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Abstract: Process Capability Indices (PCIs) are devices widely used in the industry to evaluate process
quality. The commonly used process capability indices all contain accuracy indices and precision
indices. As the accuracy index is closer to zero, the process accuracy is higher. The precision index
mainly represents the extent of process variation. As the value is smaller, the process variation is
smaller, that is, the precision is higher. In fact, process capability indices are the functions of accuracy
indices and precision indices. Obviously, as long as accuracy indices and precision indices are
controlled, the process capability indices can be controlled as well. Therefore, this study first derived
accuracy and precision control charts to observe not only process accuracy but also process precision.
Then, this study adopted in-control data to acquire a 100 (1 − α)% confidence region of an accuracy
index and a precision index, with which statistical tests were performed. Subsequently, according
to the definition of the six sigma quality level, both indices were examined. Furthermore, based on
the testing results, suggestions for process improvement were proposed, including correcting the
direction of process deviation and deciding whether to reduce process variation. Finally, this study
demonstrated the applicability of the proposed model using an empirical example.

Keywords: process capability indices; accuracy index; precision index; six sigma quality level;
accuracy and precision control charts

1. Introduction

Process Capability Indices (PCIs) are measurements frequently adopted by the industry
for process quality evaluation [1–3]. They are not just communication tools between sales
and customers; for process engineers, they are useful means of evaluating, analyzing, and
improving processes [4–6]. Industries that often employ process capability indices include
various machine tools and machining industries, semiconductor manufacturing processes,
and packaging processes [7–10]. The process capability index Cpk proposed by Kane [11]
and the index Cpm suggested by Chan et al. [12] are two process quality evaluation tools
which are most commonly adopted in the industry. According to numerous studies, as
the process capability index is relatively large, it is guaranteed that the process yield is
high while the process loss is low. The process capability index incorporates two important
tools for evaluating the pros and cons of a process—process yield and process loss [13]. Let
the random variable (RV) X follow N

(
µ, σ2), which represents a normal distribution with

process mean µ and variance σ2. Then, indices Cpk and Cpm are denoted below:

Cpk =
d− |µ− T|

3σ
(1)
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Cpm =
d

3
√

σ2 + (µ− T)2
(2)

where d is the half-length from the lower specification limit (LSL) to the upper speci-
fication limit (USL), that is d = (USL − LSL)/2; T = (USL + LSL)/2 refers to the tar-
get value. In fact, the denominator of process capability index Cpm means the expected
value of the Taguchi loss function. Clearly, process capability has two important factors:
(1) as the process mean µ gets closer to target value T, the process accuracy gets higher;
(2) as the process standard deviation σ gets smaller, the process precision gets better [14].
Boosting the process accuracy and precision will cut down process loss as well as level up
process capability. In addition, the target values and tolerances of various processes are all
different. To facilitate the process evaluation, the tolerance can be standardized by variable
transformation. Let RV Y = (X− T)/d. When X = LSL, then Y = −1. When X = T, then
Y = 0. When X = USL, then Y = 1. Since different quality characteristics have different
specification limits, this variable transformation can help all quality characteristics convert
their different specification limits from (LSL, T, USL) to (−1, 0, 1). In fact, δ, which stands
for the mean of RV Y, is regarded as an accuracy index; γ, which refers to the standard
deviation of RV Y, is viewed as a precision index. These two indices are written as

accuracy index : δ =
µ− T

d
(3)

precision index : γ =
σ

d
(4)

Based on the aforementioned, Cpk = (1− |δ|)/3γ and Cpm = 1/3
√

δ2 + γ2 stand for
the functions of δ and γ. Accuracy index δ is mainly applied to measure the degree to
which the process mean µ deviates from the process target value T. When the value is closer
to 0, then the process is more accurate. The greater the positive number of accuracy index
δ is, the more the process is shifted to the right. Conversely, as the negative number of
accuracy index δ is greater, the process is shifted to the left more. As to the precision index
γ, it mainly represents the extent of process variation. As the index is smaller, the process
variation is smaller; that is to say, the process is more precise. Apart from process capability
indices, the six sigma method, initiated by Motorola in 1986 [15–17], is also applied by this
study. The six sigma method is also a tool prevalently employed by the industry to assess
and enhance process quality [18–20]. According to the research of Chen and Chang [14],
when the standard deviation of the process is σ = d/k and the process mean shifted from
the target value falls within 1.5σ, it means that the process has reached the k-sigma quality
level. When the quality level of the process reaches six sigma, then

