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Abstract: A new design of the haulm harvester with an improved loading mechanism has been
developed, which is made in the form of a centrifugal thrower that receives the entire volume of
the cut sugar beet tops, as well as an unloading pipe, the end of which is at the level of the vehicle,
moving beside the haulm harvester. To substantiate the rational parameters of this loading device,
a mathematical model of the movement of a particle along the thrower blade and its exit from the
blade was developed in order to simulate further movement along the inner surface of the cylindrical
part of the casing and its straight part before entering the vehicle. The resulting differential equation
for the movement of a haulm particle along the thrower blade takes into account the influence of
the airflow created by the rotation of the thrower, the blades of which capture and accelerate the air
in the closed space of the cylindrical casing. The indicated differential equation includes the basic
design, kinematic, and power parameters affecting the flow of the studied loading process of the tops.
The solution of these differential equations on a PC made it possible to obtain graphic dependencies,
with the help of which the rational parameters of the working bodies of the loading mechanism of
the haulm harvester were substantiated. As calculations show, an increase in the angular velocity of
rotation of the thrower and the length of its blade leads to an increase in the absolute velocity of the
haulm particle M from the end of the blade. Thus, by increasing the length of the thrower blade from
0.1 m to 0.35 m and its angular velocity from 10 s−1 to 40 s−1, the absolute velocity increases from
1.2 m s−1 to 16 m s−1. At an angular speed of rotation of the thrower equal to 10 s−1, an increase
in the airflow velocity from 5 to 35 m s−1 leads to a smooth linear increase in the relative velocity
of particle M, as it moves along the blade of 0.67 to 0.78 m s−1. For a higher angular velocity of
rotation of the thrower, equal to 20 s−1, the growth curve of the relative velocity of particle M is more
intense at an airflow velocity in the range from 5 to 25 m s−1, approaching the linear law at an airflow
velocity of more than 25 m s−1. In this case, the relative velocity varies from 0.9 to 1.4 m s−1.

Keywords: sugar beet; haulm; copyless cut; loading; bladed thrower; mathematical simulation;
rational parameters

1. Introduction

One of the main sources of sugar production is sugar beet [1–3]. An important problem
in the technological process of sugar beet harvesting is the removal and harvesting of the
tops from the heads of root crops without extraction from the soil. In addition, the heap
of root crops should have minimal pollution with the tops, and the loss of sugar-bearing
mass should not exceed agrotechnical requirements [4]. Consequently, the requirements
for high-quality implementation of the process of harvesting tops from the heads of the
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root crops are very stringent [5–7]. Furthermore, the sugar beet tops themselves are high-
quality animal feed. One centner of freshly harvested tops contains 20 feed units, 2.2 kg of
digestible protein, 2.5 kg of calcium, and 0.5 kg of phosphorus [6–8]. In addition, as recent
studies and technological and production tests show, sugar beet tops can be efficiently used
as a raw material for biogas production. Therefore, its harvesting and transportation are
urgent tasks in the field of agricultural mechanization, and the technological operation for
efficient and high-quality removal of tops from the heads of root crops without extracting
the heads from the soil is an urgent scientific problem.

It should be noted that one of the main elements of the theory of movement of the
cut tops of sugar beet when it is loaded into a vehicle after being cut by a haulm harvester
is the theory of the movement of a piece of tops along the blade of a centrifugal thrower,
which receives the tops after being cut by the cutting device. Despite the fact that the theory
of the movement of a material particle along the working surfaces of agricultural machines
has been created with sufficient completeness, first of all, thanks to the fundamental works
of Vasilenko P.M. [9], in connection with the development of new types of working bodies
of agricultural machines in recent years [10–16], this theory needs to be changed and
clarified, which is connected not only with the design features of these working bodies but
also with bringing the rather cumbersome form of the formulated equations to a closed
form, which will be convenient to use in further modeling and practical calculations on
a PC. This particularly applies to the development of a new theory of the movement of a
particle of the cut beet tops along the blade of the thrower of the loading mechanism of the
topping machine.

A fundamental theory of the movement of a particle of material along the working
surfaces of agricultural machines is presented in the works by Vasilenko P.M., Bulgakov
V.M., and others [9,11,17–21]. Several directions and methods for the development of new
working bodies for agricultural machines are presented in [22,23].

