
Citation: Li, H.; Liang, B. Liver

Tumor Computed Tomography

Image Segmentation Based on an

Improved U-Net Model. Appl. Sci.

2023, 13, 11283. https://doi.org/

10.3390/app132011283

Academic Editor: Jan Egger

Received: 3 September 2023

Revised: 26 September 2023

Accepted: 12 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Liver Tumor Computed Tomography Image Segmentation
Based on an Improved U-Net Model
Hefu Li and Binmei Liang *

College of Computer and Electronic Information, Guangxi University, Nanning 530004, China;
2113591010@st.gxu.edu.cn
* Correspondence: bmliang@gxu.edu.cn

Abstract: An automated segmentation method for computed tomography (CT) images of liver tumors
is an urgent clinical need. Tumor areas within liver cancer images are easily missed as they are small
and have unclear borders. To address these issues, an improved liver tumor segmentation method
based on U-Net is proposed. This involves incorporating attention mechanisms into the U-Net’s
skip connections, giving higher weights to important regions. Through dynamically adjusting the
attention recognition characteristics, the method achieves accurate localization that is focused on
and discriminates target regions. Testing using the LiTS (liver tumor segmentation) public dataset
resulted in a Dice similarity coefficient of 0.69. The experiments demonstrated that this method can
accurately segment liver tumors.
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1. Introduction

In the human body, the liver is the most vital organ, playing a crucial and complex
role in both physiological and pathological processes. Hepatocellular carcinoma (HCC) is
a malignant tumor with the highest mortality rate in the world [1]. In addition, cancers
originating from other abdominal organs such as the colon, rectum, and pancreas, as well
as distant organs such as the breast and lungs, often metastasize to the liver during the
course of the disease [2]. Therefore, accurate lesion segmentation is essential for cancer
diagnosis, treatment planning, and monitoring treatment responses, making it necessary to
assist physicians in rational surgical treatment [3,4].

Computed tomography (CT) images allow us to see the liver and lesions while also
helping radiologists develop appropriate diagnostic and treatment plans [5,6]. At present,
there are generally three types of segmentation studies of medical images. Among them,
manual segmentation is very dependent on experts, and the subjective judgment of experts
will seriously affect the results of manual segmentation [7]. Semiautomatic cutting still
requires human intervention, resulting in low practicality. Therefore, the fully automated
segmentation of medical images has become the first choice in this field and has been
widely studied [8–11].

