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Abstract: Because object detection accuracy has significantly improved advancements in deep learn-
ing techniques, many real-time applications have applied one-stage detectors, such as You Only Look
Once (YOLO), owing to their fast execution speed and accuracy. However, for a practical deployment,
the deployment cost should be considered. In this paper, a method for pruning the unimportant
filters of YOLO is proposed to satisfy the real-time requirements of a low-cost embedded board.
Attention mechanisms have been widely used to improve the accuracy of deep learning models.
However, the proposed method uses spatial attention to improve the execution speed of YOLO by
evaluating the importance of each YOLO filter. The feature maps before and after spatial attention
are compared, and then the unimportant filters of YOLO can be pruned based on this comparison.
To the best of our knowledge, this is the first report considering both accuracy and speed with
Spatial Attention-based Filter Pruning (SAFP) for lightweight object detectors. To demonstrate the
effectiveness of the proposed method, it was applied to the YOLOv4 and YOLOv7 baseline models.
With the pig (baseline YOLOv4 84.4%@3.9FPS vs. proposed SAFP-YOLO 78.6%@20.9FPS) and vehicle
(baseline YOLOv7 81.8%@3.8FPS vs. proposed SAFP-YOLO 75.7%@20.0FPS) datasets, the proposed
method significantly improved the execution speed of YOLOv4 and YOLOv7 (i.e., by a factor of five)
on a low-cost embedded board, TX-2, with acceptable accuracy.

Keywords: object detection; deep learning; attention mechanism; filter pruning

1. Introduction

Object detection accuracy has significantly improved with advancements in deep
learning techniques [1]. As a result, many real-time applications have adopted one-stage
detectors like YOLO [2–8] due to their fast execution speed and accuracy. YOLOv4 has
incorporated numerous recent techniques, and the COCO accuracies of later YOLO versions,
including YOLOv4 [5], YOLOv5 [6], YOLOx [7], and YOLOv7 [8], far surpass earlier
iterations, such as YOLOv1 [2], YOLOv2 [3], and YOLOv3 [4]. Therefore, many studies
have applied later versions of YOLO to many real-time applications, such as 24 h pig
monitoring [9–29] and autonomous driving [30–42].

However, for a practical deployment, deployment costs should be considered, as there
is a general trade-off between accuracy and execution speed in any object detection system.
Although embedded board implementations of YOLO have been reported, there has been
an even greater demand for “integrated” performance (=accuracy × speed) on a low-cost
embedded board.

In this paper, a method is proposed to reduce the number of unimportant filters
of YOLO to provide improved integrated performance on a low-cost embedded board.
Generally, attention mechanisms have been widely used to improve the accuracy of deep
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learning models [43–46], while pruning techniques have been used to improve the execu-
tion speed [47–52]. In the proposed SAFP method, spatial attention mechanisms [45,46]
are used to improve the execution speed of YOLO by evaluating the importance of each
YOLO filter and pruning unimportant filters (i.e., filter pruning [49,50]). That is, the feature
maps before and after spatial attention are compared, and then the unimportant filters of
YOLO are pruned based on this comparison. Our research distinguishes itself from recent
research [53–57] that utilizes attention for filter pruning in image classification tasks. The
technique for pruning unimportant filters of YOLO is proposed by leveraging information
from spatial attention, in contrast to the previous methods for image classification. By com-
paring the feature map difference after spatial attention and the foreground–background
information derived from ground-truth (GT) box locations, unimportant filters of YOLO
can be determined.

Figure 1 illustrates the application of spatial attention to feature maps detecting fea-
tures, highlighting the differences between them: (a) represents a feature map extracted
from the input image, capturing the characteristics of the objects effectively. In contrast,
(b) represents the outcome of applying spatial attention to the feature map in (a), emphasiz-
ing the object’s characteristics. The difference between (a) and (b), in addition to the GT box
locations of the training image, is depicted in (c), illustrating that applying spatial attention
to a feature map that well-represents the object’s characteristics can enhance the emphasis
on those features (i.e., important filters should not be pruned).