The purpose of this work is to determine the influence of the construction and kine-
matic parameters of the topper loading mechanism on the kinematic parameters of the top
particle by developing a mathematical model of the top particle, taking into account the
effect of air flow.

2. Materials and Methods

The theoretical studies were carried out using the methods of mathematical modeling
and theoretical mechanics, as well as methods for compiling computer programs and
analyzing the results of calculations on a PC and graphical dependencies.

We have developed a new haulm harvester, equipped with a loading mechanism for
loading the haulm after its copyless cut with a cutting apparatus to be loaded into a vehicle
in addition to the haulm harvester. The main structural element of this loading mechanism
is a blade thrower, with the possibility of using blades of various geometric shapes [24].
The design and technological scheme of the haulm harvester with an improved loading
mechanism are shown in Figure 1.

As shown in the equivalent scheme, the haulm harvester performs a copyless cut of
the sugar beet tops without extracting the root crop from the soil, using a rotary haulm
harvesting apparatus 3. After that, the haulm, cut across the entire working width, is
transported to the end part of the haulm harvester and fed to the loading mechanism,
namely, to the blade thrower 4. The blades of the thrower 4 disperse portions of the haulm,
located on them, and direct them to the unloading pipe 5, through which the haulm is fed
into the body of the vehicle, moving beside the haulm harvester. An important element
of the technological process of haulm loading is that the blades during rotation create air
pressure, which also contributes to the more efficient movement of the haulm into the
vehicle. In other words, the thrower additionally works as a fan.
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ing mechanism: 1—frame; 2—copying wheel; 3—rotary haulm removing unit; 4—blade thrower;
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In order to substantiate the rational parameters of the haulm loading mechanism, it
is necessary to build a mathematical model of this process from the moment it hits the
thrower blade and the process of particle acceleration by the blades, then its movement
along the cylindrical and rectilinear parts of the casing (the unloading pipe), and, finally,
the process of haulm flight into the body of the transport funds after departure from the
unloading pipe [25].

Let us first construct a calculated mathematical model for the movement of a haulm
particle along the thrower blade from the moment it hits the blade until the moment it
leaves the blade. It should be immediately noted that such a model has already been built
without taking into account the airflow force created by the blades during the rotation
of the thrower and significantly affecting the relative speed of haulm particle movement
along the throwing blade [26]. Therefore, in this article, we will build a refined mathe-
matical model of haulm particle movement along the throwing blade, namely, taking into
account the influence of the airflow on the process of haulm particle movement along the
throwing blade.

To do this, we first construct an equivalent scheme (Figure 2). First, consider the cross
section of the mechanism for loading beet tops, which in the thrower installation area has a
cylindrical casing of radius R in which a blade thrower is installed on the drive shaft of
radius r0. This thrower has four blades that are rigidly fixed on the drive shaft, and they
are located at some angle to the radial direction. When the thrower rotates, each of the
blades in turn approaches the loading window area and captures a certain haulm portion
that has entered this area. Being on the blade, a portion of the haulm begins forward
movement along the blade, simultaneously performing transfer rotation along with the
blade. When the blade reaches the area of the unloading window, the dispersed haulm
portion is thrown upwards in the direction of the loading nozzle. Further, the movement of
the haulm portion, captured by the blade, is carried out in a closed space, which is limited
by two adjacent throwing blades and the casing of the thrower. Since the process of the
haulm movement along all four blades occurs in the same way, to simplify the equivalent
scheme, we will show only this one blade on it. Point O denotes the rotation center of the
considered thrower, and we will limit blade length to segment AB. The thrower’s rotation
direction in the equivalent scheme is shown by an arrow.
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First, consider the movement of haulm particle M along the thrower blade. We choose
as the blade’s initial position the time moment when its outer end is located at the lowest
point of the possible motion trajectory (point B). For a certain period of time t the blade,
together with the haulm, moving along it, turn by a certain angle ϕ, where ϕ = ω · t and
ω is the angular velocity of rotation of the thrower. In this case point B will move into
point B′. We will show, on an equivalent scheme, the necessary angular parameters of the
considered mechanical system. Let ψ be the angle between the throwing blade and radius,
which is drawn through the rotation axis (point O) and haulm particle (point M), moving
along the blade surface at an arbitrary time moment t. We will regard two extreme values
of angle ψ. Staring position ψ0 corresponds to the value of angle ψ when point M coincides
with point A (or point A′). The final position ψ1 is the value of angle ψ in a position when
point M coincides with point B (or point B′ in an arbitrary position of the blade). Obviously,
during the rotation, the blade angles ψ0 and ψ1 remain constant. They depend only on the
location of the blade relative to the radial direction in the plane of the thrower. Thus, the
following inequality ψ1 ≤ ψ ≤ ψ0 holds for angle ψ. We will denote β—the angle between
the blade surface and some vertical line at arbitrary time t. All the angles ψ0, ψ, ψ1 and β
are shown in the equivalent scheme (Figure 2). As evident from the equivalent scheme,
a relationship takes place: ψ0, ψ, ψ1 and β. To describe the relative motion of a haulm
particle along throwing blade AB, we introduce a flat Cartesian coordinate system xAy.
The axis Ax is directed along the blade, and the axis Ay is perpendicular to the plane of
this blade, and the axis Ay passes through the rotation center of thrower (point O). The
origin of the coordinate system xAy is located at the place where the blade is attached to
the drive shaft (point A). Let us define the necessary geometric relationships between the
parameters of the thrower. As can be seen from the equivalent scheme (Figure 2), we have
the following relationships:

