algorithm, and a large
number of nodes will be searched. Although the total cost in the planning process is the
same as the actual cost, it is inefficient [38]. When g(n) = 0, the A* algorithm is transformed
into the Breadth-First Search (BFS) algorithm, which has high planning efficiency but not an
optimal path [39]. In order to make the path planning process both efficient and qualitative,
h(n) should usually occupy a larger weight in the beginning of the planning, so that the
algorithm can search near the target point more quickly. At the end of the planning process,
g(n) should occupy a larger weight, so as to avoid repeated searches of nodes that may
occur near the target point and reduce the total turning angle of paths. Since Euclidean



Appl. Sci. 2023, 13, 11290 8 of 23

distance is used as the heuristic function in this study, h(n) tends to be slightly smaller than
the actual cost from the current node to the target node. As the current node gradually
approaches the target node, this gap will become smaller and smaller. In the optimal case,
h(n) is always the same as the actual cost, so the algorithm can always select the optimal
node. But this is often difficult to achieve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 24 
 

nodes that may occur near the target point and reduce the total turning angle of paths. 

Since Euclidean distance is used as the heuristic function in this study, ℎ(𝑛) tends to be 

slightly smaller than the actual cost from the current node to the target node. As the cur-

rent node gradually approaches the target node, this gap will become smaller and smaller. 

In the optimal case, ℎ(𝑛) is always the same as the actual cost, so the algorithm can al-

ways select the optimal node. But this is often difficult to achieve. 

   
(a) (b) (c) 

Figure 5. Simulation results of traditional A* algorithm under different map environments. (a) Map 

size is 10 × 10. (b) Map size is 20 × 20. (c) Map size is 30 × 30. 

Therefore, this study combined with the Gaussian function to construct the attenua-

tion coefficient 𝐷(𝑛) for dynamically adjusting the weight ratio of the heuristic function; 

the heuristic function was rewritten as the following equation: 

2( ( ) )

2

( ) ( ) ( ) / ( )

1
( )

2

h n

f n g n h n D n

D n e




 

− −

= +



=


 (8) 

Let 𝜇 = 0 and 𝜎 = 1/√2𝜋. At the beginning of the algorithm, the current node is far 

from the target point, at this time 𝐷(𝑛) → 0+, so the weight ratio of ℎ(𝑛) increases, thus 

improving the search efficiency. As the algorithm runs, the current node gradually ap-

proaches the target point, 𝐷(𝑛) gradually increases, and the weight ratio of ℎ(𝑛) gradu-

ally decreases to reduce the total turning angle of the path. 

In order to verify the performance of the Gaussian–A* (GA*) algorithm, Matlab2020a 

software was used to write the algorithm program. The Intel workstation running the pro-

gram was equipped with an i9-10900 processor, with 64 GB RAM and 3.70 GHz main 

frequency. The subsequent simulation was also run based on this workstation. As shown 

in Figures 5 and 6, 50 executions were carried out on grid maps with sizes of 10 × 10, 20 × 

20 and 30 × 30, respectively. 

Figure 5. Simulation results of traditional A* algorithm under different map environments. (a) Map
size is 10 × 10. (b) Map size is 20 × 20. (c) Map size is 30 × 30.

Therefore, this study combined with the Gaussian function to construct the attenuation
coefficient D(n) for dynamically adjusting the weight ratio of the heuristic function; the
heuristic function was rewritten as the following equation:{

f (n) = g(n) + h(n)/D(n)

D(n) = 1
σ
√

2π
e
−(h(n)−µ)2

2σ
(8)

Let µ = 0 and σ = 1/
√

2π. At the beginning of the algorithm, the current node is
far from the target point, at this time D(n)→ 0+ , so the weight ratio of h(n) increases,
thus improving the search efficiency. As the algorithm runs, the current node gradually ap-
proaches the target point, D(n) gradually increases, and the weight ratio of h(n) gradually
decreases to reduce the total turning angle of the path.

In order to verify the performance of the Gaussian–A* (GA*) algorithm, Matlab2020a
software was used to write the algorithm program. The Intel workstation running the
program was equipped with an i9-10900 processor, with 64 GB RAM and 3.70 GHz main
frequency. The subsequent simulation was also run based on this workstation. As shown in
Figures 5 and 6, 50 executions were carried out on grid maps with sizes of 10 × 10, 20 × 20
and 30 × 30, respectively.

Table 1 shows the states represented by the different colored grids. It can be seen
that, compared with the A* algorithm, the path generated by the GA* algorithm has fewer
turning points and the number of nodes searched is also less. According to Table 2, it can
be seen that, on the 10× 10 grid map, the calculation time, the number of search nodes, and
the total turning angle of the GA*s algorithm are, respectively, reduced by 64.43%, 40.00%,
and 37.5% relative to the A* algorithm. On the 20 × 20 grid map, the calculation time,
number of search nodes, and the total turning angle of the GA*s algorithm are, respectively,
reduced by 80.98%, 56.38%, and 25% relative to the A* algorithm. On the 30 × 30 grid
map, these three were reduced by 84.09%, 70.91%, and 41.67%, respectively. Although
the length of the path generated by the GA* algorithm is not much different from that of
the A* algorithm, it has higher efficiency, and with the gradual expansion of the map, this



Appl. Sci. 2023, 13, 11290 9 of 23

difference becomes more and more obvious. In addition, the GA* algorithm can generate
smoother paths, which is more conducive to DDMR driving.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 24 
 

   
(a) (b) (c) 

Figure 6. Simulation results of traditional GA* algorithm under different map environments. (a) 

Map size is 10 × 10. (b) Map size is 20 × 20. (c) Map size is 30 × 30. 

Table 1 shows the states represented by the different colored grids. It can be seen that, 

compared with the A* algorithm, the path generated by the GA* algorithm has fewer turn-

ing points and the number of nodes searched is also less. According to Table 2, it can be 

seen that, on the 10 × 10 grid map, the calculation time, the number of search nodes, and 

the total turning angle of the GA*s algorithm are, respectively, reduced by 64.43%, 40.00%, 

and 37.5% relative to the A* algorithm. On the 20 × 20 grid map, the calculation time, 

number of search nodes, and the total turning angle of the GA*s algorithm are, respec-

tively, reduced by 80.98%, 56.38%, and 25% relative to the A* algorithm. On the 30 × 30 

grid map, these three were reduced by 84.09%, 70.91%, and 41.67%, respectively. Alt-

hough the length of the path generated by the GA* algorithm is not much different from 

that of the A* algorithm, it has higher efficiency, and with the gradual expansion of the 

map, this difference becomes more and more obvious. In addition, the GA* algorithm can 

generate smoother paths, which is more conducive to DDMR driving. 

Table 1. Grid state correspondence table. 

No Color State of Grid 

1 White Free grid 

2 Black Obstacle grid 

3 Grey Expanded grid 

4 Green Starting point 

5 Red Target point 

6 Orange Searched point 

7 Blue-green Path point 

Table 2. Comparison of GA* algorithm and traditional A* algorithm on different maps; the values 

of average calculation time are reported as mean ± standard deviation for 50 executions. 

Map Size Algorithm 
Average Calculation 

Time/ms 

Number of 

Searched Nodes 
Total Angle/° Path Length 

10 × 10 
A* 574.94 ± 12.97 65 360 14.49 

GA* 204.51 ± 2.17 39 225 14.49 

20 × 20 
A* 3119.03 ± 41.53 188 360 30.39 

GA* 593.38 ± 2.76 82 270 30.39 

30 × 30 
A* 14,194.60 ± 75.32 440 540 45.70 

GA* 2258.70 ± 9.34 128 315 46.87 

Figure 6. Simulation results of traditional GA* algorithm under different map environments. (a) Map
size is 10 × 10. (b) Map size is 20 × 20. (c) Map size is 30 × 30.

Table 1. Grid state correspondence table.

No Color State of Grid

1 White Free grid
2 Black Obstacle grid
3 Grey Expanded grid
4 Green Starting point
5 Red Target point
6 Orange Searched point
7 Blue-green Path point

Table 2. Comparison of GA* algorithm and traditional A* algorithm on different maps; the values of
average calculation time are reported as mean ± standard deviation for 50 executions.