The U-Net [12] structure (Ronneberger et al., 2015) shows excellent performance in
biological image segmentation, and many researchers usually begin with the U-Net struc-
ture as the model structure to improve the performance of segmentation. Res-U-Net [13]
(Han, 2017) uses two U-shaped structural models, the first to roughly segment the liver
and the second to segment the liver, but multi-segment cascade processing is used to
gradually refine the process, resulting in redundant models that are not easy to deploy.
Li et al. [9] combined U-Net and Dense-Net [14] to design a dense U-Net model for liver and
tumor segmentation to fuse features between images, which reduced the computational
cost and extracted more feature information. Zhang et al. [15] (2019) proposed a synergic
deep learning (SDL) model, which includes multiple deep convolutional neural networks
(DCNNs) (Litjens et al., 2017) to address the issues of intraclass variability and inter-class
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similarity in image recognition. In this model, the image features extracted from each group
of DCNNs are concatenated and used as the input for an SDL. A fully connected layer is
then employed to predict whether the input features belong to the same category. If any
one of the DCNNs in a group classifies correctly while the other one classifies incorrectly, it
results in a synergic error, which is used as additional information to update the model.
Ghoneim et al. [16] (2020) utilized images as inputs to a convolutional neural network for
extracting deep image features. These features were then classified using an extreme learn-
ing machine (ELM) classifier, followed by the fine-tuning of the network. A U-Net based
on a fully convolutional network model, an improved ResUNet network, was proposed by
R.V. Manjunath et al. [17] in 2022 for liver and tumor segmentation. However, convolutional
networks extract many redundant features from the image, which often come from the
background or other objects and are irrelevant to our task. These redundant features can
interfere with the segmentation results and degrade the performance of the model. To
address this issue, Vaswani et al. [18] proposed a fully attention-based network in 2017,
which has been successfully applied in the field of NLP and brought profound insights to
scholars in the CV field. We can introduce attention mechanisms that selectively process
convolutional features by learning which features to emphasize or suppress, effectively
helping information propagation in the network and achieving the purpose of feature selec-
tion. By introducing attention mechanisms, we can enhance the focus of the model on key
features and reduce the reliance on redundant features, thereby improving the performance
of the model. Wang et al. [19] proposed the non-local attention mechanism, which requires
obtaining more information from the original image in some tasks. To achieve this goal,
they expanded the receptive field of the network by stacking convolutional layers, so it
was no longer limited to the local region of a single convolutional kernel size, thereby
introducing global information and providing richer information for the neural network.
Qiao et al. [20] proposed the FSF-U-Net model based on feature selection and residual
fusion for liver tumor segmentation in 2021. Through improved attention mechanisms and
an optimized U-Net model structure, the segmentation results for liver tumors are made
more accurate. However, this model relies on bottleneck features, and if the bottleneck
features are not processed, they will bring additional redundant information to each layer
of the network, increasing the overall learning burden. Dosovitskiy et al. [21] directly
used a Transformer in a sequence of image blocks to perform image classification tasks,
achieving state-of-the-art performance on multiple image recognition benchmarks and
successfully applying the Transformer to the field of computer vision. Lingyun Li et al. [22]
proposed RDCTrans U-Net, which is based on ResNeXt50, expands the receptive field with
complementing dilated convolutions, and introduces the Transformer part in the encoder
to improve feature extraction efficiency. However, the internal structure of the model is
complex and difficult to understand, and the Transformer part cannot represent positional
information in the semantic space well.

For a 2D network, it is difficult to utilize the 3D spatial information of liver slices and
automatically segment liver 3D images such as CT and MRI [23]. To address this issue,
Iek, Zgün et al. [24] proposed a 3D U-Net in 2016, which replaces all 2D operations in the
U-Net architecture with corresponding 3D operations to generate 3D segmentation images,
effectively utilizing the spatial information between adjacent liver slices and achieving
better segmentation results. Li et al. proposed a H-Dense U-Net in 2018, which combines
the features of the 2D Dense U-Net and the 3D Dense U-Net, accelerating the convergence
of the 3D Dense U-Net. Meanwhile, dense connection blocks were embedded in the U-Net,
further improving the segmentation accuracy for the liver and tumor. Wang et al. [25]
added a 3D attention module to the 3D segmentation model, improving the efficiency of
the 3D model. Ma et al. [26] generalized the 3D model for many image segmentation tasks.
However, the 3D model requires a large number of parameters, which puts relatively high
demands on computer memory and performance. With the same computational resources,
2D models can have deeper network structures and larger filter receptive fields.
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Although the abovementioned methods have achieved effective detection, they have
not effectively utilized the contextual information of the lesion area during network training.
They only extract the global features of the image, failing to learn the deep features of
different lesion areas. Moreover, the local features of the lesion area are not emphasized, and
they are heavily influenced by irrelevant information, neglecting the auxiliary diagnostic
information in the image. Due to the inconsistent shape of liver tumors, small lesion area
proportions, and difficulty in distinguishing lesions in the edge region, it is challenging
to extract features and achieve accurate segmentation. Focusing on the lesion area itself
and utilizing the contextual information from the surrounding region to enhance and
complement the lesion features involves comprehensive and thorough extraction of both
the global and local features of the lesion area while minimizing the influence of background
noise. This approach aims to prevent the loss of details and features in the boundary region
of the lesion, making it a promising research direction. In this study, we propose a liver
tumor segmentation model that improves the performance of the U-Net. The model
accurately localizes lesions and enhances the segmentation performance.