x = r · cos ψ− r0 · cos ψ0 (1)

and
r · sin ψ = r0 · sin ψ0 = const (2)

where r is the current radius of the position of point M relative to the disk center (point O)
at an arbitrary moment in time t.
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In order to draw up a differential equation for the movement of the considered beet
tops particle M along the blade surface, it is necessary to indicate in an equivalent scheme all
forces acting on the beet tops particle during its translational movement and to determine
their values.

First of all, we distinguish the force of weight of haulm particle M, which is equal to:

G = m · g (3)

where m is the mass (weight) of haulm particle; g is the gravity acceleration.
The main role in the movement of haulm particles along the thrower blade is played

by centrifugal inertia force Fb, which is equal to:

Fb = m · an = m · r ·ω2 (4)

where an = r · ω2—normal acceleration of particle M of beet tops in its transfer motion
(rotation of the blade around point O).

Based on the fact that the transfer motion of haulm particle M is rotational, it is also
affected by the Coriolis inertia force Fk, which is determined from the following expression:

Fk = m · ak = 2m ·ω · .
x (5)

where
.
x—relative speed of beet tops particle movement along thrower blade;

ak = 2ω · .
x—the Coriolis acceleration.

Also, the friction force Ftr acts upon particle M during its movement, the value of
which will be equal to:

Ftr = f · N (6)

where N—normal reaction of thrower blade surface; f —friction coefficient.
And finally, beet top particle M is affected by the airflow force Fn, the component of

which Fnx is directed along the axis Ax and is determined from the expression:

Fnx = k ·
(
Vn · cos γ− .

x
)

(7)

where Vn—the velocity vector of the airflow, arising from the rotation of the thrower
blades; γ—the angle between speed vector Vn and surface of blade; k—a coefficient, which
depends on the physical and mechanical beet tops properties.

The force of the action of the airflow along the axis Ay on particle M of the haulm will
be equal to:

Fny = k ·Vn · sin γ (8)

We will find the magnitude of the force of the airflow:

Fn =
√

F2
nx + F2

ny (9)

or
Fn =

√
k2 ·

(
Vn · cos γ− .

x
)2

+ k2 ·V2
n · sin2 γ (10)

After transformations, we obtain:

Fn = k ·
√

V2
n − 2Vn · cos γ · .

x +
.
x2 (11)

As shown in the equivalent scheme (Figure 2), the directions of vector Fn and the
airflow velocity vector Vn do not match (δ > γ). They coincide in direction only at

.
x = 0,

that is, at the moment when particle M of the haulm hits the blade.
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Really:

cos δ =
Fnx

Fn
=

(
Vn · cos γ− .

x
)√

V2
n − 2Vn · cos γ · .

x +
.
x2

(12)

When
.
x = 0, we obtain:

cos δ =
Vn · cos γ√

V2
n

=
Vn · cos γ

Vn
= cos γ (13)

That is, δ = γ.
According to [7] for air coefficient k is equal to:

k =
a · d · F

g
(14)

where a is the constant, depending on the shape of the particle and the midsection; F is the
midsection; d is the air density.

