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Abstract: Kinematic modeling is essential for planning and controlling continuum robot motion.
The traditional Denavit Hartenberg (DH) model involves complex matrix multiplication operations,
resulting in computationally intensive inverse solutions and trajectory planning. Solving position and
orientation changes in continuum robots using the double quaternion rule can reduce computational
complexity. However, existing dual quaternion methods are direct equational transformations of
DH rules and do not give a complete modeling process. They usually require more interpretability
when applying continuum robot kinematic modeling. This paper uses the dual quaternion method
to establish a kinematic model of a continuum robot. It uses a two-section continuum robot model
to compare the advantages of dual quaternion and traditional modeling methods. In addition, this
paper proposes a five-polynomial interpolation algorithm based on the dual quaternion method
for trajectory planning of continuum robots. This method accurately models spatial bending and
torsional motions of singularity-free continuum robots.

Keywords: Denavit–Hartenberg; continuum robot; dual quaternion Jacobian matrix; trajectory planning

1. Introduction

Researchers have become increasingly enthusiastic about continuum robots in recent
years because of their excellent mechanical properties when operating in unique environ-
ments. The continuum robot is a flexible, continuous, multi-segmented robotic system
inspired by the skeletal structure of biological organisms. In contrast with conventional
rigid multi-joint robots, continuum robots employ a soft, deformable structure composed
of numerous interconnected and continuous flexible segments. These segments can be
actuated internally or externally using stimuli such as gas, liquid, or motors, facilitating
smooth, seamless, and flexible motion and deformation. For example, continuum robots
can perform surgical operations under minimally invasive and non-invasive conditions
of the human body [1–4], target detection and fault diagnosis in narrow intervals [5–7],
and grasp targets in high-pressure underwater environments, such as the deep sea [8].
They were developed from studying structures in nature that can be freely bent, twisted,
and elongated, such as the arms of octopuses, the tongues of mammals and reptiles, and
the trunks of elephants [9–11]. The diversity of potential applications of the continuum
robot leads to various designs [12], which are reflected in the structure and the matching
drive. From the physical form, the continuum robot is divided into the following for-
mats: a single flexible pipe or rod with uniform stiffness [13], a series of flexible concentric
tubes [14], a series of parallel truss platforms [15], flexible continuum pipes with multiple
open slots [16,17], and a plurality of elastic material disks stacked. Drive models include
pneumatic, traction line, electrochemical, and other drive modes. However, they all exhibit
continuum curvature in a continuum robot, i.e., a continuum changes curvature along the
main chain’s length. Furthermore, unlike conventional manipulators, which consist mainly
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of rigid elements resulting in only changing themselves at discrete points in their structure,
continuum robots can theoretically change any position in their system [18,19], which leads
to challenging kinematic and dynamic modeling of continuum robots and further leads to
difficulties in real-time dynamic control.

Continuum robots have widespread use in quasi-static environments where dynamic
models may not be applicable [20]. Researchers have employed various approaches to
solving the kinematics of continuum robots, such as utilizing motion combinations of
fake rigid manipulators to simulate their motion and applying the Denavit–Hartenberg
(DH) model, which was initially developed for rigid manipulators’ accuracy in emulating
continuum robot behavior; kinematic and shape correspondence between super-redundant
manipulators and desired spatial profiles have been introduced [21,22]. Recently, the incor-
poration of continuum curvature into a modified DH modeling procedure using differential
geometry has provided a comprehensive approach to modeling continuum robots [23].
Building upon this work, the researcher has proposed the variable reality of the central
axis, associating the driving variable with the central axis curve to modify and enhance
existing ideas [11]. The Jacobian matrix of the model and the corresponding kinematic
control method have also been discussed. However, special numerical treatment is required
when approaching these models’ straight (zero-curvature) cross-section configuration. The
researcher expanded the driver variables, employing the Taylor series to address this issue
and, thus, preventing model invalidity at zero curvature [24–26]. Nevertheless, modeling a
multi-system or multi-joint manipulator arm using the above modeling approach becomes
difficult, as the method of obtaining the end pose by multiplying the pose matrix places a
significant workload on the system, and the relationship between each part of the system
and the global coordinate system must be constantly considered. To address the challenge
of dealing with sections with nearly straight deformation, the researcher has proposed
using dual quaternions to solve this problem. Although the dual quaternion method offers
increased efficiency in representing changes in the position and spatial elements of the
robot, the existing approach is directly converted from the DH rule based on mathematical
rules without considering the perspective of manipulator motion. This leads to limited
interpretability of the dual quaternion method when applied to the kinematic modeling of
manipulators in scientific journal articles.