2. The Traditional U-Net

As shown in the figure above, the ReLU function can convert negative values to 0,
while positive values are unchanged; such a unilateral suppression operation can make
neurons have sparse activation activity and can better explore features after sparseness. In
addition, the ReLU function is more powerful than other excitation functions, and because
its slope in the nonnegative interval is constant, there is no problem of slope elimination.

U-Net is a new approach based on an FCN (fully convolutional networks for semantic
segmentation) proposed by Ronneberge et al.

U-Net is a symmetric neural network with an encoder–decoder architecture, resem-
bling the letter “U”, hence its name. Figure 1 shows a typical U-Net network. The network
consists of operations such as convolution, downsampling, upsampling, and concatenation.
The left half of the network is the contracting path, while the right half is the expand-
ing path. The contracting path is responsible for extracting important features from the
image and reducing its resolution, composed of four blocks. Each block includes two
3×3 convolutions, ReLU activation, and one downsampling operation. The use of 3×3 con-
volutional kernels aims to reduce the complexity of the neural network while maintaining
segmentation accuracy. U-Net performs mirror edge padding on the input image, adding
symmetric edges that mirror the edge pixels. This mirror operation helps to handle edge in-
formation better. Then, two 3 × 3 convolutions and ReLU activation are applied. The ReLU
activation function accelerates the convergence and prevents the gradient from vanishing.
Subsequently, downsampling is performed using 2 × 2 max pooling to reduce the image
resolution while preserving important information, although pooling may lead to some
loss of features. After each downsampling operation, the dimensions of the image increase
to twice the original dimensions, halving the size. By repeating these four operations, the
dimension of the feature map increases from the initial 64 to 512, and the size of the feature
map becomes 32 × 32 pixels.

The expanding path of the U-Net is used to gradually restore the image details for the
precise localization of lesions and to restore the image to the size of the input image. The
expanding path also consists of four blocks, each containing two 3 × 3 convolutions, ReLU
activation, and one upsampling operation. The upsampling operations decode the abstract
features obtained through downsampling back to the original size of the image. After each
upsampling operation, the size of the feature map doubles, while the number of channels
halves, and the final output feature map has the same size as the input. Skip connections
are added between the contracting and expanding paths for pixel-level localization. Unlike
the summation operation used in an FCN, the U-Net uses concatenation to crop the feature
maps from the same layer of the contracting path to match the size of the expanding
path and then performs concatenation. This helps to recover information lost during the
downsampling process.



Appl. Sci. 2023, 13, 11283 4 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

connections are added between the contracting and expanding paths for pixel-level local-
ization. Unlike the summation operation used in an FCN, the U-Net uses concatenation 
to crop the feature maps from the same layer of the contracting path to match the size of 
the expanding path and then performs concatenation. This helps to recover information 
lost during the downsampling process. 

 
Figure 1. U-Net model. 

3. Image Segmentation Evaluation Metrics 
In this experiment, the Dice similarity coefficient (DSC), recall, and precision were 

selected as the evaluation metrics to assess the performance of the network. The formulas 
for calculating these evaluation metrics are as follows: 

FNFP2TP

2TP
Dice

++
=  (1)

FNTP

TP
Recall

+
=  (2)

FPTP

TP
Precision

+
=  (3)

where TP represents the true positives, which denotes the locations where the predicted 
results overlap with the manually annotated ground truth. FP represents false positives, 
which refer to the locations where the predicted results are not present in the ground 
truth. FN represents false negatives, which indicate the locations that are present in the 
ground truth but not in the predicted results. The Dice coefficient is used to measure the 
similarity between the predicted results and the ground truth, with values ranging from 
0 to 1. A higher value indicates a higher similarity between the predicted results and the 
ground truth. Recall is the ratio of true positives to the sum of true positives and false 
negatives, while precision is the ratio of true positives to the sum of true positives and 
false positives. Both the recall and precision range from 0 to 1, with a higher value indi-
cating a lower under-segmentation rate and over-segmentation rate for the predicted re-
sults. 