On the other hand, (d) represents a feature map obtained from the input image that
does not adequately represent the object’s characteristics. (e) shows the result of applying
spatial attention to the feature map in (d), while (f) represents the difference between (d) and
(e), in addition to the GT box locations of the training image. As evidenced by the results
in (f), even the application of spatial attention does not emphasize the features in a map
that lacks a proper representation of the object’s characteristics. In this study, convolution
filters that produce feature maps similar to (f), which fail to accurately represent the object’s
characteristics, even after applying spatial attention, are identified as unimportant filters
for object detection. These filters recognize them as non-essential to enhance the overall
efficacy of the detection process (i.e., unimportant filters can be pruned).

To demonstrate its effectiveness, the proposed method was applied to YOLOv4 [5]
and YOLOv7 [8]. With the pig and vehicle datasets, the proposed method significantly
improved the execution speed of YOLOv4 and YOLOv7 on a low-cost embedded board,
TX-2, with acceptable accuracy. Compared to the baseline YOLO model, the proposed
method can improve integrated performance (accuracy x speed) up to five times. The
contributions of this work are summarized as follows:

• Attention mechanisms have been used to improve the accuracy of deep learning
models, while pruning techniques have been used to improve the execution speed. A
step is taken forward from previous research by combining attention and pruning to
achieve real-time YOLO on a low-cost embedded board with acceptable accuracy. To
the best of our knowledge, this represents the first instance of concurrently considering
both the accuracy and speed of YOLO by comparing the foreground–background
information derived from GT box locations and the feature map difference before and
after spatial attention.

• To validate the feasibility of our proposed method, the experiments were conducted
comparing the proposed method to baseline models in terms of accuracy and speed
across various settings. The experiments with two datasets (pig and vehicle), two
attention mechanisms (convolutional block attention network, CBAM and coordi-
nate attention, CA), two detection models (YOLOv4 and YOLOv7), and two model
sizes (medium and tiny) were conducted. Additionally, comparative experiments
were carried out with conventional filter-pruning techniques based on magnitude
and randomness.
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Figure 1. For important filters (shown as red rows), the comparison result (c) of the foreground–
background information derived from GT box locations and the feature map difference before (a)
and after (b) spatial attention can be used not to prune the filters. For unimportant filters (shown as
blue rows), the comparison result (f) of the foreground–background information derived from GT
box locations and the feature map difference before (d) and after (e) spatial attention can be used to
prune the filters.
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2. Background

This study aims to improve the execution speed of object detection. Although YOLO
is relatively fast and has been widely used in many real-time applications, our objective is
to further enhance its execution speed, particularly for practical deployment on low-cost
embedded boards. In particular, there is a general trade-off between accuracy and execution
speed in any object detection system, including YOLO. Although our main goal is to improve
the execution speed of YOLO, the ‘integrated’ performance (=accuracy × speed) should also
be improved by considering the accuracy of the proposed method. Given that attention
mechanisms have proven effective in enhancing the accuracy of deep learning models, our
approach leverages spatial attention mechanisms to not only improve YOLO’s execution
speed but also enhance its overall integrated performance.

Attention. The methods for diverting attention to the most important locations in
an image and disregarding unimportant locations are called attention mechanisms [44].
Attention mechanisms have provided benefits in many computer vision tasks, such as
image classification and object detection. For image classification tasks, researchers have
developed channel attention (what to pay attention to) [43,44] to improve the accuracy of
deep learning-based classification models. In contrast, for object detection tasks, researchers
have developed spatial attention (where to pay attention), such as CBAM [45] and CA [46],
to improve the accuracy of deep learning-based detection models. In fact, CBAM and CA
provide both channel and spatial attention mechanisms. Since they provide a spatial atten-
tion (where to pay attention) mechanism, they were selected as the attention mechanisms
of the proposed method for object detection tasks. Figure 2 shows the structure of CBAM,
and Figure 3 shows the structure of CA.

Figure 2. Structure of CBAM [45].

Figure 3. Structure of CA [46].
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Pruning. The methods for removing the components of a model to produce sparse
models for acceleration and compression are called pruning techniques [50]. Pruning aims
to minimize the number of parameters in a model without significantly degrading its
accuracy. In contrast to weight pruning (which results in unstructured models), structured
pruning provides realistic acceleration by producing GPU-friendly models. Therefore, this
study pruned unimportant filters (i.e., filter pruning) as an example of structured pruning.
Furthermore, like attention, most research on pruning has been conducted on convolutional
neural networks (CNNs) for image classification tasks, which are the foundation for other
tasks, such as object detection. Conventionally, filter pruning has been performed using
magnitude pruning [51] and random pruning [52]. In the case of magnitude pruning, filters
are considered more important when their values are larger, and the importance of filters
is determined using metrics like L2-norm. On the other hand, random pruning involves
randomly selecting filters for pruning.