Building upon previous research, this paper explores the dual quaternion method
from the standpoint of kinematics in order to tackle continuum manipulator problems. The
solution is established based on the definition, and the merits of the dual quaternion method
are emphasized by comparing its computational efficiency with traditional DH model-
based algorithms. The paper is structured as follows. Section 2 introduces the operational
rules of dual quaternions and derives the principles for representing spatial rotation and
displacement using dual quaternions. Section 3 illustrates the modeling of forward and
inverse kinematics for single and multiple joints employing the dual quaternion method
using the standard continuum manipulator model. Section 4 corroborates the results
through simulation and experimental testing. Finally, conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Dual Quaternion Rule

Quaternions are fourth-order hypercomplex numbers often used to describe changes
in four-dimensional hyperplanes and vectors in graphics. Quaternions are generally
represented in the form a + bi + cj + dk, where a, b, c, and d are real numbers, and i, j,
and k are basic quaternions. Quaternions can be composed of a scalar part and a vector
part. q is a quaternion represented as q = (r, v), where r is a scalar defined in the real
number field, and v is a three-dimensional vector. q∗ is the conjugate of q, represented by
q∗ = (r,−v). q1 and q2 are two quaternions. The result and outer product of those are
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shown in Equations (1) and (2). The product of two quaternions is called the Grassmann
product and is denoted by the symbol ⊗.

(r1, v1) + (r2, v2) = (r1 + r2, v1 + v2) (1)

(r1, v1)(r2, v2) = (r1r2 − v1 · v2, r1v2 + r2v1 + v1 × v2) (2)

The dual numbers are a system of hypercomplex numbers, which are expressions of
the form c + dε, where c and d are real numbers, and ε is a symbol taken to satisfy. When c
and d are replaced by quaternions using real numbers, the dual numbers are called dual
quaternions. A dual quaternion can be represented in the form of q̂, which can be written as
q̂ = qr + εqd. Among them, qr and qd are two quaternions, respectively, referred to as the
imaginary and real parts of dual quaternions. q̂∗ represents the dual quaternion conjugate,
as shown in Equation (3).

q̂∗ = q∗r + εq∗d (3)

2.2. Dual Quaternion Representation of Rigid Body Motion

Rigid body motions describing elements of solid geometry, such as points, lines, and
surfaces in space, can be represented by dual quaternions. As shown in Equation (4), this
means that the dual quaternion is used to represent a straight line A that changes into a
straight line B after rotation and translation in space, where Â and B̂ are the Plücker forms
of straight lines A and B, respectively. q̂ is the dual quaternions representing the angle
of rotation θ around axis l. It can also be written in the form of Equation (5), where the
derivation process is given in Appendix A.

B̂ = q̂∗ ⊗ Â⊗ q̂ (4)

q̂ =

(
cos
(

θ

2

)
, sin

(
θ

2

)
l
)

& + ε

(
−d

2
sin
(

θ

2

)
, sin

(
θ

2

)
m +

d
2

cos
(

θ

2

)
l
)

(5)

2.3. Physical Model of Continuum Robot

The general kinematic equations of a tendon-driven continuum robot arm are estab-
lished. A specific example is presented to demonstrate the application of the derived
kinematic equations, in which a tendon-driven continuum robot is considered. As il-
lustrated in Figure 1, this continuum robot comprises two independent single-section
manipulators, namely Sections 1 and 2. Each manipulator section is constructed using a
flexible disc as its primary structure, with the discs connected by springs, referred to as
tendons. These tendons are secured at predetermined positions along the arc length of the
robot. The end of the arm is equipped with a multi-traction line attached to the discs. By
pulling these traction lines, a load is applied to the spring through the disc, resulting in the
corresponding bending of the robot arm.
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Figure 1. Structure of a continuum tendon-driven robot. (a) Schematic diagram of the robotic arm
model in the natural state; (b) Schematic diagram of the robotic arm model in the driven state;
(c) Cross-sectional schematic diagram of the robotic arm model. Among them, Lij represents the
number of the driving lines, i represents the ith robotic arm, and j represents the jth driving lines.

3. Kinematic Model of Continuum Robotics
3.1. Center Axis Curve Parameters

Due to the arrangement of the tendons (discs and springs), the robotic arm is driven
in line, and these continua exhibit a telescopic movement or bend into a circular shape.
Therefore, the continuum arm’s central axis can be described in space precisely as a circular
arc with a variable radius of curvature and length. As shown in Figure 2a, the diagram on
the left shows the state of the continuum arm of the section when it is not driven, i.e., t = 0.
The central axis of the disc is a straight line with four drive lines of length L0

ij(j = 1, 2, 3, 4).
After the continuous manipulator is driven for time t, the state is shown in Figure 2b. The
line length becomes Lt

ij(j = 1, 2, 3, 4). Let the change in rope length between the driven
state and the undriven state be lij (t), as shown in Equation (6).

lij (t) = L0
ij − Lt

ij (6)

When the continuum arm is driven, the overall curve is assumed to be circular based
on continuum curvature [24]. The radius of the curvature is described by ρi ∈ (0, ∞), and
the bending angle is described by ϕi ∈

(
0, π2

)
, which is on a plane that forms an angle

δi ∈ (−π,π) with the x-axis as a whole in space. The curve parameters in joint space
variables are given by Equations (7)–(9). A comprehensive derivation of these variables is
provided in Appendix B.