Due to the imbalanced nature of positive and negative samples in the data images, 
this study employs a combination of Dice Loss (DL) and weighted binary cross entropy 
(BCE) loss. This is because the Dice Loss (DL) can potentially lead to abrupt gradient 
changes, thereby affecting the backpropagation process and making training difficult. 
Hence, the weight of the DL is appropriately reduced. The calculation formula for the loss 
function is as follows: 

Figure 1. U-Net model.

3. Image Segmentation Evaluation Metrics

In this experiment, the Dice similarity coefficient (DSC), recall, and precision were
selected as the evaluation metrics to assess the performance of the network. The formulas
for calculating these evaluation metrics are as follows:

Dice =
2TP

2TP + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

where TP represents the true positives, which denotes the locations where the predicted
results overlap with the manually annotated ground truth. FP represents false positives,
which refer to the locations where the predicted results are not present in the ground truth.
FN represents false negatives, which indicate the locations that are present in the ground
truth but not in the predicted results. The Dice coefficient is used to measure the similarity
between the predicted results and the ground truth, with values ranging from 0 to 1. A
higher value indicates a higher similarity between the predicted results and the ground
truth. Recall is the ratio of true positives to the sum of true positives and false negatives,
while precision is the ratio of true positives to the sum of true positives and false positives.
Both the recall and precision range from 0 to 1, with a higher value indicating a lower
under-segmentation rate and over-segmentation rate for the predicted results.

Due to the imbalanced nature of positive and negative samples in the data images, this
study employs a combination of Dice Loss (DL) and weighted binary cross entropy (BCE)
loss. This is because the Dice Loss (DL) can potentially lead to abrupt gradient changes,
thereby affecting the backpropagation process and making training difficult. Hence, the
weight of the DL is appropriately reduced. The calculation formula for the loss function is
as follows:

L(y, ŷ) = ωDL(y, ŷ) + (1−ω)BCE(y, ŷ)

BCE(y, ŷ) = −(y log ŷ + (1− y) log(1− ŷ))

DL(y, ŷ) = 1− 2|y ∩ ŷ|+ ε

|y|+ |ŷ|+ ε
.

(4)

In the equation, y represents the true label values, and ŷ represents the corresponding
predicted values by the model. ω is the weight assigned to the two losses, set to 0.3. ε is a
smoothing parameter introduced to avoid division by zero, and it is set to 1.0.
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4. Improved U-Net for Liver Tumor Segmentation
4.1. Improved U-Net Segmentation Model

In this section, we take full advantage of the attention mechanism in neural networks,
which gives greater weight to focused areas, to address the issues of missing small tar-
gets and unclear target boundaries in CT images. We propose an image segmentation
method based on the U-Net architecture, incorporating residual [27] as the foundation and
multi-scale convolution. We propose a new attention module that combines the attention
mechanism and the residual network, effectively increasing the weight of small tumor
objects in the image. The network architecture is shown in Figure 2.

The model consists of a four-layer contraction path and a symmetric expansion path.
As the number of layers in the model increases, the number of feature channels increases,
while the dimension of the feature maps decreases. The bottommost layer of the contraction
path serves as the bottleneck feature. Each layer in the path is composed of residual
convolutional modules (Figure 2c). This module splits the input into two branches. The
main branch extracts features at deeper levels, allowing active pixels to reflect the focused
region. Then, the outputs of the main branch and the side branch are merged. This
process assigns a new weight to each pixel value, enhancing meaningful features and
suppressing irrelevant features. The residual structure of the side branch also simplifies the
learning process and improves the gradient propagation, thereby enhancing the network’s
expressiveness and generalization ability.
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The skip connections utilize attention modules (Figure 2b) to extract spatially infor-
mative features and address the feature gap problem. The attention module employs a
low-complexity yet highly effective structure. It first compresses the channel dimension
of the feature map to learn the importance of different spatial locations. Then, it multi-
plies the compressed feature map with the activation from a 1 × 1 convolutional layer to
recalibrate the importance of spatial features, laying the foundation for subsequent feature
fusion. Additionally, residual connections are used to accelerate the expressive power of
the network.