Taking into Account (14), we obtain:

Fnx =
a · d · F

g
·
(
Vn · cos γ− .

x
)

(15)

and
Fny =

a · d · F
g
·Vn · sin γ (16)

We will assume that the haulm particle hits the thrower blade with an initial speed
V0 = 0. The speed of the airflow in the steady mode of rotation of the thrower can be
considered constant; that is, Vn = const, angle γ between the velocity vector Vn and the
plane of the blade will also change insignificantly and fluctuate around a certain value of
its average.

Therefore, in the first approximation, we can assume that the component of the airflow
velocity Vn · cos γ = const.

When analyzing Expression (15), it can be argued that at the moment the particle
enters the thrower blade and at the initial stage of the particle movement along the blade,
while its relative velocity

.
x is rather small, the difference Vn · cos γ− .

x will be quite large
(at t = 0: Vn · cos γ− .

x = Vn · cos γ, since
.
x = 0), and therefore force Fnx will be maximum

or close to the maximum. Therefore, at the moment, when the haulm particle arrives at the
blade, the influence of the airflow on the acceleration of the particle along the blade will be
most efficient. As the particle moves along the blade and accelerates, the relative velocity x
will increase; therefore, difference Vn · cos γ− .

x will decrease, which means that, according
to (15), force Fnx will also decrease; that is, the influence of the airflow will weaken.

It is quite possible that the difference Vn · cos γ− .
x in some point in time may become

negative, and the pressure force Fnx of the airflow will turn into a force of resistance to
the movement of the particle. However, such an option is possible only at the end of the
particle movement along the blade, and, in our opinion, this will not have a significant
effect on the velocity of the particle movement.

All the considered forces are shown in the equivalent scheme (Figure 2). To compile a
differential equation for the relative motion of a haulm particle along the thrower blade,
we use the basic law of the dynamics of a material point in the following form:

m · ..
x =

n

∑
k=1

Fkx (17)

where
..
x is the relative acceleration of particle M as it moves along axis Ax;

n
∑

k=1
Fkx is the

sum of the projections of all forces acting upon particle M at an arbitrary moment of time t.
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To obtain the right side of Equation (17), we project all the forces acting on the haulm
particle onto axis Ax, that is, onto the direction of the relative motion of the said particle.

In this case, the sum of the projections of all forces upon axis Ax will be equal to:

∑ Fkx = m · r ·ω2 · cos ψ + m · g · cos β + k ·
(
Vn · cos γ− .

x
)
− f · N (18)

Let us determine the friction force Ftr of particle M of the haulm as it moves along the
surface of the blade. For this, we determine the normal reaction N of the blade surface
under the condition that the sum of the projections of all forces on axis Ay is equal to zero:

n

∑
k=1

Fky = 2m ·ω · .
x + m · g · sin β−m · r ·ω2 · sin ψ− k ·Vn · sin γ− N = 0 (19)

From the last equality we find:

N = 2m ·ω · .
x + m · g · sin β−m · r ·ω2 · sin ψ− k ·Vn · sin γ (20)

Then, the searched friction force will be equal to:

Ftr = f · N = f ·
(

2m ·ω · .
x + m · g · sin β−m · r ·ω2 · sin ψ− k ·Vn · sin γ

)
(21)

3. Results and Discussion

Substituting Expression (21) into (18) and the obtained result into Equation (17), we
obtain a differential equation for the relative motion of the haulm particle M along the
thrower blade of the following form:

m · ..
x = m · r ·ω2 cos ψ + m · g · cos β + k ·

(
Vn · cos γ− .

x
)
−

− f ·
(
2m ·ω · .

x + m · g · sin β−m · r ·ω2 · sin ψ− k ·Vn · sin γ
)
.