In general, attention mechanisms have been widely used to improve the accuracy
of deep learning models, whereas pruning techniques have been used to improve their
execution speed. Table 1 shows a summary of the attention-based pruning results published
between 2019 and 2022. As shown in Table 1, few classification results have been reported
for attention-based pruning, while the detection results of attention for accuracy and
pruning for speed have been reported. To the best of our knowledge, no prior results on the
use of spatial attention-based pruning considering YOLO’s detection accuracy and speed
have been reported. In general, there exists an accuracy/speed trade-off, and therefore,
introducing attention mechanisms to improve accuracy increases the resource requirements
(time and memory), while pruning for speed sacrifices accuracy. For example, in [26],
applying attention improved accuracy from 90.4% to 90.8%; however, the speed decreased
slightly from 83FPS to 82FPS. Similarly, in [39], the application of attention improved
accuracy from 95.2% to 97.2%; however, it was reported that the model size increased
slightly from 13.7MB to 14.4MB. However, to the best of our knowledge, no prior results on
the use of spatial attention-based pruning for simultaneously considering YOLO detection
accuracy and speed have been reported.

Table 1. Summary of attention-based pruning results (2019–2022) for classification speed and detec-
tion accuracy/speed.

Computer Vision Task Attention or Pruning Reference

Image Classification

Channel Attention for Speed [53]

Channel Attention for Speed [54]

Channel Attention for Speed [55]

Channel Attention for Speed [56]

Channel Attention for Speed [57]

Object Detection

Attention for Accuracy
(Not Report Speed/Model Size) [13]

Attention for Accuracy
(Not Report Speed/Model Size) [25]

Attention for Accuracy
(Speed Degradation) [26]

Attention for Accuracy
(Model Size Increase) [39]

Pruning for Speed
(Not Report Accuracy) [18]

Spatial Attention-based Pruning
for Accuracy and Speed

Proposed
Method
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3. Proposed Method

In this study, a lightweight spatial attention model is proposed. First, spatial attention
is applied to the target model. Next, the filters within the convolution layer are evaluated
using an attention map. Finally, filter pruning is performed using the evaluated filters. The
overall structure of the proposed method is illustrated in Figure 4.

Figure 4. Overview of the proposed method SAFP-YOLO.

3.1. Spatial Attention

In this section, spatial attention modules CBAM [45] and CA [46] are introduced,
and we discuss how they are applied to the YOLOv4 and YOLOv7 frameworks with
the intention of enhancing the accuracy and efficiency of object detection. Similar to
the principles of SENet, CBAM examines the relationships among filters to ascertain
which ones need encoding. This is not the full extent of CBAM’s functionality; it also
encodes pixel-wise attention across the entire filter, helping to determine the regions that
require more focused processing. This targeted approach ensures that the most relevant
information is captured. Ultimately, these encoded attention maps are amalgamated with
the original input feature map, thus refining the overall feature representation. In contrast,
CA serves a slightly different purpose. CA is a specific spatial attention mechanism
designed to guide the learning model towards filters and positions that demand focus. CA
achieves this by applying attention based on the values gleaned from the global average
pooling along the horizontal and vertical axes of each filter. This method is not arbitrary;
it simultaneously considers the importance and spatial information among filters. The
outcome is an improved object detection accuracy, as the model is better informed about
where to concentrate its resources. While conventional filter-pruning techniques employing
attention modules have predominantly utilized channel attention modules, this study
aims to implement pruning by combining spatial attention modules with GT Box. This
preference stems from our belief that, in detection tasks as opposed to classification, spatial
attention modules are more effective than channel attention modules.

To effectively integrate these attention mechanisms into the YOLOv4 framework, they
are strategically applied at the end of each CBM (Conv-Bn-Mish) and CBL (Conv-Bn-Leaky)
module in the backbone and neck of the architecture since it enables to obtain attention
maps from the feature maps of the convolution layer. Such integration is not merely an
add-on; it is an integral part of enhancing the model’s responsiveness to the spatial features
that are used for accurate object detection. Figure 5 illustrates the structure of YOLOv4 with
the Spatial Attention (SA) modules, showcasing how these SA modules blend seamlessly
into the existing architecture. For the YOLOv7 framework, SA modules are applied to each
end of the MP (Max Pooling), ELAN (Efficient Layer Aggregation Networks), and ELAN-H
(ELAN with HorNet) modules in the backbone and neck to obtain attention maps from the
feature map of the convolution layer, and Figure 6 illustrates the structure of YOLOv7 with
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SA. By incorporating the SA module, attention maps can be derived from the convolutional
layers of both YOLOv4 and YOLOv7.