4.2. Attention Module

There exists a special information processing mechanism in the human brain known
as a visual attention mechanism. When humans view a photograph, their eyes quickly scan
the entire image, selecting the areas they want to focus on. The attention intensity is then
enhanced in those selected regions, highlighting the important information of the objects
they wish to pay attention to and filtering out the irrelevant details. Machine vision also
operates with a similar attention mechanism, aiming to extract the most important and
useful information from massive amounts of data. Building models based on attention
mechanisms is crucial in deep neural networks as it allows for the self-regulation of
attention and perception of the external world.

Since the introduction of the squeeze-and-excitation network (SENet) [28] and its chan-
nel attention (CA) mechanism, subsequent attention mechanisms such as the concurrent
spatial and channel squeeze and excitation (scSE) (Roy et al., 2018) and the convolutional
block attention module (CBAM) (Woo et al., 2018) have been proposed, incorporating
spatial attention mechanisms. The attention module used in this study first captures the
importance of each channel through channel attention, and then adaptively adjusts the
output through element-wise multiplication with the input features. This approach recal-
ibrates the importance of feature maps, suppressing relatively irrelevant locations, and
has a positive effect on fine-grained image segmentation. The calculation formula for the
attention module in this paper is as follows:
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X̃ = (((XW1) ∗ Relu(Fg(X)W2))W3)⊗ X (5)

where X ∈ RHW×C represents the input feature map, C represents the number of chan-
nels, and H and W represent the height and width of the feature map, respectively.
W1, W2 ∈ RC× C

r denotes the convolutional matrix, and r represents the compression ratio
for feature compression, which was set to two in this study. Fg(X) ∈ R1×C represents the

global average pooling operation. W3 ∈ R
C
r ×C represents the convolutional matrix used to

restore the channel dimension to its original size, C. Relu represents the activation function
that converts negative values to 0, enabling the neurons to have sparse activation. The
symbol ∗ represents the shape expansion, making the two parameters on the right side
match the shape of the left parameter and then performing element-wise multiplication.
The ⊗ operator represents the element-wise multiplication of matrices. In summary, this
module controls the flow of information across different levels in the pipeline. It performs
feature transformation, suppressing irrelevant features and allowing only useful informa-
tion to pass through the network layers. This enables each level to focus on complementary
details with other levels, enhancing the overall performance of the network. Through this
module, we can delve deeper into the effective information in medical images, improve the
network’s expressiveness, and reduce interference from background noise. This allows us
to focus on the deep-level features of the desired lesion and accurately classify it.

4.3. Multi-Scale Convolution Module

The improvement in the multi-scale convolution module replaces the original two-
layer convolution with three DWConv (Depthwise Convolution) operations with kernel
sizes of 5 × 5, 7 × 7, and 11 × 11. DWConv is a lightweight convolution operation that
achieves comparable results to traditional convolutions with fewer parameters and compu-
tations. Since liver tumors can vary in shape and size, using different kernel sizes facilitates
the representation of information from images of different scales while increasing the
receptive field of the network. After the residual connection, two additional convolutions
with kernel sizes of 3× 3 and 5× 5 are applied to aggregate local information and capture a
more detailed multi-scale context. Therefore, the multi-scale convolution module enhances
the generalization and expressive power of the entire model. The calculation formula for
the residual convolutional module is as follows:

F = (Relu(XW1) + Relu(XW2) + Relu(XW3) + X)W4

F̃ = (Relu( FW5) + Relu(FW6) + F)W7
(6)

where W1, W2, W3, W4, W5, W6, W7 ∈ RC×C represent the convolution matrices.