ϕi =
1

2Ri

√
(li4 − li2)

2 + (li3 − li1)
2 (7)

δi = arctan
(

2(li1 − li2)
(li1 − li3)

− 1
)

(8)

ρi =
2
√
(li4 − li2)

2 + (li3 − li1)
2

Ri ∑ lij
(9)
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Figure 2. The Structure diagram of the single-section mechanical arm is driven and not driven.
(a) Schematic diagram of the driving line of the single-section robotic arm when it is not driven,
where L0

ij represents the rope length. (b) Schematic diagram of the driving line of the robotic arm

after driving time t, where Lt
ij represents the rope length.

3.2. Coordinate Systems and Dual Quaternion Transformations of Points and Lines

A single-segment continuous robot is used to model using the dual quaternion method.
The forward kinematics of the robot are to solve its end pose after driving. The physical
model of the single-section robotic arm when driven is shown in Figure 3a.
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Figure 3. (a) Physical model of a single-section robotic arm in the driving state. Among them,
{F}{1}{2}{3}{4}{E} are the coordinate systems, respectively, and LE and LF represent the straight lines
where the z-axis of the {F} and {E} coordinate systems are located, respectively. (b) Mathematical
model of a single-section robotic arm in the driving state. It describes the z-axis and y-axis in the
coordinate system {F}, that is, the straight lines LF and PF, which after coordinate transformation
become the straight lines LE and PE in the coordinate system {E}.

As shown in Figure 3, if {F} and {E} are two reference frames, while q̂E, q̂F are the dual
quaternion of those reference frames relative to a fixed coordinate system in space, then the
relative position relationship between these two coordinate systems is called q̂EF, which is
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represented by (10) and can be obtained from (4); a more detailed derivation process can be
found in Appendix C.

q̂EF = q̂E ⊗ q̂F =
[
cos

ϕ

2
,−sinδsin

ϕ

2
, cosδsin

ϕ

2
, 0&, 0, 0, 0, ρ · sin

ϕ

2

]
(10)

Let the lines in the front-end coordinate system {F} where the y-axis and z-axis lie be
LF, PF and the direction vectors be lF and pF, respectively. By Euler’s theorem, the line LF
in the coordinate system {F} becomes L1 after a rotation around the z-axis and a translation
ρ along the axis x1, and then L2 around the axis y2, before a translation ρ along the new x3
axis becomes LE in the coordinate system {E}. Similarly, PF can become PE. The moment
vectors are mL, mP, respectively, which are expressed in the Plücker coordinate system as
LF = (lF, mL), PF = (pF, mF). They can be expressed as L̂F = lF + εmL, P̂F = pF + εmF by
a dual quaternion. Substituting (10) into (3), we can obtain the relationship between the
straight line LF and LE on the coordinate system {F} and {E} as (11).

L̂F = q̂∗EF ⊗ L̂E ⊗ q̂EF (11)

Similarly, the relationship between PF and PE is (12).

P̂F = q̂∗EF ⊗ P̂E ⊗ q̂EF (12)

According to Plück’s law, the intersection points of the two are the position of the end
coordinate system, and the pose can be expressed as [lF , pF , lF × pF].

3.3. Kinematic Equations of Continuum Manipulator

As shown in Figure 4, three identical single-section robotic arms are connected in
series to form an overall number: i− 1, i, i + 1. Then, the central axis is the z-axis direction
on the front-end disk of this multi-section robotic arm. Next, establish a coordinate system
and record it as {F}, and set up a coordinate system on the end disc with the central axis as
the direction of the z-axis and record it as {E}. Assume that the center point at the top of
the segment (i + 1) is O, which is expressed as OE(i+1) = (0, 0) in the coordinate system{

E(i+1)

}
.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 15 
 

As shown in Figure 3, if {F} and {E} are two reference frames, while �̂�𝐸 , �̂�𝐹 are the 

dual quaternion of those reference frames relative to a fixed coordinate system in space, 

then the relative position relationship between these two coordinate systems is called �̂�𝐸𝐹, 

which is represented by (10) and can be obtained from (4); a more detailed derivation 

process can be found in Appendix C. 