Figure 5. Structure of YOLOv4 with SA (incorporated into backbone and neck).

Figure 6. Structure of YOLOv7 with SA (incorporated into backbone and neck).

3.2. Filter Importance Evaluation

In this section, a comprehensive method is introduced to assess the significance of
each filter within the convolutional layers of an object detection model. The primary aim of
this evaluation is to understand the roles and contributions of different filters within the
convolutional architecture, an essential aspect that drives the overall performance of the
model. An evaluation is commenced by using a trained model and inputting an image
containing the object for detection. As the input image contains the GT detection box’s
information, the precise location of the object can be located within the image and can serve
as the basis for further analysis. Following the input process, feature maps are obtained
from each convolution layer. Feature maps contain filter responses within a particular
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layer, which provide intricate operations of the convolutional layers, allowing us to discern
the importance of individual filters. To assess filter importance systematically, the feature
maps are divided into two distinct regions, foreground and background, leveraging the GT
detection box information for a clear differentiation between the object of interest and its
surroundings.

With the regions defined, L2-norm values are calculated for both the foreground and
background areas. Then, the absolute difference is computed in the L2-norm values between
these regions, as it provides a quantitative measure of the filter’s significance. A larger
difference in the L2-norm values signifies the filter’s pronounced role in distinguishing
features. A significantly higher L2-norm value for the foreground region indicates that
the filter excels at extracting features related to either the object or its surroundings. Such
filters are regarded as highly relevant for the object detection task. By doing so, they can be
ranked in terms of importance. This ranking not only provides insights into filter dynamics
but also facilitates informed decisions regarding filter pruning and other optimization
techniques, all designed to enhance the model’s performance through fine-tuning without
unnecessary complexity.

The entire process leads to a more refined understanding of the model, which is based
on an empirical analysis of the filters’ roles. In this study, Algorithm 1 is proposed to
outline the specific filter-pruning algorithm used, offering a clear pathway to achieve the
described objectives.

Algorithm 1. Filter evaluation using attention map

Input: model, featureMaps, groundTruthBox, inputImage
Output: optimizedModel

foreach (layer in convolutionLayers(model)) {
featureMaps = extractFeatureMaps(layer, inputImage)

foregroundRegion = getRegion(featureMaps, groundTruthBox)
backgroundRegion = getRegion(featureMaps, complementOf(groundTruthBox))

L2NormForeground = calculateL2Norm(foregroundRegion)
L2NormBackground = calculateL2Norm(backgroundRegion)

difference = abs(L2NormForeground − L2NormBackground)

if (difference is significantly large) {
markFilterAsImportant(layer)

}
}

rankedFilters = rankFiltersBasedOnImportance(convolutionLayers(model))

optimizedModel = applyOptimizations(model, rankedFilters)

return optimizedModel

3.3. Filter Pruning

In this section, a method is discussed for creating a filter-pruned model after evaluating
the filters within the convolutional layers. Our proposed filter-pruning method focuses
on removing filters at a fixed ratio, such as 50%, a critical step for achieving lightweight
models and efficient deployment in deep learning applications.

Initially, the reduction ratio ‘r’ is determined for filter pruning through a series of
systematic experiments aimed at discovering the optimal value that balances efficiency
and effectiveness. Once this ratio is established, the filters are sorted in each convolution
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layer in descending order based on their previously evaluated importance, ensuring that
we preserve the filters considered most vital for the model’s operation.

Next, filters are pruned in each convolution layer, starting with the least important
ones. This dual-purpose approach allows us to reduce the model’s size and enhance the
inference speed without sacrificing core functionalities. This step is crucial for tailoring
the model to various resource constraints and computational environments. Following the
pruning process, the values of the remaining filters are applied in each convolutional layer
to a modified version of the model, where spatial attention is not employed. At this stage,
the model undergoes filter pruning with the fixed ratio ‘r’. This adaptation streamlines the
model’s structure and sets the stage for subsequent fine-tuning.