Map Size Algorithm Average Calculation
Time/ms

Number of
Searched Nodes Total Angle/◦ Path Length

10 × 10
A* 574.94 ± 12.97 65 360 14.49

GA* 204.51 ± 2.17 39 225 14.49

20 × 20
A* 3119.03 ± 41.53 188 360 30.39

GA* 593.38 ± 2.76 82 270 30.39

30 × 30
A* 14,194.60 ± 75.32 440 540 45.70

GA* 2258.70 ± 9.34 128 315 46.87

3.2. Bidirectional Search Structure

Although the GA* algorithm obviously improves the computational efficiency and
smoothness of the path, the planning effect in some special cases still needs to be improved.
As shown in Figure 7a,b, when there is a large obstacle between the starting point and
the target point, DDMR needs to bypass the obstacle to reach the target point, so the A*
algorithm and GA* algorithm will search in the direction that deviate from the starting
point and the target point at the beginning process. The numbers in the upper-left, lower-
left, and lower-right corners of the grids in Figure 7 correspond to the f (n), g(n), and h(n)
of the current node, respectively. The arrow points to the parent point of the node where the
arrow tail is located. As can be seen from Figure 7a, f (n) gradually increases in the process
of avoiding obstacles. However, after avoiding obstacles, g(n) is too large due to the long



Appl. Sci. 2023, 13, 11290 10 of 23

path, so f (n) is even higher than f (n) that corresponds to the nodes at the beginning of
the search process. Therefore, in the later stage of the A * algorithm, many nodes near
the starting point will be repeatedly searched. As shown in Figure 7b, this phenomenon
has been improved somewhat in the GA* algorithm but still exists. To address the above
problem, this study, using a BS structure to improve the GA* algorithm, which is named
the BSGA* algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24 
 

3.2. Bidirectional Search Structure 

Although the GA* algorithm obviously improves the computational efficiency and 

smoothness of the path, the planning effect in some special cases still needs to be improved. 

As shown in Figure 7a,b, when there is a large obstacle between the starting point and the 

target point, DDMR needs to bypass the obstacle to reach the target point, so the A* algo-

rithm and GA* algorithm will search in the direction that deviate from the starting point 

and the target point at the beginning process. The numbers in the upper-left, lower-left, 

and lower-right corners of the grids in Figure 7 correspond to the 𝑓(𝑛), 𝑔(𝑛), and ℎ(𝑛) 

of the current node, respectively. The arrow points to the parent point of the node where 

the arrow tail is located. As can be seen from Figure 7a, 𝑓(𝑛) gradually increases in the 

process of avoiding obstacles. However, after avoiding obstacles, 𝑔(𝑛) is too large due to 

the long path, so 𝑓(𝑛) is even higher than 𝑓(𝑛) that corresponds to the nodes at the be-

ginning of the search process. Therefore, in the later stage of the A * algorithm, many 

nodes near the starting point will be repeatedly searched. As shown in Figure 7b, this 

phenomenon has been improved somewhat in the GA* algorithm but still exists. To ad-

dress the above problem, this study, using a BS structure to improve the GA* algorithm, 

which is named the BSGA* algorithm. 

   
(a) (b) (c) 

Figure 7. Comparison of the cost during the calculation process. (a) A*. (b) GA*. (c) BSGA*. 

The BSGA* algorithm searches from the starting point and the target point simulta-

neously, where the nodes to be searched in the forward search process beginning from the 

starting point are stored in 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, and the nodes to be searched in the reverse 

search process beginning from the target point are stored in 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑. The for-

ward and reverse search processes are roughly the same as that of GA*. The difference is 

that the target point of the forward search is 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑐𝑘, which is the current node of 

the reverse search, and the cost function is shown in Equation (9). The target point of the 

reverse search is 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, which is the current node of the forward search, and 

the cost function is shown in Equation (10). The two search processes are carried out al-

ternately and both adopt the eight neighborhood search strategy until the current nodes 

of the two search processes meet.  

2( ( ) )

2

( )
( ) ( )

( )

1
( )

2

forward f

forward f

forward f forward f

forward f

h n

forward f

h n
f n g n

D n

D n e





 

− −


= +





=


 (9) 

Figure 7. Comparison of the cost during the calculation process. (a) A*. (b) GA*. (c) BSGA*.

The BSGA* algorithm searches from the starting point and the target point simultane-
ously, where the nodes to be searched in the forward search process beginning from the
starting point are stored in OpenList_ f orward, and the nodes to be searched in the reverse
search process beginning from the target point are stored in OpenList_backward. The for-
ward and reverse search processes are roughly the same as that of GA*. The difference
is that the target point of the forward search is Current_back, which is the current node
of the reverse search, and the cost function is shown in Equation (9). The target point of
the reverse search is Current_ f orward, which is the current node of the forward search,
and the cost function is shown in Equation (10). The two search processes are carried out
alternately and both adopt the eight neighborhood search strategy until the current nodes
of the two search processes meet.

f f orward(n f ) = g f orward(n f ) +
h f orward(n f )

D f orward(n f )

D f orward(n f ) =
1

σ
√

2π
e
−(h f orward(n f )−µ)2

2σ

(9)

 fbackward(nb) = gbackward(nb) +
hbackward(nb)
Dbackward(nb)

Dbackward(nb) =
1

σ
√

2π
e
−(hbackward(nb)−µ)2

2σ

(10)

where n f is the current node of forward search; nb is the current node of the reverse search;
g f orward(n f ) is the actual cost from the starting point to n f ; h f orward(n f ) is the Euclidean
heuristic cost of forward search from n f to nb; and D f orward(n f ) is the dynamic attenuation
coefficient of the forward heuristic function. gbackward(nb) is the actual cost of the target
point to nb; hbackward(nb) is the Euclidean heuristic cost of the next reverse search from
nb to the n f ; and Dbackward(nb) is the dynamic attenuation coefficient of the backward
heuristic function.

The pseudo code for the BSGA* algorithm is as follows (Algorithm 1).



Appl. Sci. 2023, 13, 11290 11 of 23

Algorithm 1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 24 
 

2( ( ) )

2

( )
( ) ( )

( )

1
( )

2

backward b

backward b
backward b backward b

backward b

h n

backward b

h n
f n g n

D n

D n e




 

− −


= +





=



 (10) 

where 𝑛𝑓  is the current node of forward search; 𝑛𝑏  is the current node of the reverse 

search; 𝑔𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑛𝑓) is the actual cost from the starting point to 𝑛𝑓; ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑛𝑓) is the 

Euclidean heuristic cost of forward search from 𝑛𝑓  to 𝑛𝑏 ; and 𝐷𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑛𝑓)  is the dy-

namic attenuation coefficient of the forward heuristic function. 𝑔𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑛𝑏) is the actual 

cost of the target point to 𝑛𝑏; ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑛𝑏) is the Euclidean heuristic cost of the next re-

verse search from 𝑛𝑏 to the 𝑛𝑓; and 𝐷𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑛𝑏) is the dynamic attenuation coefficient 

of the backward heuristic function.  

The pseudo code for the BSGA* algorithm is as follows (Algorithm 1). 

Algorithm 1 

1 Initialization 

2 Puff up obstacles in the grid map 

3 Determine the starting point (𝑋𝑠, 𝑌𝑠) and target point (𝑋𝑒 , 𝑌𝑒) 

4 
(𝑋𝑠, 𝑌𝑠)→𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ,  (𝑋𝑒 , 𝑌𝑒)→𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ,  s e t  𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_

𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡 = 0, 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡 = 0 

5 
𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒𝑠_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 → 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ,  𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒𝑠_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  →  

𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

6 𝐹𝑙𝑎𝑔 = 1 

7 𝑤ℎ𝑖𝑙𝑒 = 𝐹𝑙𝑎𝑔 

8 
If (𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒𝑠_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ⊂ 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑)∩(𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒𝑠_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

⊂ 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) ≠ 1 

9 Add nodes to the corresponding set 

10 

 Calculate the 𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑  of all nodes in  𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , min _𝑛𝑓  →

𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , set 𝑛𝑓 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , 𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑛𝑓)→𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_

𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡 

11 

 Calculate the 𝑓𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  of all nodes in 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑, min _𝑛𝑏  →

𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ,  s e t  𝑛𝑏 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ,  𝑓𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑛𝑏) →  

𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡 

12    𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  

13 

  Flip the elements in  𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  and add them to 

𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_ 

  𝑓𝑜𝑟𝑤𝑎𝑟𝑑 

14     𝐶𝑜𝑠𝑡 = 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡(𝑒𝑛𝑑) + 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑐𝑜𝑠𝑡(𝑒𝑛𝑑) 

15     Generate the optimal path 

16     𝐹𝑙𝑎𝑔 = 0 

17    𝑒𝑙𝑠𝑒 

18   Non-obstacle sub-nodes 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑→𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 

19   Non-obstacle sub-nodes 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑→𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

20    𝑒𝑛𝑑 𝑖𝑓 

21 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

As shown in Figure 7c, the BS structure is introduced to dynamically switch and
adjust the starting point and target point in the search process, so that the current node
always keeps the trend of being close to the target point. In this process, f (n) decreases
rapidly until the two paths meet and falls to the lowest value. The values of the upper and
lower levels of the encounter grids represent the total cost, actual cost, and heuristic cost
of forward search and reverse search at this node, respectively. The introduction of the
BS structure effectively solves the problem of repeatedly searching nodes when avoiding
obstacles and reaching the target point, and improves the efficiency of search.

In order to verify the performance of the BSGA* algorithm, as shown in Figures 8–10,
the A* algorithm, GA* algorithm, and BSGA* algorithm were executed 50 times on the
maps of 10 × 10, 20 × 20, and 30 × 30, respectively. It can be seen that, in the case of large
obstacles between the starting point and the target point, the BSGA* algorithm searches
fewer nodes compared to the A* algorithm and the GA* algorithm.