(22)

We will express value r through coordinate x using Expression (1), from which we
will obtain:

r · cos ψ = x + r0 · cos ψ0 (23)

Substituting (2) and (23), as well as relation β = ω · t− ψ1 into Equation (22), we will
have:

m · ..
x = m ·ω2(x + r0 · cos ψ0) + m · g · cos(ωt− ψ1) + k ·Vn · cos γ− k · .

x−
−2 f ·m ·ω · .

x− f ·m · g · sin(ωt− ψ1) + f ·m ·ω2 · r0 · sin ψ0 + f · k ·Vn · sin γ.
(24)

We represent Equation (24) in the following form:

..
x +

(
2 f ·ω + k

m

)
· .

x−ω2 · x = r0 ·ω2 · cos ψ0 + g · cos(ωt− ψ1)+

+ k
m ·Vn · cos γ− f · g · sin(ωt− ψ1) + f · r0 · sin ψ0 ·ω2 + f · k

m ·Vn · sin γ.
(25)

Let us transform the right side of Equation (25) to the following form:

..
x +

(
2 f ·ω + k

m

)
· .

x−ω2 · x = [g · cos(ωt− ψ1)− f · g · sin(ωt− ψ1)]+

+r0 ·ω2 · (cos ψ0 + f · sin ψ0) +
k
m ·Vn · (cos γ + f · sin γ)

(26)

or:

..
x +

(
2 f ·ω + k

m

)
· .

x−ω2 · x = g · cos ωt · cos ψ1 + g · sin ωt · sin ψ1−
− f · g · sin ωt · cos ψ1 + f · g · cos ωt · sin ψ1 + r0 ·ω2 · (cos ψ0 + f · sin ψ0)+

+ k
m ·Vn · (cos γ + f · sin γ).

(27)
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We regroup the terms on the right side of Equation (27) as follows:

..
x +

(
2 f ·ω + k

m

)
· .

x−ω2 · x = g · cos ωt · (cos ψ1 + f · sin ψ1)+

+g · sin ωt · (sin ψ1 − f · cos ψ1) + r0 ·ω2 · (cos ψ0 + f · sin ψ0)+

+ k
m ·Vn · (cos γ + f · sin γ).

(28)

For abbreviations and convenience of integrating Equation (28), we introduce the
following notation:

K = g · (cos ψ1 + f · sin ψ1),
L = g · (sin ψ1 − f · cos ψ1),
C = cos γ + f · sin γ,
D = cos ψ0 + f · sin ψ0.

(29)

Taking into account Notation (29), Equation (28) is reduced to the following form:

..
x +

(
2 f ·ω +

k
m

)
.
x−ω2 · x = L · sin ωt + K · cos ωt + C · k

m
·Vn + r0 ·ω2 · D (30)

Equation (30) is a second-order linear differential equation with constant coefficients
with the right-hand side [6]. Let us first find the general solution of the homogeneous
equation:

..
x +

(
2 f ·ω +

k
m

)
· .

x−ω2 · x = 0 (31)

We compose the characteristic equation:

λ2 +

(
2 f ·ω +

k
m

)
· λ−ω2 = 0 (32)

We find the roots of quadratic Equation (32):

λ1 = −
(

f ·ω +
k

2m

)
+

√(
f ·ω +

k
2m

)2
+ ω2 (33)

and

λ2 = −
(

f ·ω +
k

2m

)
−

√(
f ·ω +

k
2m

)2
+ ω2 (34)

Then the general solution of Equation (31) has the form:

x1 = C1 · eλ1t + C2 · eλ2t (35)

where C1 and C2 are arbitrary constants.
We find a partial solution of the differential Equation (30) in the form of its right side:

x2 = S · sin ωt + T · cos ωt + Q (36)

where S, T, and Q are constant coefficients to be determined.
Substituting Expression (36) and its first and second derivatives into Equation (30),

and equating the coefficients of the corresponding functions in the left and right parts of
the resulting equation, we obtain a system of linear algebraic equations for the unknowns
S, T, and Q:

−S ·ω2 −
(

2 f ·ω2 + k·ω
m

)
· T −ω2 · S = L,

−T ·ω2 +
(

2 f ·ω2 + k·ω
m

)
· S−ω2 · T = K,

−ω2 ·Q = C · k
m ·Vn + r0 ·ω2 · D.