Then, fine-tuning techniques are employed on the model devoid of spatial attention,
inheriting the values of the filters from the previous convolution layer. This approach
allows us to preserve the model’s accuracy while achieving a significant reduction in the
number of parameters. This strategic decision plays a crucial role in the overall design,
as it fulfills the objectives of enabling the model to function well in resource-constrained
environments like embedded systems and mobile devices.

Furthermore, excluding spatial attention from the final model is a deliberate step taken
to simplify the deployment of deep learning models in scenarios with limited computational
resources. This consideration aligns with broader trends in the field, addressing the
increasing demand for adaptable and efficient models. The integration of these techniques
may result in performance and efficiency that meet the demands of real-world conditions,
especially in settings where deep learning models must operate under various resource
constraints. Algorithm 2 presents the filter-pruning algorithm proposed in this study.

Algorithm 2. Filter pruning using attention map

Input: model
Output: finalModel
Initialize: reduction ratio r

newModel = createModelWithoutSpatialAttention()

foreach (layer in convolutionLayers(model)) {
sortedFilters = sortFiltersByImportance(layer)
int numFiltersToPrune = numberOfFilters(layer) * r

for int i = 0 to numFiltersToPrune do
removeFilter(sortedFilters, sortedFilters[numberOfFilters(sortedFilters) – i − 1])

applyPrunedFiltersToNewModel(sortedFilters, newModel)
}

finalModel = fineTuning(newModel)

return finalModel

4. Experimental Results
4.1. Experimental Setup and Resources for the Experiment

In this study, pig and vehicle datasets were used to evaluate the proposed method.
The pig dataset was released by Riekert et al. [58], while the vehicle dataset was released
by Argoverse [59]. As shown in Figure 7, the pig dataset was captured by either top-view
or tilted-view cameras across various pig pen structures, and the vehicle dataset using a
side-view camera showed various scale vehicles.
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Figure 7. Test sample images of pig [58] and vehicle [59] datasets.

The deep learning model was trained on a PC with an AMD Ryzen 5950 × 16-core
processor, a GeForce RTX 3090 GPU, and 32 GB of RAM. The model was trained on
10 epochs with a learning rate of 0.00261. In addition, the anchor-box configuration
comprised nine anchors that were determined using the k-means algorithm. For the
embedded board implementation, the Nvidia Jetson TX-2 embedded board was used (dual-
core Denver2 64-bit CPU and quad-core ARM A57 complex, NVIDIA Pascal™ architecture
with 256 NVIDIA CUDA cores, 8 GB 128-bit LPDDR4) [60].

4.2. Evaluation of Detection Performance

In this section, we evaluate the proposed method. Tables 2 and 3 present the results of
applying the proposed method to the YOLOv4 and YOLOv7 baselines for the pig dataset
and vehicle dataset. The inference speeds (FPS) of the models were measured on a TX-
2 embedded board [60], and the integrated performance was defined as the product of
accuracy and speed. Although there was a decrease in accuracy, 84.4 to 78.6 in YOLOv4
and 87.9 to 81.2 in YOLOv7, the actual gain in inference speed was substantial: 3.9 to 20.9 in
YOLOv4 and 3.8 to 20.0 in YOLOv7, which led to an increase in the integrated performance
of the lightweight models. Furthermore, both YOLOv4 and YOLOv7 showed performance
improvements in terms of the number of model parameters as well. This confirms the
applicability of the proposed method to various models. Additionally, although CBAM
and CA exhibited differences in accuracy, they both contributed to an improved integrated
performance. Thus, the proposed method can be applied to various spatial attention
mechanisms. Also, this confirms that the proposed method can be applicable to various
dataset types.

Figure 8 illustrates the detection results of the proposed SAFP-YOLOv7 with CA (87.5%
pruning). As shown in Tables 2 and 3, the accuracy of the proposed SAFP-YOLOv7 with
CA (87.5% pruning) has decreased compared to the baseline YOLOv7, yet it is confirmed
that most objects were successfully detected. However, false detections were observed
when objects were clustered or distant, leading to smaller sizes within the image or when
obscured by infrastructure. Among the cases of false detection, it is anticipated that the
detection accuracy could be improved while maintaining detection speed for those cases
where objects were distant, leading to smaller sizes within the image or obscured by
infrastructure, by employing the methods described in [20,38].
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Figure 8. Detection results of the proposed SAFP-YOLOv7 with CA (87.5% pruning). Even with a
pruning rate of 87.5% from YOLOv7, most objects were successfully detected except occluded pigs
and small vehicles.