Appl. Sci. 2023, 13, 11290 12 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24 
 

As shown in Figure 7c, the BS structure is introduced to dynamically switch and ad-

just the starting point and target point in the search process, so that the current node al-

ways keeps the trend of being close to the target point. In this process, 𝑓(𝑛) decreases 

rapidly until the two paths meet and falls to the lowest value. The values of the upper and 

lower levels of the encounter grids represent the total cost, actual cost, and heuristic cost 

of forward search and reverse search at this node, respectively. The introduction of the BS 

structure effectively solves the problem of repeatedly searching nodes when avoiding ob-

stacles and reaching the target point, and improves the efficiency of search. 

In order to verify the performance of the BSGA* algorithm, as shown in Figures 8–10, 

the A* algorithm, GA* algorithm, and BSGA* algorithm were executed 50 times on the 

maps of 10 × 10, 20 × 20, and 30 × 30, respectively. It can be seen that, in the case of large 

obstacles between the starting point and the target point, the BSGA* algorithm searches 

fewer nodes compared to the A* algorithm and the GA* algorithm. 

   
(a) (b) (c) 

Figure 8. Performance of A* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) Map 

size is 20 × 20. (c) Map size is 30 × 30. 

   
(a) (b) (c) 

Figure 9. Performance of GA* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) 

Map size is 20 × 20. (c) Map size is 30 × 30. 

Figure 8. Performance of A* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) Map
size is 20 × 20. (c) Map size is 30 × 30.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24 
 

As shown in Figure 7c, the BS structure is introduced to dynamically switch and ad-

just the starting point and target point in the search process, so that the current node al-

ways keeps the trend of being close to the target point. In this process, 𝑓(𝑛) decreases 

rapidly until the two paths meet and falls to the lowest value. The values of the upper and 

lower levels of the encounter grids represent the total cost, actual cost, and heuristic cost 

of forward search and reverse search at this node, respectively. The introduction of the BS 

structure effectively solves the problem of repeatedly searching nodes when avoiding ob-

stacles and reaching the target point, and improves the efficiency of search. 

In order to verify the performance of the BSGA* algorithm, as shown in Figures 8–10, 

the A* algorithm, GA* algorithm, and BSGA* algorithm were executed 50 times on the 

maps of 10 × 10, 20 × 20, and 30 × 30, respectively. It can be seen that, in the case of large 

obstacles between the starting point and the target point, the BSGA* algorithm searches 

fewer nodes compared to the A* algorithm and the GA* algorithm. 

   
(a) (b) (c) 

Figure 8. Performance of A* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) Map 

size is 20 × 20. (c) Map size is 30 × 30. 

   
(a) (b) (c) 

Figure 9. Performance of GA* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) 

Map size is 20 × 20. (c) Map size is 30 × 30. 
Figure 9. Performance of GA* algorithm with a large area of obstacles: (a) Map size is 10 × 10.
(b) Map size is 20 × 20. (c) Map size is 30 × 30.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 24 
 

   
(a) (b) (c) 

Figure 10. Performance of BSGA* algorithm with a large area of obstacles: (a) Map size is 10 × 10. (b) 

Map size is 20 × 20. (c) Map size is 30 × 30. 

According to Table 3, it can be seen that, on the 10 × 10 grid map, compared with the 

A* and GA* algorithms, the calculation time of BSGA* is reduced by 61.44% and 21.04% 

and the number of search nodes is reduced by 28.13% and 9.80%, respectively, but there 

is no significant advantage in the total turning angle. On the 20 × 20 grid map, compared 

with the A* algorithm and GA* algorithm, the calculation time of BSGA* is reduced by 

59.48% and 41.25%, the number of search nodes is reduced by 45.16% and 28.17%, and the 

total turning angle is reduced by 20% and 20%, respectively. On the 30 × 30 grid map, 

compared with the A* algorithm and GA* algorithm, the calculation time of BSGA* is re-

duced by 80.94% and 69.73% and the number of search nodes is reduced by 64.80% and 

49.64%, respectively. The A* algorithm makes several turns in the path after bypassing the 

obstacles, and the total turning angle rises rapidly, while the total turning angle of the 

BSGA* algorithm and GA* algorithm is relatively more stable. Although the BSGA* algo-

rithm has obvious advantages over the GA* and A* algorithms in search efficiency, the 

path length will be slightly longer and the advantages in total turning angle are not obvi-

ous. 

Table 3. Comparison of the paths generated by the A*, GA*, and BSGA* algorithms under different 

grid maps, the values of average calculation time are reported as mean ± standard deviation for 50 

executions. 

Map Size Algorithm 
Average Calculation 

Time/ms 

Number of 

Searched Nodes 
Total Angle/° Path Length 

10 × 10 

A* 574.94 ± 12.27 64 450 19.49 

GA* 280.79 ± 4.48 51 270 20.07 

BSGA* 221.71 ± 2.42 46 360 20.66 

20 × 20 

A* 1593.84 ± 18.83 186 450 39.63 

GA* 1099.21 ± 7.24 142 450 42.56 

BSGA* 645.77 ± 7.24 102 360 46.66 

30 × 30 

A* 6192.52 ± 38.80 392 810 56.11 

GA* 3898.71 ± 27.79 274 405 62.46 

BSGA* 1180.20 ± 4.77 138 360 66.66 

3.3. Multi-Layer Turning Point Filtering Strategy 

In order to further reduce the total turning angle and improve smoothness, this study 

proposed an optimization strategy based on turning point filtering. The specific proce-

dures are as follows: 

Figure 10. Performance of BSGA* algorithm with a large area of obstacles: (a) Map size is 10 × 10.
(b) Map size is 20 × 20. (c) Map size is 30 × 30.



Appl. Sci. 2023, 13, 11290 13 of 23

According to Table 3, it can be seen that, on the 10 × 10 grid map, compared with the
A* and GA* algorithms, the calculation time of BSGA* is reduced by 61.44% and 21.04%
and the number of search nodes is reduced by 28.13% and 9.80%, respectively, but there is
no significant advantage in the total turning angle. On the 20 × 20 grid map, compared
with the A* algorithm and GA* algorithm, the calculation time of BSGA* is reduced by
59.48% and 41.25%, the number of search nodes is reduced by 45.16% and 28.17%, and
the total turning angle is reduced by 20% and 20%, respectively. On the 30 × 30 grid map,
compared with the A* algorithm and GA* algorithm, the calculation time of BSGA* is
reduced by 80.94% and 69.73% and the number of search nodes is reduced by 64.80% and
49.64%, respectively. The A* algorithm makes several turns in the path after bypassing
the obstacles, and the total turning angle rises rapidly, while the total turning angle of
the BSGA* algorithm and GA* algorithm is relatively more stable. Although the BSGA*
algorithm has obvious advantages over the GA* and A* algorithms in search efficiency, the
path length will be slightly longer and the advantages in total turning angle are not obvious.

Table 3. Comparison of the paths generated by the A*, GA*, and BSGA* algorithms under different
grid maps, the values of average calculation time are reported as mean ± standard deviation for
50 executions.

Map Size Algorithm Average Calculation
Time/ms

Number of
Searched Nodes Total Angle/◦ Path Length

10 × 10
A* 574.94 ± 12.27 64 450 19.49

GA* 280.79 ± 4.48 51 270 20.07
BSGA* 221.71 ± 2.42 46 360 20.66

20 × 20
A* 1593.84 ± 18.83 186 450 39.63

GA* 1099.21 ± 7.24 142 450 42.56
BSGA* 645.77 ± 7.24 102 360 46.66

30 × 30
A* 6192.52 ± 38.80 392 810 56.11

GA* 3898.71 ± 27.79 274 405 62.46
BSGA* 1180.20 ± 4.77 138 360 66.66

3.3. Multi-Layer Turning Point Filtering Strategy

In order to further reduce the total turning angle and improve smoothness, this study
proposed an optimization strategy based on turning point filtering. The specific procedures
are as follows:

(1) Store the path points Grid_nodei(i = 1, 2, . . .) obtained by BSGA* algorithm in the
CloseList_Path and store the obstacles and environment boundaries in the Obstacle_nodes.
Store the Start_node = (Xs, Ys) and the target_node = (Xe, Ye) in the Opt_path.

(2) Calculate the slope k1 and k2 of Start_node and Grid_node1, Start_node and Grid_node2
respectively. If k1 = k2, then Grid_node1 is not a turning point, continue to calculate
the slope ki of Start_node and Grid_nodei in turn until k1 6= ki, then Grid_nodei−1 is
the turning point. Grid_nodei will be stored in the set of Turn_nodes, then repeat the
above process from Grid_nodei until it reaches the target point.

(3) Connect the previous node Grid_nodei−2 of the Grid_nodei−1 with the next node
Grid_nodei. If the connection between them passes through the obstacle, then
Grid_nodei−1 will be stored in Opt_path. If the connection does not pass through the
obstacle, Grid_nodei−1 will be deleted in Turn_nodes. Judge all the turning points in
Turn_nodes in turn according to this step.