γ =
σ

kσ
=

1
k

(5)

|δ| = |µ− T|
d

≤ 1.5σ

kσ
=

1.5
k

(6)

Subsequently, the statistical testing method is adopted to evaluate whether the process
standard deviation is 1/k and the process mean shifted from the target value falls within
1.5σ (i.e., γ = 1/k and |δ| ≤ 1.5/k). When γ = 1/k and |δ| ≤ 1.5/k, it means that the
process meets the k-sigma quality level. Numerous researchers have addressed that the
evaluation of process capability is usually performed when the statistical process is in
control [7]. Hence, in this paper, the δ− γ control charts are derived to control the process
accuracy and precision. Also, in-control data are used to obtain a 100 (1 − α)% confidence
region of (δ, γ), which is employed to conduct statistical tests for accuracy index δ and
precision index γ. The statistical testing results of these two indices can be concluded as
follows: if the process cannot reach the six-sigma quality level, then the deviation direction
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of the process can be seen from the testing result of accuracy index δ, which can be provided
to the industry for improvement reference; meanwhile, according to the testing result of
precision index γ, we can decide whether to reduce the process variation. It is clear that this
study aims to monitor the process mean and try to make it fall within the target value using
two important parameters of the normal process, namely accuracy index δ and precision
index γ. In the meantime, the process variation can be supervised so that the process
can meet the requirement of the k-sigma quality level. In order to decrease the risk of
misjudgment incurred by sampling errors, a statistical testing model of these two indices is
developed to individually evaluate whether the process accuracy and process precision
can reach the required level, as well as decide whether to make improvements at the same
time, in order to raise the process quality level of products.

Concerning the rest of the paper, it is arranged in the following sections. In Section 2,
expected values and standard deviations of the estimators for the accuracy index and the
precision index are first derived from normal approximation rules. Then, the control limits
between the accuracy index and the precision index are established based on the principles
of three-sigma control charts, so as to provide the basis for the industry to monitor the
process. In Section 3, the in-control data are retrieved to gain a 100 (1 − α)% confidence
region of (δ, γ), and then statistical tests are conducted with this confidence region for
accuracy index δ and precision index γ. The statistical testing results of these two indices
are regarded as the basis of determining whether to improve the process. In Section 4,
based on the testing results of accuracy index δ and precision index γ, suggestions about
process improvement are made, including how to correct process deviation directions and
whether to reduce process variation. In Section 5, an empirical example is presented to
demonstrate the application of the model proposed by this study. In Section 6, conclusions
are made.

2. Monitoring Process Precision and Accuracy

The evaluation of process capability must take place in a stable statistical process.
This study first constructs δ− γ control charts to oversee process accuracy and precision.
Next, this study derives a 100 (1 − α)% confidence region of (δ, γ) from the in-control
data. Let

(
Yi,1, . . . , Y1,j, . . . , Y1,n

)
be the ith subsample, i = 1, 2, . . ., m. According to the

concept of Montgomery [21], to estimate the unknown parameters −δ and γ, at least 20
to 25 subsamples should be taken. Then, the jth subsample and its observation values are
shown below: (

Xj,1, . . . , Xj,i, . . . , Xj,n
)
=
(
xj,1, . . . , xj,i, . . . , xj,n

)
(7)

where j = 1, 2, . . . , m. Since Yj,i =
(
Xj,i − T

)
/d, then the jth subsample and its observation

values processed by the variable transformation are written as follows:(
Yj,1, . . . , Yj,i, . . . , Yj,n

)
=
(
yj,1, . . . , yj,i, . . . , yj,n

)
(8)

Accordingly, for the jth subsample, j = 1, 2, . . . , m, the subsample mean and the
subsample variance are separately represented below:

δ̂j = Y j =
1
n

n

∑
i=1

Yj,i (9)

γ̂j = Sj =

√
1
n

n

∑
i=1

(
Yj,i −Y j

)
(10)

As normality is assumed, the jth subsample mean, δ̂j, is denoted as a normal distri-
bution with mean δ and standard deviation γ/