�̂�𝐸𝐹 = �̂�𝐸 ⊗ �̂�𝐹 = [𝑐𝑜𝑠
𝜑

2
, −𝑠𝑖𝑛𝛿𝑠𝑖𝑛

𝜑

2
, 𝑐𝑜𝑠𝛿𝑠𝑖𝑛

𝜑

2
, 0&,0,0,0, 𝜌 ⋅ 𝑠𝑖𝑛

𝜑

2
] (10) 

Let the lines in the front-end coordinate system {F} where the 𝑦-axis and 𝑧-axis lie 

be 𝐿𝐹 , 𝑃𝐹  and the direction vectors be 𝒍F and 𝒑F, respectively. By Euler’s theorem, the line 

𝐿𝐹 in the coordinate system {F} becomes 𝐿1 after a rotation around the 𝑧-axis and a trans-

lation ρ along the axis 𝑥1, and then 𝐿2 around the axis 𝑦2, before a translation 𝜌 along 

the new 𝑥3 axis becomes 𝐿𝐸 in the coordinate system {E}. Similarly, PF can become 𝑃𝐸 . 

The moment vectors are 𝒎L, 𝒎P, respectively, which are expressed in the Plücker coordi-

nate system as 𝑳F = (𝒍F, 𝒎L), 𝑷F = (𝒑F, 𝒎F) . They can be expressed as 𝑳F̂ = 𝒍F +

휀𝒎L, 𝑷F̂ = 𝒑F + 휀𝒎F by a dual quaternion. Substituting (10) into (3), we can obtain the 

relationship between the straight line 𝐿𝐹 and 𝐿𝐸 on the coordinate system {F} and {E} as 

(11). 

�̂�𝐹 = �̂�𝐸𝐹
∗ ⊗ �̂�𝐸 ⊗ �̂�𝐸𝐹 (11) 

Similarly, the relationship between PF and PE is (12). 

�̂�𝐹 = �̂�𝐸𝐹
∗ ⊗ �̂�𝐸 ⊗ �̂�𝐸𝐹 (12) 

According to Plück’s law, the intersection points of the two are the position of the end 

coordinate system, and the pose can be expressed as [𝒍𝐹  , 𝒑𝐹  , 𝒍𝐹 × 𝒑𝐹]. 

3.3. Kinematic Equations of Continuum Manipulator 

As shown in Figure 4, three identical single-section robotic arms are connected in 

series to form an overall number:  𝑖 − 1, 𝑖, 𝑖 + 1. Then, the central axis is the z-axis direction 

on the front-end disk of this multi-section robotic arm. Next, establish a coordinate system 

and record it as {F}, and set up a coordinate system on the end disc with the central axis 

as the direction of the z-axis and record it as {E}. Assume that the center point at the top 

of the segment (i + 1) is O, which is expressed as 𝑶E(𝑖+1) = (0,0) in the coordinate sys-

tem {E(i+1)}. 

 

Figure 4. The coordinate system of a multi-section continuous robot in a driven state. {F(i−1)} rep-

resents the coordinate system at the front end of the continuous robot in the first section, while 𝐹(𝑖) 

represents it in the second section. Due to physical model limitations, the 𝑖-th manipulator’s front-
end coordinate system differs from the 1-section robot arm, but 𝐹(𝑖) and 𝐸(𝑖−1) remain the same. 

Thus, a total of 𝑖 + 1 coordinate systems are needed for the 𝑖-section robotic arm. 

This point is denoted 𝑶F(𝑖+1) = (𝑶F(𝑖+1), 𝒎F(𝑖+1)) in the coordinate system {F(i+1)}, 

because {F(i+1)} and {E(i)} are the same in space. Therefore, the end position of the robot 

Figure 4. The coordinate system of a multi-section continuous robot in a driven state.
{

F(i−1)

}
represents the coordinate system at the front end of the continuous robot in the first section, while
F(i) represents it in the second section. Due to physical model limitations, the i-th manipulator’s
front-end coordinate system differs from the 1-section robot arm, but F(i) and E(i−1) remain the same.
Thus, a total of i + 1 coordinate systems are needed for the i-section robotic arm.

This point is denoted OF(i+1) =
(

OF(i+1), mF(i+1)

)
in the coordinate system

{
F(i+1)

}
,

because
{

F(i+1)

}
and

{
E(i)

}
are the same in space. Therefore, the end position of the

robot arm in the section i + 1 can be expressed as ÔE(i) in the end coordinate system of the
section i.