5. Experimental Results

In this work, the experimental setup consisted of the Windows 10 operating system
and the use of a NVIDIA GeForce RTX 2080ti GPU for computational acceleration. The
coding environment was python3.6, with the development tool being Spyder. The Tensor-
Flow framework was utilized to build a neural network, which was trained and tested in
the experiments.

5.1. Dataset

We used the dataset from the 2017 MICCAI Liver Tumor Segmentation Challenge
(LiTS) for the experiments. The 2017 MICCAI Liver Tumor Segmentation Challenge col-
lected 131 abdominal CT images from multiple medical institutions in China. The volumes
of the livers present a normal distribution similar to the known type, ranging from 0 to 75
in number and from 38 to 349 in size. The subjects include liver cancer, primary liver cancer,
secondary liver cancer, colorectal cancer, breast cancer, lung cancer, etc. The contrast of the
lesions varies, such as with high- and low-contrast enhancements. Due to the differences in
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the CT scanning equipment and acquisition standards, there is a significant variation in
the resolution and image quality of the CT images. The in-plane resolution ranges from
0.6 mm × 0.6 mm to 1.0 mm × 1.0 mm, and the slice thickness ranges from 0.45 mm to
6.0 mm. All axial slices have a size of 512 × 512 pixels, and the number of slices obtained
in each scan ranges from 42 to 1026. Figure 3 shows four samples from the LiTS dataset.
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5.2. Data Preprocessing

Firstly, the dataset was divided into a training set and a validation set in an 8:2 ratio,
resulting in 131 images. These images were then converted into PNG format. By improving
the grayscale, contrast, data augmentation, and standardization of the images, the accuracy
of the feature extraction can be further enhanced. Table 1 presents the range of CT values
for different anatomical regions in the abdominal CT scans. Based on this, we narrowed
down the range of CT values to [−250, 250] Hounsfield Units (HU), setting all values
outside this range to 0, eliminating many regions unrelated to liver tissue, such as shadows
caused by air or water, while preserving the original image.

Table 1. CT value range distribution of major tissues in abdominal CT.

Organs or Tissues CT Value

Liver 50–70
Spleen 35–60

Pancreas 30–55
Kidney 25–50

Bone >400

The results after adjusting the Hounsfield Unit (HU) values are shown in Figure 4.
The upper part displays the original LiTS data slices, while the lower part shows the
processed results.
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The benefit of data augmentation is that it increases the quantity of training data. Due
to the unique nature of CT images, acquiring a large number of CT images is challenging.
However, the image features often consist of hundreds or thousands of slices, which are
manually delineated by experienced surgeons, making it time-consuming and laborious
and posing great difficulties for surgeons. Therefore, obtaining a large number of CT
images and image annotations as a training dataset for neural networks is quite challenging.
Additionally, the volume of the CT images is relatively small compared to the liver. To
enhance the generalization ability of the model and avoid overfitting, this study employed
various data augmentation techniques such as rotation, flipping, stretching, and width
shifting. The training dataset was expanded through data augmentation, resulting in a
final set of 18,181 training images and 1033 testing images, all resized to 512 × 512 pixels.
Figure 5 illustrates the geometrically transformed liver cancer data with corresponding
annotated images after the data augmentation process.
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5.3. Experiments

After completing the preprocessing of the image data, the 131 image samples were
divided into a training set and a validation set in an 8:2 ratio. In the training experiments,
a crucial model in Keras, called Keras.callbacks, was used to prevent overfitting. The
monitored value selected was “val_loss” and set to minimize. If the monitored value did
not continue to decrease, the training was stopped after 20 epochs without improvement.
The learning rate was reduced when the evaluation metric no longer improved, with the
number of epochs without improvement set to 20 and the learning rate decay rate set to 0.1.
The total number of epochs was set to 100, with a batch size of 4. The Adam optimizer was
used, and the learning rate followed the Stochastic Gradient Descent (SGD) algorithm.