√
n. The expected value of δ̂j is δ and the

standard deviation of δ̂j is γ/
√

n. Obviously, δ̂j is the unbiased estimator of accuracy index
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δ. Let K = nγ̂2
j /γ2, then K is regarded as a chi-square distribution with n− 1 degrees of

freedom. The expected value of γ̂j is

E
[
γ̂j
]

= E
[

γ√
n K1/2

]
= γ√

n

∞∫
0

k1/2 1
Γ((n−1)/2)2(n−1)/2 k(n−1)/2−1e−k/2dk

= γ√
n

Γ(n/2)2n/2

Γ((n−1)/2)2(n−1)/2

∞∫
0

1
Γ(n/2)2n/2 kn/2−1e−k/2dk

= bnγ

(11)

where

bn =

( √
2Γ(n/2)√

nΓ((n− 1)/2)

)
(12)

Obviously, b−1
n γ̂j is the unbiased estimator of precision index γ. Furthermore, since

E
[
γ̂2

j

]
= (n− 1)/nγ2, then the standard deviation of γ̂j is

σγ̂j =

√
E
[
γ̂2

j

]
− E2

[
γ̂j
]
=
√
(n− 1)/n− b2

nγ. (13)

Consequently, on the three-sigma control chart of accuracy index δ, the upper control
limit, the center limit, and the lower control limit are defined as follows:

UCLδ = δ +
3√
n

γ (14)

CLδ = δ (15)

LCLδ = δ− 3√
n

γ. (16)

Similarly, on the three-sigma control chart of precision index γ, the upper control limit,
the center limit, and the lower control limit are represented as follows:

UCLγ =

(
bn + 3

√
(n− 1)/n− b2

n

)
γ (17)

CLγ = bnγ (18)

LCLγ =

(
bn − 3

√
(n− 1)/n− b2

n

)
γ. (19)

Since the three control limits on the two control charts contain unknown parameters
−δ and γ. Then, based on the control chart data in statistical process control, the observed
values of these two indices are defined as follows:

δ = y =
1
m

m

∑
j=1

yj (20)

γ =
1
m

m

∑
j=1

b−1
n sj = b−1

n
1
m

m

∑
j=1

sj = b−1
n s. (21)

Therefore, the limits of the δ control chart can be shown below:

UCLδ = δ + Anγ (22)
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CLδ = δ (23)

LCLδ = δ− Anγ. (24)

where An = 3Γ((n−1)/2)√
2Γ(n/2)

.

Similarly, the limits of the γ control chart can be displayed below:

UCLγ = Bnγ (25)

CLγ = γ (26)

LCLγ = B′nγ. (27)

where Bn =1 + 3
√
(n− 1)/nb−2

n − 1 and B′n =1− 3
√
(n− 1)/nb−2

n − 1. Based on Mont-
gomery [21], when the value of sample size n of each subsample is larger, it is more effective
to estimate precision index γ using the sample standard deviation than to estimate the
precision index γ based on the sample range. The average and range control chart is usually
used when the subsample size n is smaller than 6. However, the average and standard
deviation control chart developed by this study is suitable for the larger subsample size
n. Thus, Table 1 shows the values of bn, An, Bn, and B′n for subsample size n = 6(1)11
as follows:

Table 1. The values of bn, An, Bn, and B′n for subsample size n = 6(1)11.

Subsample Size n bn An Bn B’
n

6 0.869 1.410 1.970 0.030
7 0.888 1.277 1.882 0.118
8 0.903 1.175 1.815 0.185
9 0.914 1.094 1.761 0.239

10 0.923 1.028 1.716 0.284
11 0.930 0.973 1.679 0.321

Next, according to the values of bn, An, Bn, and B′n received from the above table and
the control chart data obtained in the statistical process control, the limits of the δ − γ
control charts can be completed as shown in Equations (22)–(27) and used for monitoring
process accuracy and precision.