ÔE(i+1) = q̂∗(i+1)i ⊗ ÔE(i) ⊗ q̂(i+1)i (13)
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Similarly, the position of the central axis point of the front end of the multi-segment
continuous arm in the coordinate system of the end of the first continuous arm is:

ÔE(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ ÔE(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (14)

Then the z and y axis directions of the frontmost position point are:

L̂E(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ L̂E(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (15)

P̂E(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ P̂E(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (16)

Through (15) and (16), the expression of the end position of the overall mechanical arm
can be obtained in the first section of the robotic arm, and the complete forward kinematic
equation can be obtained.

3.4. Control the Motion of the Robotic Arm through the End Position

In the previous section, the forward kinematic equations of the continuum arms
were derived using the dual quaternion method. The Jacobian matrix of each part of the
manipulator is first solved to solve the inverse kinematics numerically.

Let the expression of the Plücker form of the coordinates of a point P0 in the coordinate
system {0} be P̂0, and the dual quaternion relationship between the coordinate system {0}
and the coordinate system {1} is q̂i.

Let the expression of the Plück form of the coordinates of a point P0 in the coordinate
system {0} be P̂0, and the dual quaternion relationship between the coordinate system {0}
and the coordinate system {1} is q̂i, then the point can be expressed in the coordinate system
{1} for (17).

P̂1 = Q1 = q̂∗i ⊗ P̂0 ⊗ q̂i (17)

Writing (18) as a vector pattern gives (18).

Q1 = Q1 = [1, ϑ1] + [0, εx1] (18)

The complete forward kinematics of ith section relative to {0}, denoted by Qi, is given
by (19).

P̂i = Qi = q̂∗i ⊗ · · · q̂
∗
1 ⊗ P̂0 ⊗ q̂1 ⊗ · · · q̂i (19)

Write (19) as a vector, as shown in (20). Here ϑ̂ ∈ R4 is the rotation and x̂ ∈ R4 is
the displacement.

Qi = Q1 · · · ⊗Qi = [1, ϑ1,2...i] + [0, εx1,2...i] (20)

Qi = Q1 ⊗Q2 ⊗ · · · ⊗Qi = Qi−1 ⊗Qi (21)

Putting q̂ = [qr, εqd] into (21), we can obtain (22) and (23), which are the dual quater-
nion representations of the position and pose matrix of the ith robotic arm.

ϑ̂1,2...i = ϑ̂1,2...i−1 ⊗ q̂i,r (22)

x̂1,2...i = x̂1,2...i−1 ⊗ q̂i,r + ϑ̂1,2...i−1 ⊗ q̂i,d (23)

We need to use the obtained position and pose to obtain partial derivatives of the joint
variables, so as to obtain the velocity Jacobian matrix of the manipulator vector. Let Jϑ

i and
Jx

i , respectively, be the position and pose quaternion Jacobians from (24) and (25).

Jϑ
i =

∂(ϑ1,2,...i)

∂(δ, θ)
∈ R4×2i (24)
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Jx
i =

∂(x1,2,...i)

∂(δ, θ)
∈ R4×2i (25)

Solve the derivatives of joint variables for (22) and (23) to obtain (26) and (24), where
the formula for derivation is (24) and (25).

Jϑ
i = Jϑ

i−1 ⊗ qi,r (26)

Jx
i = Jx

i−1 ⊗ qi,r + Jϑ
i−1 ⊗ qi,d (27)

The Jacobians derived in (26) and (27) are only valid in the Plück coordinate system,
so we need to transform the Plück coordinate system into the inertial coordinate system.

The Cartesian angular velocity, ωx ∈ R3 relative to {0}, can be recovered from the
quaternion velocities as (28).

ωx = 2q⊗ .
q (28)

The partial derivative of the angular momentum can be used to obtain the Jacobian
matrix of the angular velocity using (29).

Jω
i =

∂(ω)

∂(δ, θ)
∈ R3×2i (29)

Putting (28) into (29) can obtain the Jacobian matrix of the angular velocity of the
manipulator to the joint variable represented by the dual quaternion in the inertial space,
that is (30).

Jω
i = 2

[
ϑ̃i

]
Jϑ

i (30)

[
ϑ̃i

]
=

 a0 −a3 a2 −a1
a3
−a2

a0 −a1 −a2
a1 a0 −a3

 (31)

Similarly, the linear velocity is recovered from the component as in (31). The Jacobian
matrix of the manipulator speed is expressed as (33) in the Cartesian coordinate system.
Putting (32) into (33) can obtain the Jacobian matrix of the velocity of the manipulator to
the joint variable represented by the dual quaternion in the inertial space, that is (34).

vi = 2
[
ϑi
] .
xi − 2[x̃i]

.
ϑi (32)

Jv
i =

∂(vi)

∂(δ, θ)
∈ R3×2i (33)

JV
i = 2

[
ϑ̃i

]
Jv
i − 2[x̃i]Jϑ

i (34)

When solving the pose and position of the manipulator at the same time, the overall
Jacobian matrix should be (35).