The model is based on the U-Net architecture and incorporates residual convolutional
modules and attention modules. To further validate the performance of our proposed
method, experiments were conducted on the same dataset and compared with the current
state-of-the-art methods for liver tumor segmentation. We obtained the segmentation
results shown in Table 2 for different network configurations.
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Table 2. Comparison with published mainstream methods.

Method Dice Recall Precision

U-Net 0.632 0.576 0.844
Hy-CompNet [29] 0.657 0.611 0.838

MS-DG [30] 0.681 0.631 0.822
RDCTrans U-Net [22] 0.668 0.628 0.832

FSF-U-Net [20] 0.684 0.636 0.833
Ours 0.692 0.635 0.847

From Table 2, it can be observed that the model showed an overall improvement
when the attention modules and multi-scale convolution modules were added, with liver
tumor segmentation achieved with a Dice score of over 0.69. Among them, the addition
of attention modules alone showed limited improvement, but the highest Dice score was
achieved when both the attention and multi-scale convolution modules were added, with
a 9.5% improvement compared to the original U-Net. The results of different attention
module variants are shown in Table 3, indicating a significant improvement in the model’s
performance compared to the baseline U-Net after incorporating the proposed modules.

Table 3. Denoising experimental results under different attention modules.

Method Dice

U-Net 0.632
U-Net + SE [28] 0.640

U-Net + ECA (n = 5) [19] 0.648
U-Net + NFS [20] 0.655

U-Net + Ours 0.688

The comparison of the liver tumor segmentation results between the U-Net model
and our proposed algorithm is shown in Figure 6. The displayed results were obtained
from the same test case data. Both models accurately identified the target for segmentation,
but our algorithm achieved better segmentation results by accurately covering a larger area
of the true segmentation. From Figure 7, it can be seen that the proposed method achieves
segmentation results closer to the ground truth labels compared to other U-Net variants (the
last group of data in the figure show that our method has a dice value of 0.925, while the
Hy-CompNet and MS-DG methods have dice values of 0.904 and 0.881, respectively). The
experimental results demonstrated that our newly proposed attention module effectively
captured the spatial information and addressed the semantic gap problem by enhancing the
meaningful features and suppressing the irrelevant features. Our algorithm outperformed
other models on the LiTS dataset.

This study primarily focused on addressing issues such as the omission of small
objects and unclear boundaries in liver CT images. We proposed an improved liver tumor
segmentation method based on the modified U-Net architecture. We designed a novel
attention mechanism to enhance the importance of relevant features in the U-shaped neural
network. By utilizing residual connections, we reduced the number of parameters in the
model and overcame the “vanishing gradient” phenomenon. We evaluated our proposed
liver tumor segmentation method using the LiTS dataset to demonstrate its effectiveness.
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6. Conclusions

The paper proposes an improved liver tumor image segmentation method based on
U-Net. It utilizes a multi-scale convolution module to mitigate the “gradient” phenomenon,
enhance computational efficiency, and accelerate model learning. Additionally, a novel
attention module was designed to leverage the “focus” feature based on the attention
mechanism. By stacking the attention modules, the “focus” functionality is enhanced,
reinforcing the weight of important features and overcoming issues of “ignoring” or
“unclear” regions. The experimental results demonstrate that the average Dice score of
the modified network reaches 0.69, a 9.5% improvement compared to the original U-Net
segmentation method. This indicates a significant enhancement in the accuracy of liver
segmentation achieved by the improved network model. However, in practical applications,
the proposed method in this study has lower segmentation efficiency due to the increase in
parameters with the addition of convolution functions in the network. In the future, we
aim to reduce the parameter count while ensuring accurate segmentation.
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