3. Evaluation of Process Precision and Accuracy

As mentioned earlier, this study used the δ− γ control charts derived in Section 2
to monitor the process precision and accuracy. As the process was statistically controlled,
this study used the statistical testing method as well as applied the control chart data in
statistical process control, in order to propose a model to evaluate process precision and
accuracy. Plenty of studies have suggested that as the process quality attains the k-sigma
quality level, the required conditions are (1) |δ| ≤ 1.5/k and (2) γ ≤ 1/k [20]. That is,
when the accuracy index is bigger than 1.5/k (δ > 1.5/k), it is learned that the process
is excessively shifted to the right of tolerance, so the process must be improved. On the
other hand, when the accuracy index is smaller than −1.5/k (δ < −1.5/k), it indicates
that the process is excessively shifted to the left of tolerance, so the process must make
some improvements. Likewise, when the precision index is bigger than 1/k (γ > 1/k), it
shows that the process variation is too big and must be modified. Therefore, if the process
quality level is required to reach k-sigma, then the null hypothesis (H0) and the alternative
hypothesis (H1) for statistical tests are expressed as follows:

H0 : δ ∈ Aδ and γ ∈ Aγ (28)
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H1 : δ /∈ Aδ or γ /∈ Aγ (29)

where Aδ = {−1.5/k ≤ δ ≤ 1.5/k} and Aγ = {γ ≤ 1/k}. Then, the 100 (1− α)% confi-
dence region of (δ, γ) is received to establish testing rules.

In statistical process control, the unbiased estimators of δ and γ2, respectively, are
expressed as follows:

δ̂ =
1
m

m

∑
j=1

Y j =
1

mn

m

∑
j=1

n

∑
i=1

Yj,i (30)

γ̂2 =
1

m(n− 1)

m

∑
j=1

n

∑
i=1

(
Yj,i −Y j

)2 (31)

Furthermore, let random variables be Zmn =
√

mn
(
δ̂− δ

)
/γ and Kmn = m(n− 1)γ̂2/γ2.

Given the assumption of normality, Zmn and Kmn are, respectively, distributed as N(0, 1)
and χ2

N−m. Therefore,

p{−Zα′/2 ≤ Zmn ≤ Zα′/2} =
√

1− α (32)

p
{

χ2
α′/2;N−m ≤ Kmn ≤ χ2

1−(α′/2);N−m

}
=
√

1− α (33)

where N = mn, Zα′/2 is the upper α′/2 quantile for a standard normal distribution,
χ2

α′/2;N−m is the upper α′/2 quantile of χ2
N−m, and α′ = 1−

√
1− α. δ̂ and γ̂2 are mu-

tually independent, and so are Zmn and Kmn. Inferring from their relationships, we have
the following equation:

p
{
−Zα′/2 ≤ Zmn ≤ Zα′/2, χ2

α′/2;N−m ≤ Kmn ≤ χ2
1−(α′/2);N−m

}
= 1− α (34)

Equivalently,

p

{
δ̂− Zα′/2 ×

(
γ√
N

)
≤ δ ≤ δ̂ + Zα′/2 ×

(
γ√
N

)
,

√
N −m

χ2
1−(α′/2);N−m

γ̂ ≤ γ ≤
√

N −m
χ2

α′/2;N−m
γ̂

}
= 1− α (35)

According to Equations (20) and (30), the observation value of δ̂ is δ and the observation
value of γ̂ is γ, where δ = ∑m

j=1 yj and γ = b−1
11 s. Obviously, the 100 (1− α)% confidence

region of (δ, γ) is similar to a trapezoid, wide at the top and narrow at the bottom. Therefore,
this study defines CRδ = [δL, δR] and CRγ = [γL, γR], where

δL = δ− Z0.5−
√

1−α/2 ×
√

N −m
Nχ2

0.5−
√

1−α/2;N−m

γ (36)

δR = δ + Z0.5−
√

1−α/2 ×
√

N −m
Nχ2

0.5−
√

1−α/2;N−m

γ (37)

γL =

√
N −m

χ2
0.5+

√
1−α/2;N−m

γ (38)

γR =

√
N −m

χ2
0.5−

√
1−α/2;N−m

γ (39)

This study makes the testing rules based on CRδ and CRγ as follows:

1. If [δL, δR] ∩ Aδ = φ, then reject H0 and conclude that the process accuracy needs to
be improved.
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2. If γL > 1/k, then reject H0 and conclude that the process precision needs to
be improved.

3. If [δL, δR] ∩ Aδ 6= φ and γL ≤ 1/k, then do not reject H0 and conclude that the process
reaches the k-sigma quality level.