(4) Repeat steps (2) and (3) until the connection between the previous node and the next
node of any of the turns in Turn_nodes passes through the obstacle and connects the
nodes in Opt_path to generate the optimized path, then the algorithm stops.

To verify the effectiveness of the turning point filtering strategy, as shown in
Figures 11 and 12, 50 executions were conducted, respectively, to compare the A*, BSGA*,
and improved BSGA* algorithms under grid maps with sizes of 15 × 15 and 30 × 30. The



Appl. Sci. 2023, 13, 11290 14 of 23

purple nodes in Figures 11c and 12c are the filtered turning points. As can be seen from
Table 4, the calculation time of improved BSGA* is reduced by 62.45% compared with
the A* algorithm and improved by 13.79% compared with the BSGA* algorithm in the
15 × 15 grid map. This is because improved BSGA* is implemented by re-performing the
turning point filtering on the paths planned by the BSGA* algorithm, so the calculation time
is slightly longer. Compared with the A* and BSGA* algorithms, the total turning angle
of paths planned by improved BSGA* is reduced by 89.76% and 86.34%, respectively, the
path length is reduced by 1.13. In the 30 × 30 grid map, compared with A* and BSGA*, the
calculation time of improved BSGA* is reduced by 92.28% and that of BSGA* is improved
by 7.26%, the total turning angle of the path is reduced by 87.89% and 81.83%, the path
length is reduced by 2.33, respectively. Therefore, it can be seen that the improved BSGA*
path has better smoothness and is more suitable for the driving process of the DDMR.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24 
 

(1) Store the path points 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖 (𝑖 = 1,2, … ) obtained by BSGA* algorithm in the 

𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡_𝑃𝑎𝑡ℎ  and store the obstacles and environment boundaries in the 

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑛𝑜𝑑𝑒𝑠 . Store the 𝑆𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒 = (𝑋𝑠, 𝑌𝑠)  and the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑜𝑑𝑒 = (𝑋𝑒 , 𝑌𝑒)  in 

the 𝑂𝑝𝑡_𝑝𝑎𝑡ℎ. 

(2) Calculate the slope 𝑘1  and 𝑘2  of 𝑆𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒  and 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒1 , 𝑆𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒  and 

𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒2  respectively. If 𝑘1 = 𝑘2 , then 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒1  is not a turning point, con-

tinue to calculate the slope 𝑘𝑖 of 𝑆𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒 and 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖  in turn until 𝑘1 ≠ 𝑘𝑖 , 

then 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖−1  is the turning point. 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖   will be stored in the set of 

𝑇𝑢𝑟𝑛_𝑛𝑜𝑑𝑒s, then repeat the above process from 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖  until it reaches the tar-

get point. 

(3) Connect the previous node 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖−2  of the 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖−1  with the next node 

𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖  . If the connection between them passes through the obstacle, then 

𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖−1 will be stored in 𝑂𝑝𝑡_𝑝𝑎𝑡ℎ. If the connection does not pass through the 

obstacle, 𝐺𝑟𝑖𝑑_𝑛𝑜𝑑𝑒𝑖−1 will be deleted in 𝑇𝑢𝑟𝑛_𝑛𝑜𝑑𝑒s. Judge all the turning points 

in 𝑇𝑢𝑟𝑛_𝑛𝑜𝑑𝑒s in turn according to this step. 

(4) Repeat steps (2) and (3) until the connection between the previous node and the next 

node of any of the turns in 𝑇𝑢𝑟𝑛_𝑛𝑜𝑑𝑒s passes through the obstacle and connects the 

nodes in 𝑂𝑝𝑡_𝑝𝑎𝑡ℎ to generate the optimized path, then the algorithm stops. 

To verify the effectiveness of the turning point filtering strategy, as shown in Figures 

11 and 12, 50 executions were conducted, respectively, to compare the A*, BSGA*, and 

improved BSGA* algorithms under grid maps with sizes of 15 × 15 and 30 × 30. The purple 

nodes in Figures 11c and 12c are the filtered turning points. As can be seen from Table 4, 

the calculation time of improved BSGA* is reduced by 62.45% compared with the A* al-

gorithm and improved by 13.79% compared with the BSGA* algorithm in the 15 × 15 grid 

map. This is because improved BSGA* is implemented by re-performing the turning point 

filtering on the paths planned by the BSGA* algorithm, so the calculation time is slightly 

longer. Compared with the A* and BSGA* algorithms, the total turning angle of paths 

planned by improved BSGA* is reduced by 89.76% and 86.34%, respectively, the path 

length is reduced by 1.13. In the 30 × 30 grid map, compared with A* and BSGA*, the 

calculation time of improved BSGA* is reduced by 92.28% and that of BSGA* is improved 

by 7.26%, the total turning angle of the path is reduced by 87.89% and 81.83%, the path 

length is reduced by 2.33, respectively. Therefore, it can be seen that the improved BSGA* 

path has better smoothness and is more suitable for the driving process of the DDMR. 

   
(a) (b) (c) 

Figure 11. Performance of turning point filtering strategies in a 15 × 15 map: (a) A*. (b) BSGA*. (c) 

Improved BSGA*. 
Figure 11. Performance of turning point filtering strategies in a 15 × 15 map: (a) A*. (b) BSGA*.
(c) Improved BSGA*.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24 
 

   
(a) (b) (c) 

Figure 12. Performance of turning point filtering strategies in a 30 × 30 map: (a) A*. (b) BSGA*. (c) 

Improved BSGA*. 

Table 4. Comparison of paths generated by A*, BSGA*, and improved BSGA* algorithms under 15 

× 15 and 30 × 30 grid maps; the values of average calculation time are reported as mean ± standard 

deviation for 50 executions. 

Map Size Algorithm 
Average Calculation 

Time/ms 

Number of 

Searched Nodes 
Total Angle/° Path Length 

15 × 15 

A* 975.49 ± 16.29 95 360 21.55 

BSGA* 321.92 ± 7.27 63 270 21.55 

Improved 

BSGA* 
366.31 ± 8.35 63 36.87 20.42 

30 × 30 

A* 12,316.77 ± 99.37 388 540 44.52 

BSGA* 886.42 ± 12.69 131 360 44.52 

Improved 

BSGA* 
950.80 ± 14.47 131 65.42 42.19 

4. Simulation and Experiments 

4.1. Performance Comparison of Different Algorithms 

In order to verify the performance of the improved BSGA* algorithm, the 15 × 15 and 

30 × 30 grid maps constructed in Section 3.3 were used to compare the improved BSGA* 

algorithm with the ACO algorithm [40,41], D* lite algorithm [42], and GA [43]. The ACO 

algorithm [44] uses pheromone as the medium to transmit the information learned by ants 

in the process of moving, so that ants can move to the area with high pheromone concen-

tration spontaneously. The parameter settings of the ACO algorithm are shown in Table 

5. The GA [45] retains individuals according to their fitness by simulating the biological 

evolution process and updates the population through genetic and mutation operations. 

The parameters settings of GA are shown in Table 6. The D* lite algorithm uses the same 

heuristic function as the A* algorithm to guide the search [46], but the difference is that 

the D* lite algorithm first takes the target point as the starting point for reverse search to 

obtain the shortest path information, and can use the previously obtained information to 

reduce the search scope when it is necessary to re-plan during a later process. 

  

Figure 12. Performance of turning point filtering strategies in a 30 × 30 map: (a) A*. (b) BSGA*.
(c) Improved BSGA*.



Appl. Sci. 2023, 13, 11290 15 of 23

Table 4. Comparison of paths generated by A*, BSGA*, and improved BSGA* algorithms under 15 × 15
and 30× 30 grid maps; the values of average calculation time are reported as mean ± standard deviation
for 50 executions.

Map Size Algorithm Average Calculation
Time/ms

Number of
Searched Nodes Total Angle/◦ Path Length

15 × 15
A* 975.49 ± 16.29 95 360 21.55

BSGA* 321.92 ± 7.27 63 270 21.55
Improved BSGA* 366.31 ± 8.35 63 36.87 20.42

30 × 30
A* 12,316.77 ± 99.37 388 540 44.52

BSGA* 886.42 ± 12.69 131 360 44.52
Improved

BSGA* 950.80 ± 14.47 131 65.42 42.19

4. Simulation and Experiments
4.1. Performance Comparison of Different Algorithms

In order to verify the performance of the improved BSGA* algorithm, the 15 × 15
and 30 × 30 grid maps constructed in Section 3.3 were used to compare the improved
BSGA* algorithm with the ACO algorithm [40,41], D* lite algorithm [42], and GA [43]. The
ACO algorithm [44] uses pheromone as the medium to transmit the information learned
by ants in the process of moving, so that ants can move to the area with high pheromone
concentration spontaneously. The parameter settings of the ACO algorithm are shown
in Table 5. The GA [45] retains individuals according to their fitness by simulating the
biological evolution process and updates the population through genetic and mutation
operations. The parameters settings of GA are shown in Table 6. The D* lite algorithm uses
the same heuristic function as the A* algorithm to guide the search [46], but the difference is
that the D* lite algorithm first takes the target point as the starting point for reverse search
to obtain the shortest path information, and can use the previously obtained information to
reduce the search scope when it is necessary to re-plan during a later process.