Table 2. Comparison of the proposed method with YOLOv4 and YOLOv7 for the pig dataset on a
TX-2.

Method Accuracy ↑
(AP0.5, %)

Speed ↑
(FPS)

No. of Model
Parameters ↓ (M)

YOLOv4
[5]

Baseline YOLOv4 84.4 3.9 52.5

Proposed SAFP
with CBAM [45]

50% Pruning 84.7 6.0 36.7

75% Pruning 80.5 12.0 25.7

87.5% Pruning 78.1 20.9 15.7

Proposed SAFP
with CA [46]

50% Pruning 85.0 6.0 36.7

75% Pruning 81.6 12.0 25.7

87.5% Pruning 78.6 20.9 15.7

YOLOv7
[8]

Baseline YOLOv7 87.9 3.8 36.7

Proposed SAFP
with CBAM [45]

50% Pruning 86.7 5.8 25.8

75% Pruning 83.7 11.5 16.3

87.5% Pruning 80.5 20.0 10.2

Proposed SAFP
with CA [46]

50% Pruning 86.9 5.8 25.8

75% Pruning 84.2 11.5 16.3

87.5% Pruning 81.2 20.0 10.2
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Table 3. Comparison of the proposed method with YOLOv4 and YOLOv7 for the vehicle dataset on
a TX-2.

Method Accuracy ↑
(AP0.5, %)

Speed ↑
(FPS)

No. of Model
Parameters ↓ (M)

YOLOv4
[5]

Baseline YOLOv4 78.1 3.9 52.5

Proposed SAFP
with CBAM [45]

50% Pruning 77.4 6.0 36.7

75% Pruning 74.3 12.0 25.7

87.5% Pruning 72.1 20.9 15.7

Proposed SAFP
with CA [46]

50% Pruning 77.5 6.0 36.7

75% Pruning 74.4 12.0 25.7

87.5% Pruning 72.6 20.9 15.7

YOLOv7
[8]

Baseline YOLOv7 81.8 3.8 36.7

Proposed SAFP
with CBAM [45]

50% Pruning 80.7 5.8 25.8

75% Pruning 78.2 11.5 16.3

87.5% Pruning 75.4 20.0 10.2

Proposed SAFP
with CA [46]

50% Pruning 80.8 5.8 25.8

75% Pruning 78.7 11.5 16.3

87.5% Pruning 75.7 20.0 10.2

4.3. Discussion

In this section, the validation of the proposed method is presented. Figures 9 and 10
show the results of applying the conventional filter-pruning techniques (i.e., magnitude
pruning [51] and random pruning [52]) to the pig dataset and vehicle dataset. Magnitude
pruning involved determining the importance of filters based on their L2-norm values
and then performing filter pruning. On the other hand, random pruning simply involves
randomly selecting filters for pruning.

As shown in Figures 9 and 10, the application of filter pruning increased the inference
speed and reduced the model size of the baseline model. However, the conventional
filter-pruning technique, by using L2-norm [51] or randomly removing filters [52], led
to substantial accuracy degradation, regardless of the dataset. On the other hand, the
proposed SAFP could provide an accuracy of 81.2% (vs. 87.9% baseline YOLOv7) for the
pig dataset and 75.7% (vs. 81.8% baseline YOLOv7) for the vehicle dataset, even with 87.5%
pruning. That is, with acceptable accuracy, SAFP could increase the inference speed (by
a factor of five) and reduce the model size (by a factor of three) of the baseline model,
regardless of the dataset.