4. Improvement Decision on Process Precision and Accuracy

As mentioned above, when the testing result revealed that the process did not meet
the six-sigma quality level (CR ∩ A = φ), its quality must be improved. Then, the statistical
test of precision index γ was employed to determine whether the process required an
improvement plan to reduce variation. As noted above, when the value of precision index
was bigger than 1/k, it meant that the process variation was enormous and must make
some adjustment. Therefore, for the statistical test of precision index γ, the null hypothesis
(H′0) and the alternative hypothesis (H′1) are described as follows:

H′0 : γ ≤ 1/k (40)

H′1 : γ > 1/k (41)

Then, the 100 (1− α)% lower confidence limit γL is adopted to establish the following
testing rules:

1. If γL > 1/k, then H0 is rejected. It is concluded that precision index γ is bigger than
1/k, indicating that the process variation is so huge that the process must be improved.

2. If γL ≤ 1/k, then H0 is not rejected. It is concluded that precision index γ is smaller
than or equal to 1/k, showing that the process variation does not need to reduce.

When the accuracy index is bigger than 1.5/k, then it is learned that the process is
overly shifted to the right of tolerance, so it must be improved. In contrast, as the value
of accuracy index is smaller than −1.5/k, it is known that the process is overly shifted
to the left of tolerance, so it must be bettered as well. Therefore, for the statistical test of
accuracy index δ, the null hypothesis (H′′0 ) and the alternative hypothesis (H′′ ) are depicted
as follows:

H′′0 : −1.5/k ≤ δ ≤ 1.5/k (42)

H′′1 : δ < −1.5/k or δ > 1.5/k (43)

Next, the 100 (1− α)% lower confidence limit δL and upper confidence limit δR are
applied to the testing rules as follows:

1. If [δL, δR]∩[−1.5/k, 1.5/k] 6= φ, then do not reject H0, and the process accuracy does
not need to be improved.

2. If δL > 1.5/k, indicating that the right deviation of the process exceeds 1.5 sigma, then
it is necessary to make some improvements to help the process mean move toward
the target value. Also, the process deviation must be controlled and fall within 1.5
sigma or less.

3. If δR < −1.5/k, meaning that the left deviation of the process exceeds 1.5 sigma, then
it is necessary to make some adjustments to help the process mean move toward the
target value. Also, the process deviation must be controlled and fall within 1.5 sigma
or less.

5. An Empirical Example

As mentioned above, Process Capability Indices (PCIs) are tools for process quality
evaluations that are widely applied in the industry, including various machine tools and ma-
chining industries, semiconductor processes, packaging processes, etc. Many studies have
indicated that Taiwan’s output value for machine tools ranks number seven worldwide,
and its export volume ranks number five worldwide [22]. Central Taiwan is an important
stronghold of the machine tool industry. About 70% of manufacturers of machine tools,
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precision machinery, and their components are situated in central Taiwan. Aiming to
cut operating costs and concentrate resources on the core technologies, the machine tool
industry outsources some non-core businesses to specialized manufacturers. Meanwhile,
the industry focuses on improving its specialized machining processes in order to elevate
the entire quality level, efficiency, and competitiveness of the machine tool industry and the
entire industry chain [23–25]. Additionally, the machine tool industry also combines the
aerospace technology and intelligent machinery industries. Driven by the high clustering
effect, the central region of Taiwan has turned into a complete industry chain of machine
tools and plays a significant role in the machine tool industry worldwide [22].

According to various studies, a machine tool contains many important components,
including axles, bearings, and gears. These components usually have nominal-the-best
quality characteristics (QCs), such as diameter [7]. As mentioned earlier, enhancing the
process accuracy index and the process precision index would not only make the process
loss lower but also make the process capability higher. This study took the outer diameter of
an axle as an example to demonstrate the application of the proposed model, like converting
the tolerance into a target value of zero (T = 0), the lower specification limit into −1, and
the upper specification limit into 1 by means of variable transformation. Then, the δ− γ
control charts developed by this study were employed to monitor the process accuracy
and precision. When the process precision and the process accuracy became stable, the
statistical testing method recommended by this study was adopted to evaluate the process
capability. Furthermore, the statistical testing method of accuracy and precision indices
was also used as the decision-making basis of process improvement.