Table 5. Setting the parameters of ant colony algorithm.

Parameters Value

Maximum number of iterations 200
Number of ants 50

The expectation heuristic factor 1.5
The pheromone heuristic factor 7

The evaporation coefficient of pheromone 0.3
Initial amount of pheromone concentration 1

The constant coefficient 1

Table 6. Setting of genetic algorithm parameters.

Parameters Value

Population size 500
Number of generations 200
Crossover probability 0.8
Mutation probability 0.2

Figure 13a,b shows the paths generated by the above-mentioned various algorithms
on the 15 × 15 and 30 × 30 grid maps, respectively. It can be seen that, compared with the
ACO algorithm, GA, and the D* lite algorithm, the path generated by the improved BSGA*
algorithm is smoother and the total turning angle is smaller. It is worth noting that, due to
the randomness of the paths generated by the ACO algorithm and GA, the results of each
execution may be different. For better comparison, these three algorithms were executed



Appl. Sci. 2023, 13, 11290 16 of 23

50 times, respectively, on the above two grid maps; the results are shown in Table 7. It can
be seen that, on the 15 × 15 grid map, the improved BSGA* algorithm is 69.84%, 5.81%, and
85.97% lower than the ACO algorithm, 69.76%, 92.50%, and 6.20% lower than the GA, and
89.45%, 5.26%, and 86.34% lower than the D* lite algorithm in terms of calculation time,
path length, and total turning angle, respectively. On the 30 × 30 grid map, the improved
BSGA* algorithm is 93.74%, 5.45%, and 80.87% lower than the ACO algorithm, 74.34%,
92.64%, and 5.30% lower than the GA, and 86.82%, 5.30%, and 79.23% lower than the D* lite
algorithm in these three aspects, respectively. From the above data, it can be seen that the
improved BSGA* algorithm has a superior performance compared to the ACO algorithm,
GA, and the D* lite algorithm. Therefore, the paths generated by the improved BSGA*
algorithm are more suitable for DDMRs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 24 
 

Table 5. Setting the parameters of ant colony algorithm. 

Parameters Value 

Maximum number of iterations 200 

Number of ants 50 

The expectation heuristic factor 1.5 

The pheromone heuristic factor 7 

The evaporation coefficient of pheromone 0.3 

Initial amount of pheromone concentration 1 

The constant coefficient 1 

Table 6. Setting of genetic algorithm parameters. 

Parameters Value 

Population size 500 

Number of generations 200 

Crossover probability 0.8 

Mutation probability 0.2 

Figure 13a,b shows the paths generated by the above-mentioned various algorithms 

on the 15 × 15 and 30 × 30 grid maps, respectively. It can be seen that, compared with the 

ACO algorithm, GA, and the D* lite algorithm, the path generated by the improved BSGA* 

algorithm is smoother and the total turning angle is smaller. It is worth noting that, due 

to the randomness of the paths generated by the ACO algorithm and GA, the results of 

each execution may be different. For better comparison, these three algorithms were exe-

cuted 50 times, respectively, on the above two grid maps; the results are shown in Table 7. 

It can be seen that, on the 15 × 15 grid map, the improved BSGA* algorithm is 69.84%, 

5.81%, and 85.97% lower than the ACO algorithm, 69.76%, 92.50%, and 6.20% lower than 

the GA, and 89.45%, 5.26%, and 86.34% lower than the D* lite algorithm in terms of calcu-

lation time, path length, and total turning angle, respectively. On the 30 × 30 grid map, the 

improved BSGA* algorithm is 93.74%, 5.45%, and 80.87% lower than the ACO algorithm, 

74.34%, 92.64%, and 5.30% lower than the GA, and 86.82%, 5.30%, and 79.23% lower than 

the D* lite algorithm in these three aspects, respectively. From the above data, it can be 

seen that the improved BSGA* algorithm has a superior performance compared to the 

ACO algorithm, GA, and the D* lite algorithm. Therefore, the paths generated by the im-

proved BSGA* algorithm are more suitable for DDMRs. 

  
(a) (b) 

Figure 13. Comparison of paths generated by ACO, GA, D* lite, and improved BSGA* algorithms
under different maps: (a) Map size is 15 × 15; (b) Map size is 30 × 30.

Table 7. Comparison of paths generated by ACO, GA, D* lite, and improved BSGA* algorithms
under 15 × 15 and 30 × 30 grid maps; the values of average calculation time are reported as
mean ± standard deviation for 50 executions.

Map Size Algorithm Average Calculation
Time/ms Total Angle/◦ Path Length

15 × 15

ACO 1214.73 ± 89.46 262.80 ± 78.65 21.68 ± 0.23
GA 1211.47 ± 156.62 491.40 ± 21.75 21.77 ± 0.45

D* lite 3473.67 ± 69.46 270.00 21.55
Improved BSGA* 366.31 ± 8.35 36.87 20.42

30 × 30

ACO 15,190.43 ± 376.30 342.00 ± 106.49 44.62 ± 0.27
GA 3705.64 ± 338.03 888.30 ± 141.11 45.77 ± 0.77

D* lite 7217.43 ± 84.26 315.00 44.55
Improved BSGA* 950.80 ± 14.47 65.42 42.19

Figures 14 and 15 are the column graphs and error bars drawn according to the above
comparison experiments. Since both the D* lite algorithm and improved BSGA* algorithm
are heuristic algorithms, the optimal paths generated in each execution are the same, so
the standard deviations of path length and total turning angle are 0 in 50 executions. The
paths generated by the ACO algorithm and the GA have randomness. As can be seen
from Figures 14 and 15, after enough iterations, although the path generated by the ACO
algorithm and GA is close to the improved BSGA* algorithm in length, the standard
deviation of total turning angle, however, is larger due to the randomness of path point



Appl. Sci. 2023, 13, 11290 17 of 23

selection. This means that both algorithms are not stable enough in terms of path smoothing.
In contrast, the paths generated by the improved BSGA* algorithm are not only smoother,
but also the optimal path generated is unique and performs more stably when the grid
map, starting point, and target point are determined.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 24 
 

Figure 13. Comparison of paths generated by ACO, GA, D* lite, and improved BSGA* algorithms 

under different maps: (a) Map size is 15 × 15; (b) Map size is 30 × 30. 

Table 7. Comparison of paths generated by ACO, GA, D* lite, and improved BSGA* algorithms 

under 15 × 15 and 30 × 30 grid maps; the values of average calculation time are reported as mean ± 

standard deviation for 50 executions. 

Map Size Algorithm Average Calculation Time/ms Total Angle/° Path Length 

15 × 15 

ACO 1214.73 ± 89.46 262.80 ± 78.65 21.68 ± 0.23 

GA 1211.47 ± 156.62 491.40 ± 21.75 21.77 ± 0.45 

D* lite 3473.67 ± 69.46 270.00 21.55 

Improved 

BSGA* 
366.31 ± 8.35 36.87 20.42 

30 × 30 

ACO 15,190.43 ± 376.30 342.00 ± 106.49 44.62 ± 0.27 

GA 3705.64 ± 338.03 888.30 ± 141.11 45.77 ± 0.77 

D* lite 7217.43 ± 84.26 315.00 44.55 

Improved 

BSGA* 
950.80 ± 14.47 65.42 42.19 

Figures 14 and 15 are the column graphs and error bars drawn according to the above 

comparison experiments. Since both the D* lite algorithm and improved BSGA* algorithm 

are heuristic algorithms, the optimal paths generated in each execution are the same, so 

the standard deviations of path length and total turning angle are 0 in 50 executions. The 

paths generated by the ACO algorithm and the GA have randomness. As can be seen from 

Figures 14 and 15, after enough iterations, although the path generated by the ACO algo-

rithm and GA is close to the improved BSGA* algorithm in length, the standard deviation 

of total turning angle, however, is larger due to the randomness of path point selection. 

This means that both algorithms are not stable enough in terms of path smoothing. In 

contrast, the paths generated by the improved BSGA* algorithm are not only smoother, 

but also the optimal path generated is unique and performs more stably when the grid 

map, starting point, and target point are determined. 

   
(a) (b) (c) 

Figure 14. Column graphs and error bars of executing time, path length, and total turning angle in 

15 × 15 map: (a) Executing time; (b) Path length; (c) Total turning angle. 
Figure 14. Column graphs and error bars of executing time, path length, and total turning angle in
15 × 15 map: (a) Executing time; (b) Path length; (c) Total turning angle.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24 
 

   
(a) (b) (c) 

Figure 15. Column graphs and error bars of executing time, path length, and total turning angle in 

30 × 30 map: (a) Executing time; (b) Path length; (c) Total turning angle. 