Figure 11 illustrates the feature maps generated by the convolution filters pruned
through both the method proposed in this study and the conventional filter-pruning tech-
niques [51,52]. As depicted in the figure, the feature maps produced by the convolution
filters pruned using the proposed method were observed to either not represent or mini-
mally represent the features of the objects that should be detected, indicating that filters
likely to be unimportant in object detection were pruned. Conversely, the feature maps
representing the convolution filters pruned through the conventional filter-pruning tech-
niques were found to have also eliminated filters that accurately represent the features of
the objects that need to be detected. Thus, even filters that were likely to be important in
object detection were pruned. Consequently, it was confirmed that by selectively pruning
filters that do not adequately represent the features of the objects through the proposed
method, a reduction in accuracy can be minimized.
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Figure 9. Accuracy–speed comparison of the filter-pruning techniques with YOLOv4 and YOLOv7
(a,c) shows the results on the pig dataset and (b,d) shows the results on the vehicle dataset. Compared
to the conventional filter-pruning techniques [51,52], the proposed SAFP could increase the execution
speed of the baseline model with acceptable accuracy degradation.
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Figure 10. Accuracy–model size comparison of the filter-pruning techniques with YOLOv4 and
YOLOv7 (a,c) shows the results on the pig dataset and (b,d) shows the results on the vehicle dataset.
Compared to the conventional filter-pruning techniques [51,52], the proposed SAFP could reduce the
model size of the baseline model with acceptable accuracy degradation.

Figure 12 presents the attention maps obtained by applying Grad-Cam [61] to the
models using the proposed method and the conventional filter-pruning techniques [51,52].
Similar to Figure 11, it can be observed that in the case of the proposed method, attention
is generally focused on the objects of interest to be detected. On the other hand, in the
models applying the conventional filter-pruning techniques, some attention is directed
towards objects; however, it is also noticeable that more attention is concentrated on areas
such as the background that should not be detected. In other words, when applying the
proposed method presented in this paper, it can be confirmed that more important filters
for detection are retained compared to the conventional filter-pruning techniques, thereby
aiding in the detection process.
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Figure 11. Feature maps from pruned filters from the proposed method and the conventional
filter-pruning techniques [51,52]. Unimportant filters were pruned in the proposed method, while
important filters were pruned in the conventional filter-pruning techniques.

Tables 4 and 5 present the results of applying the proposed method to TinyYOLOv4
and TinyYOLOv7, which are lightweight models of YOLOv4 and YOLOv7, respectively,
on the pig and vehicle datasets. As shown in Tables 4 and 5, there was a decrease in
accuracy; however, the relative increase in inference speed compared to the accuracy loss
was substantial. Furthermore, the proposed method could significantly reduce the model
size. This confirmed that the proposed method can be applicable to tiny models. Also,
this confirms that the proposed method with YOLOv4 and YOLOv7 could provide better
performance than TinyYOLOv4 and TinyYOLOv7 baseline models, regardless of the dataset
type. With the pig dataset, the proposed method (applied to YOLOv4 with 78.6% accuracy
at 20.9FPS and YOLOv7 with 81.2% accuracy at 20.0FPS) outperformed the tiny baseline
(TinyYOLOv4 with 78.2%@19.2FPS and TinyYOLOv7 with 81.9%@18.3FPS). Additionally, it
has been confirmed that the proposed method (applied to YOLOv4 with 72.6%@20.9FPS and
YOLOv7 with 75.7%@20.0FPS) was superior for detecting vehicles when compared to the
tiny baseline (TinyYOLOv4 with 68.5%@19.2FPS and TinyYOLOv7 with 71.3%@18.3FPS).
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Figure 12. Attention maps from the proposed method and the conventional filter-pruning tech-
niques [51,52]. The attention maps from the proposed method predominantly focus on the target
objects. In contrast, using the conventional filter-pruning techniques was observed as lacking this
focused attention on the objects.

Table 4. Comparison of the proposed method with TinyYOLOv4 and TinyYOLOv7 for pig dataset on
a TX-2.

Method Accuracy ↑
(AP0.5, %)

Speed ↑
(FPS)

No. of Model
Parameters ↓ (M)

Tiny
YOLOv4

[5]

Baseline TinyYOLOv4 78.2 19.2 6.1

Proposed SAFP
with CBAM [45]

50% Pruning 76.8 28.4 2.4

75% Pruning 74.1 40.2 1.0

87.5% Pruning 71.4 52.9 0.4

Proposed SAFP
with CA [46]

50% Pruning 77.4 28.4 2.4

75% Pruning 74.9 40.2 1.0

87.5% Pruning 72.3 52.9 0.4

Tiny
YOLOv7

[8]

Baseline TinyYOLOv7 81.9 18.3 6.0

Proposed SAFP
with CBAM [45]

50% Pruning 79.3 27.2 2.3

75% Pruning 77.6 38.4 1.0

87.5% Pruning 74.7 50.7 0.4

Proposed SAFP
with CA [46]

50% Pruning 81.0 27.2 2.3

75% Pruning 78.5 38.4 1.0

87.5% Pruning 75.8 50.7 0.4
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Table 5. Comparison of the proposed method with TinyYOLOv4 and TinyYOLOv7 for vehicle dataset
on a TX-2.