In the example, the outer diameter tolerance of the axle is 2.8± 0.03, and its 25 groups
of statistical process control data are displayed as follows

xj,1, xj,2, . . . , xj,i, . . . , xj,11

where j = 1, 2,. . ., 25 and i = 1, 2,. . ., 11. Based on the above developed model, we started
monitoring, evaluating, and improving the machining process quality for the outer diameter
of the axle by Excel software 2016 and offered manufacturers a direction of decision making
on improvement for reference.

5.1. Process Quality Monitoring

According to the variable transformation formula, yj,i =
(
xj,i − 2.8

)
/0.03, the subsample

data of yj,i, subsample mean, and subsample standard deviation are depicted below:

y1,1, y1,2, . . . , y1,i, . . . , y1,11, y1 =
1

11

25

∑
i=1

y1,i = 0.415, s1 =

√√√√ 1
n

11

∑
i=1

(y1,i − y1)
2 = 0.172

yj,1, yj,2, . . . , yj,i . . . , yj,11, yj =
1
11

25

∑
i=1

yj,i = 0.452, sj =

√√√√ 1
11

11

∑
i=1

(
yj,i − yj

)2

= 0.187

y25,1, y25,2, . . . , y25,i, . . . , y25,11, y25 =
1

11

25

∑
i=1

y25,i = 0.444, s25 =

√√√√ 1
11

11

∑
i=1

(y25,i − y25)
2 = 0.181

where j = 1, 2,. . ., 25 and i = 1, 2,. . ., 11. According to Equations (20) and (21), then

δ = y =
1

25

25

∑
j=1

yj = 0.443
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γ =
1

25

25

∑
j=1

b−1
11 sj = b−1

11 s =1.075× 0.182 = 0.196

Based on Table 1, the values of b11 and An are received, and the limits of the δ control
chart can be calculated below:

UCLδ = δ + A11γ =0.443 + 0.973× 0.196 = 0.643;

CLδ = δ = 0.443;

LCLδ = δ− A11γ =0.443− 0.973× 0.196 = 0.252.

Similarly, the values of B11 and B′11 obtained from Table 1, and the limits of the γ
control chart, can be computed as follows:

UCLγ = B11γ =1.679× 0.196 = 0.329

CLγ = γ = 0.196

LCLγ = B′11γ =0.321× 0.196 = 0.063

The above control limits of accuracy and precision indices can be used to supervise
the process accuracy and precision.

5.2. Process Quality Evaluation

Then, the process quality is evaluated based on 25 groups of subsample data in
statistical process control. Since Z0.0025 = 2.807, χ2

0.0025;250 = 191.802, χ2
0.9975;250 = 317.362

and based on the above data in the control charts, we have

δL = δ− Z0.0025√
275
×
√

250
χ2

0.0025;250
γ = 0.443− 2.807√

275
×
√

250
191.802

× 0.196 = 0.405

δR = δ +
Z0.0025√

275
×
√

250
χ2

0.0025;250
γ = 0.443 +

2.807√
275
×
√

250
191.802

× 0.196 = 0.481

γL =

√
250

χ2
0.9975;250

γ =

√
250

317.362
× 0.196 = 0.174

γR =

√
250

χ2
0.0025;250

γ =

√
250

191.802
× 0.196 = 0.224

According to Section 3, the process was required to reach a quality level of six-sigma,
the accuracy index was required to be −0.25/k ≤ δ ≤ 0.25/k, and the required precision
index was γ ≤ 1/6. Thus, on the statistical test, the null hypothesis (H0) and the alternative
hypothesis (H1) are expressed as follows:

H0 : δ ∈ Aδ and γ ∈ Aγ (44)

H1 : δ /∈ Aδ or γ /∈ Aγ (45)

where Aδ = {−0.25 ≤ δ ≤ 0.25} and Aγ = {γ ≤ 1/6}. According to the testing rules,

1. If [δL, δR] ∩ Aδ = φ, then reject H0. It is concluded that the process accuracy needs to
be improved.
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2. If γL = 0.174 > 1/6, then reject H0. It is concluded that the process precision needs to
be improved.