4.2. Comparison in Real Environments 

In order to verify the effectiveness of the improved BSGA* algorithm in real environ-

ments, a LEO ROS mobile robot is selected for the path-planning experiment. As shown 

in Figure 16, rubber wheels are adopted as the front wheels and two DC three-phase 

brushless motors are equipped, which can realize the differential control of both sides of 

the driving wheels. The rear wheels use omnidirectional wheels to achieve turning. The 

robot is equipped with a US-015 ultrasonic module, which can detect obstacles with a 

measuring accuracy of 0.1 cm + 1%. In addition, the robot uses EAI G1 LIDAR to test the 

surrounding environment, obtains obstacle information based on the triangulation prin-

ciple, constructs environment maps using the 𝐺𝑚𝑎𝑝𝑝𝑖𝑛𝑔 SLAM algorithm, saves them 

with 𝑚𝑎𝑝_𝑠𝑒𝑟𝑣𝑒𝑟, and generates grid maps through the 𝑚𝑎𝑝_2𝑑 function package. The 

AMCL algorithm is used to determine the initial position and pose of the robot before 

navigation.  

 

Figure 16. Main structure of the LEO ROS robot. 

The global path-planning algorithms embedded in the LEO ROS mobile robots exist 

in the form of plug-ins in the 𝑚𝑜𝑣𝑒_𝑏𝑎𝑠𝑒 package. By creating and configuring the pa-

rameter file 𝑏𝑎𝑠𝑒_𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑙𝑎𝑛𝑛𝑒𝑟_𝑝𝑎𝑟𝑎𝑚. 𝑦𝑎𝑚𝑙 writing the 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟 class, the se-

lection of different global path-planning algorithms can be realized. In order to apply the 

improved BSGA* algorithm to the robot, 𝐵𝑆𝐺𝐴𝑠𝑡𝑎𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑙𝑎𝑛𝑛𝑒𝑟  plug-in is written 

Figure 15. Column graphs and error bars of executing time, path length, and total turning angle in
30 × 30 map: (a) Executing time; (b) Path length; (c) Total turning angle.

4.2. Comparison in Real Environments

In order to verify the effectiveness of the improved BSGA* algorithm in real environ-
ments, a LEO ROS mobile robot is selected for the path-planning experiment. As shown in
Figure 16, rubber wheels are adopted as the front wheels and two DC three-phase brushless
motors are equipped, which can realize the differential control of both sides of the driving
wheels. The rear wheels use omnidirectional wheels to achieve turning. The robot is
equipped with a US-015 ultrasonic module, which can detect obstacles with a measuring
accuracy of 0.1 cm + 1%. In addition, the robot uses EAI G1 LIDAR to test the surrounding
environment, obtains obstacle information based on the triangulation principle, constructs
environment maps using the Gmapping SLAM algorithm, saves them with map_server,
and generates grid maps through the map_2d function package. The AMCL algorithm is
used to determine the initial position and pose of the robot before navigation.



Appl. Sci. 2023, 13, 11290 18 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24 
 

   
(a) (b) (c) 

Figure 15. Column graphs and error bars of executing time, path length, and total turning angle in 

30 × 30 map: (a) Executing time; (b) Path length; (c) Total turning angle. 

4.2. Comparison in Real Environments 

In order to verify the effectiveness of the improved BSGA* algorithm in real environ-

ments, a LEO ROS mobile robot is selected for the path-planning experiment. As shown 

in Figure 16, rubber wheels are adopted as the front wheels and two DC three-phase 

brushless motors are equipped, which can realize the differential control of both sides of 

the driving wheels. The rear wheels use omnidirectional wheels to achieve turning. The 

robot is equipped with a US-015 ultrasonic module, which can detect obstacles with a 

measuring accuracy of 0.1 cm + 1%. In addition, the robot uses EAI G1 LIDAR to test the 

surrounding environment, obtains obstacle information based on the triangulation prin-

ciple, constructs environment maps using the 𝐺𝑚𝑎𝑝𝑝𝑖𝑛𝑔 SLAM algorithm, saves them 

with 𝑚𝑎𝑝_𝑠𝑒𝑟𝑣𝑒𝑟, and generates grid maps through the 𝑚𝑎𝑝_2𝑑 function package. The 

AMCL algorithm is used to determine the initial position and pose of the robot before 

navigation.  

 

Figure 16. Main structure of the LEO ROS robot. 

The global path-planning algorithms embedded in the LEO ROS mobile robots exist 

in the form of plug-ins in the 𝑚𝑜𝑣𝑒_𝑏𝑎𝑠𝑒 package. By creating and configuring the pa-

rameter file 𝑏𝑎𝑠𝑒_𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑙𝑎𝑛𝑛𝑒𝑟_𝑝𝑎𝑟𝑎𝑚. 𝑦𝑎𝑚𝑙 writing the 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟 class, the se-

lection of different global path-planning algorithms can be realized. In order to apply the 

improved BSGA* algorithm to the robot, 𝐵𝑆𝐺𝐴𝑠𝑡𝑎𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑙𝑎𝑛𝑛𝑒𝑟  plug-in is written 

Figure 16. Main structure of the LEO ROS robot.

The global path-planning algorithms embedded in the LEO ROS mobile robots exist
in the form of plug-ins in the move_base package. By creating and configuring the param-
eter file base_global_planner_param.yaml writing the GlobalPlanner class, the selection of
different global path-planning algorithms can be realized. In order to apply the improved
BSGA* algorithm to the robot, BSGAstar_global_planner plug-in is written and added
into the move_base package based on the current GlobalPlanner, and the algorithm was
implemented by modifying and configuring the parameter file move_base_params.yaml.

The LEO ROS robot is 360 mm in length, 455 mm in width, and 160 mm in height.
The LIDAR is 100 mm from the ground. Based on the above size, 360 × 260 × 40 mm
cardboard boxes are used to build the experimental environment, as shown in Figure 17.
The edge of the square experimental environment consists of 15 cardboard boxes placed
side by side. Figure 18a shows environment 1, the starting point and the target point are in
a diagonal position, and there are three obstacle areas randomly placed in the environment.
Figure 17b shows environment 2, there is a large area of obstacles between the starting
point and the target point. The environmental map was constructed using the Gmapping
SLAM algorithm in the ROS system and displayed on the rivz platform in real time. The
size of the grid constructed by the robot was set to 360 mm × 360 mm. As the construction
of environments is affected by many factors, such as the smoothness of driving, it is difficult
to be completely consistent with the actual environment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 24 
 

and added into the 𝑚𝑜𝑣𝑒_𝑏𝑎𝑠𝑒 package based on the current 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟, and the al-

gorithm was implemented by modifying and configuring the parameter file 

𝑚𝑜𝑣𝑒_𝑏𝑎𝑠𝑒_𝑝𝑎𝑟𝑎𝑚𝑠. 𝑦𝑎𝑚𝑙. 

The LEO ROS robot is 360 mm in length, 455 mm in width, and 160 mm in height. 

The LIDAR is 100 mm from the ground. Based on the above size, 360 × 260 × 40 mm card-

board boxes are used to build the experimental environment, as shown in Figure 17. The 

edge of the square experimental environment consists of 15 cardboard boxes placed side 

by side. Figure 18a shows environment 1, the starting point and the target point are in a 

diagonal position, and there are three obstacle areas randomly placed in the environment. 

Figure 17b shows environment 2, there is a large area of obstacles between the starting 

point and the target point. The environmental map was constructed using the 𝐺𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

SLAM algorithm in the ROS system and displayed on the 𝑟𝑖𝑣𝑧 platform in real time. The 

size of the grid constructed by the robot was set to 360 mm × 360 mm. As the construction 

of environments is affected by many factors, such as the smoothness of driving, it is diffi-

cult to be completely consistent with the actual environment. 

  
(a) (b) 

Figure 17. Experimental environments: (a) Environment 1; (b) Environment 2. 

   
(a) (b) (c)  

   

Figure 17. Experimental environments: (a) Environment 1; (b) Environment 2.



Appl. Sci. 2023, 13, 11290 19 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 25 
 

 

   
(a) (b) (c)  

   
(d) (e) (f) 

Figure 18. Comparison of paths generated by Dijkstra, A*, and improved BGA* algorithms in envi-
ronment 1: (a) Dijkstra; (b) A*; (c) D* lite; (d) ACO; (e) GA; (f) Improved BSGA*. 

In order to verify the performance of the improved BSGA* algorithm proposed in 
this study, it is compared with the Dijkstra algorithm, A* algorithm, D* lite algorithm, 
ACO algorithm, and GA, respectively, in two environments. The above algorithms were 
executed 10 times in both environments, respectively. Figure 18 shows the paths gener-
ated by the above six algorithms in environment 1 and Figure 19 shows the paths gener-
ated by the above six algorithms in environment 2. The green arrow in the figure repre-
sents the current orientation of the robot, and the red line segment represents the driving 
path. It can be seen that the paths generated by the improved BSGA* algorithm are 
smoother in both maps, mainly because the redundant turning points can be removed by 
using a multi-layer turning point filtering strategy.  

Figure 18. Comparison of paths generated by Dijkstra, A*, and improved BGA* algorithms in
environment 1: (a) Dijkstra; (b) A*; (c) D* lite; (d) ACO; (e) GA; (f) Improved BSGA*.