Method Accuracy ↑
(AP0.5, %)

Speed ↑
(FPS)

No. of Model
Parameters ↓ (M)

Tiny
YOLOv4

[5]

Baseline TinyYOLOv4 68.5 19.2 6.1

Proposed SAFP
with CBAM [45]

50% Pruning 68.1 28.5 2.4

75% Pruning 65.7 40.2 1.0

87.5% Pruning 63.3 52.9 0.4

Proposed SAFP
with CA [46]

50% Pruning 67.7 28.5 2.4

75% Pruning 65.7 40.2 1.0

87.5% Pruning 63.4 52.9 0.4

Tiny
YOLOv7

[8]

Baseline TinyYOLOv7 71.3 18.3 6.0

Proposed SAFP
with CBAM [45]

50% Pruning 70.9 27.2 2.3

75% Pruning 68.4 38.4 1.0

87.5% Pruning 65.9 50.7 0.4

Proposed SAFP
with CA [46]

50% Pruning 71.0 27.2 2.3

75% Pruning 68.4 38.4 1.0

87.5% Pruning 66.0 50.7 0.4

Figure 13 illustrates the detection results of the proposed SAFP-TinyYOLOv7 with
CA (87.5% pruning). As shown in Tables 4 and 5, the accuracy of the proposed SAFP-
TinyYOLOv7 with CA (87.5% pruning) has decreased compared to the baseline TinyY-
OLOv7. However, it is confirmed that most objects were successfully detected except
occluded pigs and small vehicles.

Figure 13. Detection results of the proposed SAFP-TinyYOLOv7 with CA (87.5% pruning). Even with
a pruning rate of 87.5% from TinyYOLOv7, most objects were successfully detected except occluded
pigs and small vehicles.
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5. Conclusions

Although accurate object detection is crucial for general applications, fast object
detection is also important for many real-time applications, such as 24-hour surveillance
and autonomous driving. In this study, a method was proposed to improve the execution
speed of a one-stage YOLO detector using SAFP. In general, attention mechanisms have
been widely used to improve the accuracy of deep learning models, whereas pruning
techniques have been used to improve their execution speed. In the proposed SAFP
method, a spatial attention mechanism was used to improve the execution speed of YOLO
by evaluating the importance of each filter and pruning the unimportant filters. That
is, the feature maps were first compared with before and after spatial attention, and
then the unimportant filters of YOLO were pruned based on this comparison of feature
maps. Because spatial attention emphasized the target locations in a training image, the
importance of each YOLO filter was evaluated by checking the changes in the feature map
values at the target locations.

The proposed method was applied to YOLOv4 and YOLOv7 to demonstrate its
effectiveness. Using the vehicle dataset, the proposed method with both CBAM and CA
improved the execution speed of YOLOv4 from 3.9FPS to 20.9FPS on a low-cost embedded
board, TX-2, with acceptable accuracy and thus improved the integrated performance
(= accuracy × speed) from 304.6 to 1517.3. Using the pig dataset, the proposed method
with CBAM and CA improved the execution speed of YOLOv7 from 3.8FPS to 20.0FPS
on a low-cost embedded board, TX-2, with acceptable accuracy and thus improved the
integrated performance from 334.0 to 1624.0. For the pig dataset, there were performance
improvements of 78.2%@19.2FPS (TinyYOLOv4) to 72.3%@52.9FPS and 81.9%@18.3FPS
(TinyYOLOv7) to 75.8%@50.7FPS, which is confirmed to satisfy real-time object detection
using tiny detection models. In other words, the proposed method demonstrated superior
overall performance compared to the baseline in all aspects, including two datasets (pig
and vehicle), two attention mechanisms (CBAM and CA), two detection models (YOLOv4
and YOLOv7), and two model sizes (medium and tiny). Furthermore, it significantly
outperformed the conventional pruning techniques (magnitude- and randomness-based)
in terms of accuracy. Also, note that the proposed method can also be applied to other
model compression techniques [47], such as quantization.
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