5.3. Decision Making on the Direction of Process Quality Improvement

Based on the above-stated statistical testing results, there are two statistical tests that
need to be performed to determine the direction of process improvement. The first is the
test of process accuracy. Since the required quality level is six-sigma, the null hypothesis
(H′′0 ) and the alternative hypothesis (H′′ ) on the statistical test of precision index δ are
depicted as follows:

H′0 : γ ≤ 1/6 (46)

H′1 : γ > 1/6 (47)

If the value of γL equal to 0.174 is bigger than 1/6, it is learned that the process
variation is so large that the process must be improved. For the same reason, the required
quality level is six-sigma. Then, the null hypothesis (H′′0 ) and the alternative hypothesis
(H′′ ) on the statistical test of accuracy index δ are denoted as follows:

H′′0 : −0.25 ≤ δ ≤ 0.25 (48)

H′′1 : δ < −0.25 or δ > 0.25 (49)

If the value of [δL, δR] = [0.405, 0.481], then 0.405 is bigger than 0.25, indicating that
the process is shifted to the right by more than 1.5 sigma. Therefore, some improvements
must be made to help the process mean move toward the target value, and the process
deviation must be controlled and fall within 1.5 sigma or less.

6. Conclusions

Process Capability Indices (PCIs, which are commonly adopted by the industry, are
functions of accuracy index δ and precision index γ. Accuracy index δ focuses on measuring
the degree to which process mean µ deviates from process target value T. As the value is
closer to 0, the process is more accurate. Precision index γ mainly represents the size of
process variation. As the value is smaller, the process variation is smaller. That is to say, the
process Is more precise. It is obvious that accuracy index δ and precision index γ are two
important parameters of the process capability index, as well as two important indices for
evaluating the process quality level. For example, when |δ| ≤ 1.5/k and γ ≤ 1/k, then the
process quality reaches the k-sigma quality level [20]. Raising the process precision and
process accuracy can increase the values of process capability indices as well.

Therefore, the δ − γ control charts were derived to monitor process accuracy and
precision based on in-control data. This study used the unbiased estimator of accuracy
index δ to derive the three-sigma control chart of index δ and discovered the upper control
limit, the center limit, and the lower control limit. Similarly, this study employed the
unbiased estimator of precision index γ to derive the three-sigma control chart and found
the upper control limit, the center limit, and the lower control limit. Table 1 provides the
values of items bn, An, Bn, and B′n to help the quality control engineer figure out the control
limits of these two control charts, so as to monitor the process accuracy and precision.
When the process precision and accuracy became stable, the statistical testing method
proposed by this study was applied to the evaluation of process capability. Then, according
to the normal process, it was learned that the sample mean and the sample variation were
independent. In this paper, the 100(1− α)% confidence region of (δ, γ) was first derived,
and then confidence interval CRδ for index δ and confidence interval CRγ for index γ
were defined based on this confidence region. Subsequently, this study made the testing
rules based on CRδ and CRγ. First, considering the definition of the six-sigma quality
level, we examined whether the process could reach the six-sigma quality level. Second,
when the process failed to reach the six-sigma quality level, the statistical testing method
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of accuracy and precision indices was adopted to come up with a direction for process
improvement, such as correcting the direction of process deviation and deciding whether
to reduce process variation. Finally, this study presented an empirical case to prove the
feasibility of the proposed model.

To sum up, we have provided a mechanism for monitoring, evaluating, and improving
the normal process quality through the statistical testing method, which has the following
advantages and functions:

1. The accuracy and precision control charts developed by this study can assist quality
control engineers with the calculation of the control limits of these two control charts,
so that they can supervise the accuracy and precision of the process.

2. The statistical testing method and the definition of the six-sigma quality level can help
evaluate whether the precision and accuracy of the process meet the required level
and decide whether to make improvements.

3. Accuracy index δ and precision index γ are not only two important parameters
of the process capability index but also two important indices for evaluating the
process quality level. Therefore, when the process accuracy and precision reach the
required level, then both the process capability and the six-sigma quality level can
meet requirements.

The monitoring, evaluation, and improvement model of process precision and ac-
curacy proposed by this study is suitable for manufacturers who have large quantities
of production and use control charts. However, the batches produced by many original
equipment manufacturers (OEMs) are not large, belonging to the high-mix low-volume
manufacturing process, which cannot apply to the model proposed by this study. In
addition, monitoring, evaluating, and improving the risk assessment of control and deci-
sion making is another important research topic [26], which is not included in the model.
Clearly, the above two issues, including the high-mix low-volume manufacturing process
and monitoring, evaluating, and improving the risk assessment of control and decision-
making, are not only the research limitations of this paper but also significant directions for
future research.
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