In order to verify the performance of the improved BSGA* algorithm proposed in
this study, it is compared with the Dijkstra algorithm, A* algorithm, D* lite algorithm,
ACO algorithm, and GA, respectively, in two environments. The above algorithms were
executed 10 times in both environments, respectively. Figure 18 shows the paths generated
by the above six algorithms in environment 1 and Figure 19 shows the paths generated by
the above six algorithms in environment 2. The green arrow in the figure represents the
current orientation of the robot, and the red line segment represents the driving path. It can
be seen that the paths generated by the improved BSGA* algorithm are smoother in both
maps, mainly because the redundant turning points can be removed by using a multi-layer
turning point filtering strategy.

Tables 8 and 9 show the comparison of the calculation times of six algorithms and the
driving time of the LEO ROS robot in environments 1 and 2.

Table 8. The comparison of the path-planning time of six algorithms and travel time of the LEO
ROS robot in environment 1; the values of average calculation time are reported as mean ± standard
deviation for 10 executions.

Algorithm Average Calculation Time/ms Actual Driving Time/s

Dijkstra 1134.99 ± 12.73 74.82 ± 0.53
A* 981.96 ± 19.28 101.60 ± 0.35

D* lite 4480.39 ± 138.67 54.76 ± 0.35
ACO 3940.42 ± 87.47 58.88 ± 0.41
GA 1049.15 ± 51.95 110.66 ± 0.48

Improved BSGA* 299.69 ± 13.21 35.02 ± 0.28



Appl. Sci. 2023, 13, 11290 20 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 24 
 

(d) (e) (f) 

Figure 18. Comparison of paths generated by Dijkstra, A*, and improved BGA* algorithms in envi-

ronment 1: (a) Dijkstra; (b) A*; (c) D* lite; (d) ACO; (e) GA; (f) Improved BSGA*. 

In order to verify the performance of the improved BSGA* algorithm proposed in 

this study, it is compared with the Dijkstra algorithm, A* algorithm, D* lite algorithm, 

ACO algorithm, and GA, respectively, in two environments. The above algorithms were 

executed 10 times in both environments, respectively. Figure 18 shows the paths gener-

ated by the above six algorithms in environment 1 and Figure 19 shows the paths gener-

ated by the above six algorithms in environment 2. The green arrow in the figure repre-

sents the current orientation of the robot, and the red line segment represents the driving 

path. It can be seen that the paths generated by the improved BSGA* algorithm are 

smoother in both maps, mainly because the redundant turning points can be removed by 

using a multi-layer turning point filtering strategy.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 19. Comparison of paths generated by Dijkstra, A*, and improved BGA* algorithms in envi-

ronment 2: (a) Dijkstra; (b) A*; (c) D* lite; (d) ACO; (e) GA; (f) Improved BSGA*. 

Tables 8 and 9 show the comparison of the calculation times of six algorithms and the 

driving time of the LEO ROS robot in environments 1 and 2. 

  

Figure 19. Comparison of paths generated by Dijkstra, A*, and improved BGA* algorithms in
environment 2: (a) Dijkstra; (b) A*; (c) D* lite; (d) ACO; (e) GA; (f) Improved BSGA*.

Table 9. The comparison of the path-planning time of six algorithms and travel time of the LEO
ROS robot in environment 2; the values of average calculation time are reported as mean ± standard
deviation for 10 executions.

Algorithm Average Calculation Time/ms Actual Driving Time/s

Dijkstra 1454.97 ± 13.16 60.28 ± 0.34
A* 626.82 ± 8.14 93.61 ± 0.54

D* lite 4976.84 ± 114.65 78.14 ± 0.38
ACO 4426.67 ± 245.95 77.39 ± 0.51
GA 1940.80 ± 138.87 146.24 ± 0.62

Improved BSGA* 324.91 ± 8.02 52.88 ± 0.34

It can be obtained that, compared with the other five algorithms in environment 1,
the calculation times of the improved BSGA* algorithm are reduced by 73.60%, 69.48%,
93.31%, 92.39%, and 71.43%, respectively, in turn. In environment 2, the corresponding data
are 77.67%, 48.17%, 93.47%, 92.66%, and 83.26%, respectively, in turn. This is because the
Gaussian function is used to dynamically weigh the heuristic function of the A* algorithm,
and the BS search structure is applied to the A* algorithm, which can effectively reduce the
redundant search nodes. From Table 9, it can be concluded that, compared with the other
five algorithms in environment 1, the driving time of the LEO ROS robot using the improved
BSGA* algorithm is reduced by 53.19%, 65.53%, 36.05%, 40.52%, and 68.35%, respectively,
in turn. In environment 2, the corresponding data are 12.28%, 43.51%, 32.33%, 31.67%,
and 63.84%, respectively, in turn. This is due to the fact that the LEO ROS robot takes
relatively more time during the turning process, whereas the improved BSGA* algorithm



Appl. Sci. 2023, 13, 11290 21 of 23

generates smoother and shorter paths, thus effectively reducing the driving time. Therefore,
in different types of environments, the improved BSGA* algorithm shows better results
than the other five algorithms, which is beneficial for improving the service life of DDMRs,
reducing motor loss, and improving driving efficiency.

5. Conclusions

In this paper, an improved BSGA* algorithm is proposed based on the traditional A*
algorithm and the kinematic analysis of DDMRs. By introducing a Gaussian function to
dynamically weigh the heuristic function and optimizing it using the BS structure, the
algorithm performance in the face of different types of obstacles is effectively improved. In
addition, a multi-layer turning point filtering strategy is proposed to reduce the redundant
nodes and improve the smoothness of the path. The simulation results show that the
improved BSGA* algorithm has a better performance than the ACO algorithm, D* lite algo-
rithm, and GA in different maps. Finally, the improved BSGA* algorithm is applied to the
LEO ROS mobile robot, and two different environments are built. The experimental results
show that the improved BSGA* algorithm is more suitable to provide global path guidance
for DDMRs than the Dijkstra algorithm, A* algorithm, ACO algorithm, D* algorithm, and
GA. As a static planning method, the improved BSGA* cannot deal with dynamic obstacles,
so it should be combined with a local obstacle avoidance algorithm to ensure the safety of
driving in future work.

Author Contributions: Conceptualization, M.Y.; Methodology, M.Y.; Software, M.Y.; Investigation,
M.Y.; Writing—original draft, M.Y.; Writing—review and editing, M.Y., H.D. and X.F.; Funding
acquisition, H.D.; Resources, X.F.; Project administration, X.F.; Form analysis, P.L.; Data curation,
Y.L.; Supervision, H.L.; Visualization, H.L.; Validation, H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key Technology Research and Development Program
of Shandong, grant number 2022CXGC010101 and the Key Technology Research and Development
Program of Shandong, grant number 2019JZZY010443.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

References
1. Stefek, A.; Pham, T.V.; Krivanek, V.; Pham, K.L. Energy Comparison of Controllers Used for a Differential Drive Wheeled Mobile

Robot. IEEE Access 2020, 8, 170915–170927. [CrossRef]
2. Felix-Rendon, J.; Bello-Robles, J.C.; Fuentes-Aguilar, R.Q. Control of differential-drive mobile robots for soft object deformation.

ISA Trans. 2021, 117, 221–233. [CrossRef]
3. Xie, H.; Zheng, J.; Chai, R.; Nguyen, H.T. Robust tracking control of a differential drive wheeled mobile robot using fast

nonsingular terminal sliding mode. Comput. Electr. Eng. 2021, 96, 107488. [CrossRef]
4. Haider, M.H.; Wang, Z.; Khan, A.A.; Ali, H.; Zheng, H.; Usman, S.; Kumar, R.; Bhutta, M.U.M.; Zhi, P. Robust mobile robot

navigation in cluttered environments based on hybrid adaptive neuro-fuzzy inference and sensor fusion. J. King Saud Univ.
Comput. Inf. Sci. 2022, 34, 9060–9070. [CrossRef]

5. Raikwar, S.; Fehrmann, J.; Herlitzius, T. Navigation and control development for a four-wheel-steered mobile orchard robot using
model-based design. Comput. Electron. Agric. 2022, 202, 107410. [CrossRef]

6. Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-based navigation and guidance for agricultural autonomous vehicles
and robots: A review. Comput. Electron. Agric. 2023, 205, 107584. [CrossRef]

7. Jian, Z.; Zhang, S.; Chen, S.; Nan, Z.; Zheng, N. A Global-Local Coupling Two-Stage Path Planning Method for Mobile Robots.
IEEE Robot. Autom. Lett. 2021, 6, 5349–5356. [CrossRef]

8. Mandloi, D.; Arya, R.; Verma, A.K. Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d
environment. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 990–1000. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3023345
https://doi.org/10.1016/j.isatra.2021.01.057
https://doi.org/10.1016/j.compeleceng.2021.107488
https://doi.org/10.1016/j.jksuci.2022.08.031
https://doi.org/10.1016/j.compag.2022.107410
https://doi.org/10.1016/j.compag.2022.107584
https://doi.org/10.1109/LRA.2021.3074878
https://doi.org/10.1007/s13198-021-01186-9


Appl. Sci. 2023, 13, 11290 22 of 23

9. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path
Planning in a Port Environment. Ieee Access 2021, 9, 59196–59210. [CrossRef]

10. Liao, B.; Wan, F.; Hua, Y.; Ma, R.; Zhu, S.; Qing, X. F-RRT*: An improved path planning algorithm with improved initial solution
and convergence rate. Expert Syst. Appl. 2021, 184, 115457. [CrossRef]

11. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.
Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]

12. Sarkar, R.; Barman, D.; Chowdhury, N. Domain knowledge based genetic algorithms for mobile robot path planning having
single and multiple targets. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 4269–4283. [CrossRef]

13. Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780511546877.
14. Guo, J.; Xia, W.; Hu, X.; Ma, H. Feedback RRT* algorithm for UAV path planning in a hostile environment. Comput. Ind. Eng.