 (37)
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Solving the system of Equation (37), we will have:

Q = −C · k ·Vn

m ·ω2 − r0 · D (38)

S =
2K · f ·ω + k·K

m − 2L ·ω

4ω3 + ω ·
(

2 f ·ω + k
m

)2 (39)

T =
−2L · f ·ω− k·L

m − 2K ·ω

4ω3 + ω ·
(

2 f ·ω + k
m

)2 (40)

Thus, the general solution of Equation (30) has the following form:

x = C1 · eλ1t + C2 · eλ2t + S · sin ωt + T · cos ωt + Q (41)

where S, T, and Q are determined by Formulas (39), (40), and (38), respectively.
The arbitrary constants C1 and C2 are determined from the following initial conditions:

at t = 0 :
.
x = 0, x = 0.

Using these initial conditions, we find:

C1 =
λ2 · (T + Q)− S ·ω

λ1 − λ2
,

and

C2 =
−λ1 · (T + Q) + S ·ω

λ1 − λ2
. (42)

So, with the general solution of Equation (30), which satisfies the specified initial
conditions, will have the form:

x = λ2·(T+Q)−S·ω
λ1−λ2

· eλ1t − λ1·(T+Q)−S·ω
λ1−λ2

· eλ2t+

+S · sin ωt + T · cos ωt + Q.
(43)

Expression (43) is the law of relative motion of the haulm particle M along the thrower
blade at an arbitrary moment of time t.

.
x = λ1·λ2·(T+Q)−S·λ·1ω

λ1−λ2
· eλ1t − λ2·λ1·(T+Q)−S·λ2·ω

λ1−λ2
· eλ2t+

+S ·ω · cos ωt− T ·ω · sin ωt.
(44)

For further simulation of the process of movement of the haulm particle M along the
cylindrical and rectilinear parts of the casing of the loading mechanism, after it leaves
the thrower blade, it is necessary to calculate the relative speed of the particle leaving the
thrower blade.

If the length of the blade is given, namely, AB = l, then from dependence (43) it is
possible to calculate the time t1 for the leaves of the haulm particle to leave the blade at
x = l. Such a calculation can be done by means of a PC. By substituting the obtained value
of time t1 into Expression (44), one can find the relative value

.
x1 =

.
x(t1) of the haulm

particle M leaving the end of the thrower blade.
Let us consider an important partial case when the blades of the thrower are arranged

radially. In this case ψ1 = 0, ψ = 0 and ψ0 = π · 2−1. From Expressions (29), we obtain:

K = g; L = − f · g; C = cos γ + f · sin γ; D = f ; r0 = 0 (45)



Appl. Sci. 2023, 13, 11233 10 of 14

The differential Equation (30) for the movement of a haulm particle along the blade in
this case is greatly simplified and has the following form:

..
x +

(
2 f ·ω + k

m

)
· .

x−ω2 · x = g · cos ωt−
−g · f · sin ωt + k

m ·Vn · (cos γ + f · sin γ).
(46)

The general solution of Equation (46), which satisfies the above initial conditions, can
be obtained from the general solution (43); however, the coefficients S, T and Q, taking into
account (45), will already be determined from the following expressions, obtained on the
basis of (38)–(40):

Q = − (cos γ + f · sin γ) · k ·Vn

m ·ω2 (47)

S =
4g · f ·ω + k·g

m

4ω3 + ω ·
(

2 f ·ω + k
m

)2 (48)

T =
2g · f 2 ·ω + k· f ·g

m − 2g ·ω

4ω3 + ω ·
(

2 f ·ω + k
m

)2 (49)

So the general solution of the differential Equation (46), when substituting Expressions
(47)–(49) into (43), will be written in the following form:

x =

{
λ2

[
2g f 2ω+

k f g
m −2gω

4ω3+ω(2 f ω+ k
m )

2 −
(cos γ+ f sin γ)kVn

mω2

]
− 4g f ω+

kg
m

4ω2+(2 f ω+ k
m )

2

}
×

×(λ1 − λ2)
−1eλ1t−

−
{

λ1

[
2g f 2ω+

k f g
m −2gω

4ω3+ω(2 f ω+ k
m )

2 −
(cos γ+ f sin γ)kVn

mω2

]
− 4g f ω+

kg
m

4ω2+(2 f ω+ k
m )

2

}
×

×(λ1 − λ2)
−1eλ2t +

4g f ω+
kg
m

4ω3+ω(2 f ω+ k
m )

2 sin ωt + 2g f 2ω+
k f g
m −2gω

4ω3+ω(2 f ω+ k
m )

2 cos ωt−

− (cos γ+ f sin γ)kVn
mω2 .