J =
[

JV
i

Jω
i

]
(35)

Since the kinematics of the continuous manipulator are generally high-order polyno-
mials, it is impossible to solve the closed solution of the complete task space position or
orientation of the multi-section continuous manipulator. Therefore, numerical solutions or
metaheuristic algorithms are mainly used to solve the inverse kinematics of the manipula-
tor. This paper uses the pseudo-inverse iterative numerical solution method to solve the
inverse kinematic Equation (36) used for the inverse position solution.

J† = JT
(

JJT
)−1 (

J ∈ Rm×n) (36)
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4. Simulation Results and Discussion

To evaluate the accuracy of the dual quaternion model compared to traditional kine-
matic models, specifically the DH and DH Taylor expansion models, we conducted a
comparative analysis using the same driving variable. As demonstrated in Figure 5, our
findings reveal that the error computed by the dual quaternion model aligns closely with
those of the DH and DH Taylor expansion models. This corroborates the precision and
reliability of our proposed methodology. These results underscore the potential of dual
quaternions for enhancing the accuracy of kinematic models for continuum robots, laying
the groundwork for future research in robotics and related fields. To prove the improvement
of calculation speed using dual quaternion modeling, we use the same solution algorithm
to solve the same target and compare the calculation time of dual quaternions: DH and DH
Taylor. We anticipate the endpoint of the robotic arm to traverse from its initial position, P1
(0, 0, 960 mm), ultimately arriving at the desired position, P2 (369.8146 mm, 345.8315 mm,
702.9017 mm), as shown in Table 1. We used the optimization toolbox in MATLAB, and the
CPU was an Intel(R) Xeon(R) W-2245 CPU @ 3.90 GHz 3.91 GHz processor for calculation.
From Table 1, we can see that, in the numerical method, the dual quaternion model solves
the target position with high precision and a short calculation time of 0.45 s; compared
with the traditional DH method of 1.15 s, the calculation time is doubled. In standard
meta-heuristic algorithms, the dual quaternion models are shortened by more than half.
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Figure 5. The two-section driven manipulator contains four driving variables: ϕ1 ∈ [−π, π],
δ1 ∈ [0, π/2], ϕ2 = 0, and δ2 6= 0. The spatial coordinates solved by the DH Taylor expansion
series model are used as standard results to compare the errors in the results of the dual quaternion
model and the DH model. (a) The dual quaternion model and the standard result solve the error in
the x-coordinate direction between the coordinates. (b,c) are the errors in the y-axis and z-axis with
the standard result, respectively. (d) The errors between the DH model solution coordinates and the
standard result in the x-coordinate direction, (e,f), are the errors on the y-axis and z-axis, respectively.
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To achieve smooth angular velocity and acceleration changes at the end of the robotic
arm during operation, a quintic polynomial interpolation algorithm based on dual quater-
nions is proposed for motion planning of the robotic arm. The simulated movement of the
robotic arm end, as illustrated in Figure 6, demonstrates that the velocity and acceleration
of the variables are continuum and smooth during the robotic arm’s movement from point
P1 to point P2, without any abrupt changes. This indicates that the robotic arm’s motion is
not subject to speed distortion and can operate seamlessly.
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Figure 6. Use the fifth-order polynomial interpolation algorithm to plan the trajectory of the robotic
arm and solve the problem of the end of the two-section continuous robot moving from point P1

to point P2 in space. (a) Schematic diagram of the motion trajectory of the two-section continuous
robot. The path is planned through the fifth-order polynomial interpolation algorithm; that is, the
continuous robot needs to move 50 steps from point P1 to point P2 according to the interpolation
sequence. (b) The error between the continuous robot’s actual path and the algorithm’s path (c–e),
respectively, represents the changes in the angle, angular velocity, and angular acceleration of the
driving amount when the continuous robot moves from point P1 to point P2 and sequentially moves
50 interpolation trajectory points. The x-axis represents the 50 trajectory points.
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Table 1. Comparison of calculation time and quantity under different models.