2022, 174, 108771. [CrossRef]
15. Wang, J.; Li, B.; Meng, M.Q.H. Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning.

Expert Syst. Appl. 2021, 170, 114541. [CrossRef]
16. Hou, W.; Xiong, Z.; Wang, C.; Chen, H. Enhanced ant colony algorithm with communication mechanism for mobile robot path

planning. Robot. Auton. Syst. 2022, 148, 103949. [CrossRef]
17. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput. Electr. Eng. 2012,

38, 1564–1572. [CrossRef]
18. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
19. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination. IEEE Trans. Syst. Sci. Cybern. 1968, 2, 28–29.
20. Zhang, Z.; Jiang, J.; Wu, J.; Zhu, X. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using

minimal radar cross-section tactics and modified A-Star algorithm. ISA Trans. 2023, 134, 42–57. [CrossRef]
21. Liu, Z.; Liu, H.; Lu, Z.; Zeng, Q. A Dynamic Fusion Pathfinding Algorithm Using Delaunay Triangulation and Improved A-Star

for Mobile Robots. IEEE Access 2021, 9, 20602–20621. [CrossRef]
22. Jiang, H.; Sun, Y. Research on global path planning of electric disinfection vehicle based on improved A* algorithm. Energy Rep.

2021, 7, 1270–1279. [CrossRef]
23. Liu, H.; Zhang, Y. ASL-DWA: An Improved A-Star Algorithm for Indoor Cleaning Robots. IEEE Access 2022, 10, 99498–99515.

[CrossRef]
24. Li, J.; Liao, C.; Zhang, W.; Fu, H.; Fu, S. UAV Path Planning Model Based on R5DOS Model Improved A-Star Algorithm. Appl. Sci.

2022, 12, 11338. [CrossRef]
25. Zhang, H.; Li, M.; Yang, L. Safe Path Planning of Mobile Robot Based on Improved A* Algorithm in Complex Terrains. Algorithms

2018, 11, 44. [CrossRef]
26. Sang, H.; You, Y.; Sun, X.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field

for unmanned surface vehicle formations. Ocean. Eng. 2021, 223, 108709. [CrossRef]
27. Cui, S.; Chen, Y.; Li, X. A Robust and Efficient UAV Path Planning Approach for Tracking Agile Targets in Complex Environments.

Machines 2022, 10, 931. [CrossRef]
28. Dang, S.T.; Dinh, X.M.; Kim, T.D.; Xuan, H.L.; Ha, M. Adaptive Backstepping Hierarchical Sliding Mode Control for 3-Wheeled

Mobile Robots Based on RBF Neural Networks. Electronics 2023, 12, 2345. [CrossRef]
29. Latombe, J.C. Robot Motion Planning; Springer: Berlin/Heidelberg, Germany, 1991.
30. Klančar, G.; Matko, D.; Blažič, S. A control strategy for platoons of differential drive wheeled mobile robot. Robot. Auton. Syst.

2011, 59, 57–64. [CrossRef]
31. Li, Y.; Jin, R.; Xu, X.; Qian, Y.; Wang, H.; Xu, S.; Wang, Z. A Mobile Robot Path Planning Algorithm Based on Improved A*

Algorithm and Dynamic Window Approach. IEEE Access 2022, 10, 57736–57747. [CrossRef]
32. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a Star Algorithm for a

Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]
33. Hong, Z.; Sun, P.; Tong, X.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; Xu, L. Improved A-Star Algorithm for

Long-Distance Off-Road Path Planning Using Terrain Data Map. ISPRS Int. J. Geo-Inf. 2021, 10, 785. [CrossRef]
34. Zhao, H.; Zhang, B.; Sun, J.; Yang, L.; Yu, H. Spot-welding path planning method for the curved surface workpiece of body-in-

white based on a memetic algorithm. Int. J. Adv. Manuf. Technol. 2021, 117, 3083–3100. [CrossRef]
35. Liu, C.; Mao, Q.; Chu, X.; Xie, S. An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for

Vessel Path Planning. Appl. Sci. 2019, 9, 1057. [CrossRef]
36. Flores-Caballero, G.; Rodriguez-Molina, A.; Aldape-Perez, M.; Villarreal-Cervantes, M.G. Optimized Path-Planning in Continuous

Spaces for Unmanned Aerial Vehicles Using Meta-Heuristics. IEEE Access 2020, 8, 176774–176788. [CrossRef]
37. Li, C.; Huang, X.; Ding, J.; Song, K.; Lu, S. Global path planning based on a bidirectional alternating search A* algorithm for

mobile robots. Comput. Ind. Eng. 2022, 168, 108123. [CrossRef]
38. Soltani, A.R.; Tawfik, H.; Goulermas, J.Y.; Fernando, T. Path planning in construction sites: Performance evaluation of the Dijkstra,

A∗, and GA search algorithms. Adv. Eng. Inform. 2002, 16, 291–303. [CrossRef]
39. Ryu, H.; Chung, W.K. Local map-based exploration using a breadth-first search algorithm for mobile robots. Int. J. Precis. Eng.

Manuf. 2015, 16, 2073–2080. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3070054
https://doi.org/10.1016/j.eswa.2021.115457
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1016/j.jksuci.2020.10.010
https://doi.org/10.1016/j.cie.2022.108771
https://doi.org/10.1016/j.eswa.2020.114541
https://doi.org/10.1016/j.robot.2021.103949
https://doi.org/10.1016/j.compeleceng.2012.06.016
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.isatra.2022.07.032
https://doi.org/10.1109/ACCESS.2021.3055231
https://doi.org/10.1016/j.egyr.2021.09.137
https://doi.org/10.1109/ACCESS.2022.3206356
https://doi.org/10.3390/app122211338
https://doi.org/10.3390/a11040044
https://doi.org/10.1016/j.oceaneng.2021.108709
https://doi.org/10.3390/machines10100931
https://doi.org/10.3390/electronics12112345
https://doi.org/10.1016/j.robot.2010.12.002
https://doi.org/10.1109/ACCESS.2022.3179397
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.3390/ijgi10110785
https://doi.org/10.1007/s00170-021-07728-6
https://doi.org/10.3390/app9061057
https://doi.org/10.1109/ACCESS.2020.3026666
https://doi.org/10.1016/j.cie.2022.108123
https://doi.org/10.1016/S1474-0346(03)00018-1
https://doi.org/10.1007/s12541-015-0269-9


Appl. Sci. 2023, 13, 11290 23 of 23

40. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. Ieee
Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

41. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.
Part B Cybern. 1996, 26, 29–41. [CrossRef]

42. Stentz, A. Optimal and Efficient Path Planning for Partially-Known Environments. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 3310–3317.

43. Sugihara, K.; Smith, J. Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robot. In Proceedings of the
IEEE International Symposium on Computational Intelligence in Robotics & Automation, Monterey, CA, USA, 10–11 July 1997.

44. Liu, J.; Anavatti, S.; Garratt, M.; Abbass, H.A. Modified continuous Ant Colony Optimisation for multiple Unmanned Ground
Vehicle path planning. Expert Syst. Appl. 2022, 196, 116605. [CrossRef]

45. Raja, R.; Dutta, A.; Venkatesh, K.S. New potential field method for rough terrain path planning using genetic algorithm for a
6-wheel rover. Robot. Auton. Syst. 2015, 72, 295–306. [CrossRef]

46. Yu, J.; Yang, M.; Zhao, Z.; Wang, X.; Bai, Y.; Wu, J.; Xu, J. Path planning of unmanned surface vessel in an unknown environment
based on improved D*Lite algorithm. Ocean. Eng. 2022, 266, 112873. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.eswa.2022.116605
https://doi.org/10.1016/j.robot.2015.06.002
https://doi.org/10.1016/j.oceaneng.2022.112873

	Introduction 
	Materials and Methods 
	Analysis of Turning Motion of DDMR 
	Grid Modeling 
	Procedure of A* Algorithm 

	Improved BSGA* Algorithm 
	Improved Heuristic Functions 
	Bidirectional Search Structure 
	Multi-Layer Turning Point Filtering Strategy 

	Simulation and Experiments 
	Performance Comparison of Different Algorithms 
	Comparison in Real Environments 

	Conclusions 
	References