Model Optimization Algorithm Actual Position Iterations Time(s)

DH

Genetic algorithm [369.8147, 345.8322, 702.9025] 25 3.43
Simulated annealing algorithm [369.8150, 345.8317, 702.9021] 5500 62.15
Numerical solution Algorithm [369.8143, 345.8315, 702.9017] 32 1.15
Particle Swarm Optimization [369.8125, 345.8306, 702.9003] 225 3.36

DH Taylor expansion

Genetic algorithm [372.2827, 347.7579, 706.3873] 400 4.50
Simulated annealing algorithm [369.8165, 345.8329, 702.9044] 7700 52.30
Numerical solution Algorithm [369.8146, 345.8319, 702.9018] 31 0.41
Particle Swarm Optimization [369.8101, 345.8311, 702.8985] 380 4.60

dual quaternions

Genetic algorithm [369.8161, 345.8352, 702.9070] 350 2.39
Simulated annealing algorithm [369.8118, 345.8293, 702.8986] 3900 28.50
Numerical solution Algorithm [369.8146, 345.8319, 702.9018] 32 0.45
Particle Swarm Optimization [366.5362, 345.7464, 701.7661] 85 1.18

5. Conclusions

This paper establishes a kinematic model of a continuous robot based on dual quater-
nions. It derives it from the perspective of the transformation process of geometric elements
in space: linear rotation and translation of space. First, the kinematic equations of the line-
pulled continuum robot are derived by applying the dual quaternion method. Secondly,
the kinematic model of the multi-section complete robotic arm was further established, and
the inverse kinematic solution was performed based on the numerical solution method.
Finally, this paper proposes a trajectory planning process for a continuum robot using the
five-polynomial dual quaternion method.
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Appendix A

Let there be any two vectors a,b in the space, where the vector a translates the distance
l along the p axis, and then rotates θ to become the vector b. Define the dual angle notation,
θ̂ = θ + εl, which relates an arbitrary 3D spatial line a to a given 3D spatial line b by a
rotation θ about a unique axis and with a translation l along the same axis.

Here, ra,rb represent the vectors from any arbitrary point in space, denoted as O,
to points a and b, respectively. The symbols a′, b′ signify the cross products. The cross
products a′ and b′ can be represented by a and b and their corresponding ra and rb, as
shown in Equation (A1).

a′ = ra × a, b′ = rb × b (A1)

We can write the vectors a and b representing line segments 0A and 0B in Plücker
form as â and b̂, respectively.

â = a + ε(ra × a), b̂ = b + ε(rb × b) (A2)
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Decomposing the vector b along the orthogonal directions of a and p × a gives
Equation (A3).

b = cos θa + sin θ(p× a) (A3)

Considering the relationship depicted in the figure, where rb = ra + l, and combining
it with the above equation, we can simplify it to Equation (A4).

b̂ = (cos θ − εlsin θ)(a + εra × a) + (sin θ + εlcos θ){[p + ε(ra × p)]× a} (A4)

The inverse Taylor series transformation is utilized for the change process, as shown
in Equation (A5), which ultimately simplifies Equation (A6).

cos θ − ε sin θl = cos θ̂, sin θ + ε cos θl = sin θ̂ (A5)

b̂ = cos θ̂â + sin θ̂(p̂× â) (A6)

Let cos θ̂ be a dual number, and sin θ̂(p̂× â) be a dual vector, then applying the
concept of dual quaternion, we can see that the elements in coordinate system {A} are
transformed into coordinate system {B} after a rotation angle θ after a translation distance
l around an axis is expressed as Λ̂ = cos θ̂ + sin θ̂p̂, where: b̂ = Λ(â). Further, if q̂ab is
equal to the Equation (A7), the b̂ can be expressed as q̂∗ ⊗ â⊗ q̂.

q̂ =

(
cos

(
θ

2

)
, sin

(
θ

2

)
l
)
+ ε

(
−d

2
sin
(

θ

2

)
, sin

(
θ

2

)
m +

d
2

cos
(

θ

2

)
l
)

(A7)
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Appendix B

The curvature radius ρij and the center bracket’s curvature radius, which are formed
by the changes in each pull line during the driving process, are denoted as R. This is the
radius of the circle where the drive line is located. Given that ρi ϕi = li, ρij ϕi = lij, we can
calculate ρij and lij according to Equations (A8) and (A9), respectively.

ρij = ρi + Ri cos (δi) (A8)

lij = li + Ri ϕi cos δij (A9)

The cables are evenly distributed in the cross-section of the base, with intervals of
90◦. Specifically, we have δi1 = δi; δi2 = δi +

π
2 ; δi3 = δi + π; δi4 = δi +

3π
2 . Consequently,

the sum of cosine values of ∑i cos δij = 0. Considering the relationship between the main
arc length and the four chord lengths, we find that li = 1

4 ∑i lij. When the robot joint only
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undergoes a bending angle δ while the rotation angle is 0, the transformation of the length
of the first drive line can be expressed as Equation (A10).

∇li1 = li − li1 = (ρi − ρi1)δi = ∇ρi1 δi = Riδi (A10)
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Figure A2. (a) Physical model of a single-section robotic arm in the driving state. (b) Project Plane
O{E}{F} that drives the rear robotic arm onto plane FZFXF.

ϕi, θi and the variation of the four drive ∇lij when the traction arm bends and twists
at the same time. Substitute the rope drives 1 and 2 into lij = li + Riϕi cos δij to obtain
li1 = li + Ri ϕi cos δi; li2 = li − Ri ϕi sin(δi). In the same way, substitute 1 and 3 to obtain
li1 = li + Ri ϕi cos δi; li3 = li − Ri ϕi cos(δi). By solving for δi as shown in Equation (A11),
we can determine its value.

δi = arc tan
(

2(li1 − li2)
(li1 − li3)

− 1
)

, δi ∈
(
−π

2
,

π

2

)
, li ∈ R (A11)

We can substitute the rope drives 2 and 4 into lij = li + Riϕicos δij to obtain:
li2 = li − Ri ϕisin δi; li4 = li + Ri ϕisin δi. In the same way, substitute 1, 3 to obtain:
li1 = li + Riϕi cos δi; li3 = li − Riϕi cos(δi). By solving for ϕi as shown in Equation (A12),
we can determine its value. And because ρi ϕi = li, li = 1

4 ∑i lij, by solving for ρi as shown
in Equation (A13), we can determine its value.

ϕi =
1

2Ri

√
(li4 − li2)

2 + (li3 − li1)
2 (A12)

ρi =
Ri ∑i lij

2
√
(li4 − li2)

2 + (li3 − li1)
2

(A13)

Appendix C

The coordinate system {1} relative to {F} is obtained by rotating the coordinate system
along the axis lz1 by an angle δ.

Then, qF1,r =
[
cos δ

2 , lz1sin δ
2

]
and qF1,d = 1

2
(

pi − qi ⊗ pi ⊗ q∗i
)
⊗ qi, as shown in

Equation (A14), the dual quaternion representation.

q̂F1 =

[
cos

δ

2
0 0 sin

δ

2
0 0 0 0

]
(A14)

The coordinate system {2} is translated relative to coordinate system {1} along the axis
lx1, given by [ρcos δ ρ sin δ 0].
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We have q12,r = [1, 0, 0, 0]T and q12,d = [0, ρcos δ, ρsin δ, 0]. Thus, the dual quaternion
representation q̂12 is given by Equation (A15).

q̂F1 =

[
cos

δ

2
0 0 sin

δ

2
0 0 0 0

]
(A15)

The coordinate system {3} relative to {2} is obtained by rotating the coordinate system
along the axis ly1 by an angle ϕ.

Then, q23,r =
[
cos ϕ

2 , ly1 sin ϕ
2
]

and q23,d =
[
0, 0, 0, ρsin ϕ

2
]
, as shown in Equation (A16),

the dual quaternion representation.

q̂23 =

[
cos

ϕ

2
,−sin δsin

ϕ

2
, cos δsin

ϕ

2
, 0, 0, 0, 0,

ρ

2
sin

δ

2
sin

ϕ

2

]
(A16)

The coordinate system {4} is translated relative to coordinate system {3} along the axis
lx3, given by [ρ cos δ, ρ sin δ, 0].

We have q34,r = [1, 0, 0, 0]T and q34,d = [0,−ρ cos δcos ϕ,−ρsin δsin ϕ, ρsin ϕ]. Thus,
the dual quaternion representation q̂34 is given by Equation (A17).

q̂34 =
[
1, 0, 0, 0, 0,−ρ

2
cos δ cos ϕ,−ρ

2
sin δ cos ϕ,

ρ

2
sin ϕ

]
(A17)

The coordinate system {E} relative to {4} is obtained by rotating the coordinate system
along the axis lz4 by an angle −δ.

Then, q4E,r =
[
cos

(
−δ
2

)
, lz4sin

(
−δ
2

)]
and q4E,d = [0,−ρsin δ(cos ϕ− 1) sin δ

2 ,

ρ cos δ(cos ϕ− 1)sin δ
2 , 0], as shown in Equation (A18), the dual quaternion representation.

q̂4E = [cos δ
2 ,−cos δsin ϕ sin δ

2 ,− sin δ sin ϕ sin δ
2 ,− cos ϕ sin δ

2 , 0,−ρ sin δ sin δ
2 (cos ϕ− 1),

ρ cos δ sin δ
2 (cos ϕ− 1), 0]

(A18)

By concatenating the coordinate transformations described in the above equations,
we can obtain the transformation dual quaternion between the two coordinate systems,
represented as Equation (A19).

q̂EF =
[
cos

ϕ

2
,− sin δ sin

ϕ

2
, cos δ sin

ϕ

2
, 0, 0, 0, 0, ρ · sin

ϕ

2

]
(A19)
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