(50)

Differentiating Expression (50) with respect to time t, we obtain an expression for
the determination of the relative velocity of a haulm particle for the particular case under
consideration:

.
x =

{
λ2

[
2g f 2ω+

k f g
m −2gω

4ω3+ω(2 f ω+ k
m )

2 −
(cos γ+ f sin γ)kVn

mω2

]
− 4g f ω+

kg
m

4ω2+(2 f ω+ k
m )

2

}
×

×(λ1 − λ2)
−1λ1eλ1t−

−
{

λ1

[
2g f 2ω+

k f g
m −2gω

4ω3+ω(2 f ω+ k
m )

2 −
(cos γ+ f sin γ)kVn

mω2

]
− 4g f ω+

kg
m

4ω2+(2 f ω+ k
m )

2

}
×

×(λ1 − λ2)
−1λ2eλ2t +

4g f ω+
kg
m

4ω2+(2 f ω+ k
m )

2 cos ωt− 2g f 2ω+
k f g
m −2gω

4ω2+(2 f ω+ k
m )

2 sin ωt.

(51)

For further simulation of the movement of the haulm particle M along the cylindrical
and rectilinear parts of the casing of the loading mechanism, we need to determine the
absolute speed of the haulm particle leaving the end of the thrower blade. Since the forward
velocity of the haulm particle M is directed tangentially to the disk at the point of leaving
the blade and is equal in magnitude to ω · R, where R is the radius of the disk, but the
angle between the relative and forward velocity vectors is (90o − ψ1), then according to
the cosine theorem we determine the value of the absolute Va of the movement of particle
M of its descent from the disk, which will be equal to:

Va =

√
.
x2

1 + ω2 · R2 − 2
.
x1 ·ω · R · sin ψ1 (52)
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So, a mathematical model of the movement of a particle of cut sugar beet haulm along
the blade of the thrower of the loading mechanism has been built, taking into account the
influence of the airflow created by the rotation of the thrower upon the movement of the
haulm. As a result, the law of motion of a particle along the blade and the law of change in
the relative velocity of its motion as functions of time, as well as the design, kinematic, and
dynamic parameters of the thrower blades.

For numerical simulation of the obtained mathematical models on a PC, we have
compiled a program for numerical calculations in the MathLAB 9.5 program.

Based on the results of the numerical calculations performed on a PC, graphs of
dependences of the absolute speed Va of the descent of the haulm particle M from the end
of the blade upon the length l of the blade and upon the angular velocity ω of rotation
of the thrower blades were built. There are also obtained graphical dependences of the
relative speed x of the particle M movement along the blade on the speed of the airflow Vn
at different angular speeds ω of rotation of the thrower.

Figure 3 shows the dependence of the absolute speed Va of descent of the haulm
particle M from the end of the blade, obtained as a result of numerical simulation of the
developed mathematical model on a PC, upon the angular velocity ω of rotation of the
thrower and the length l of the blade.
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Analysis of dependencies, presented in Figure 3, allows one to conclude that an
increase in the angular velocity ω of rotation of the thrower and the length l of its blade
leads to an increase in the absolute speed Va of descent of the haulm particle M from the end
of the blade. The information shown in Figure 3 may be used to select the speed of rotation
and the length of the blade of the thrower, at which the required absolute speed of the
descent of the haulm particle from the end of the blade is achieved with further modeling
of its movement along the casing of the loading mechanism of the haulm harvester.

The dependence of the relative velocity of particle M as it moves along the blade upon
the velocity of the airflow Vn at different angular velocity ω of rotation of the thrower is
shown in Figure 4.

Analyzing the obtained dependences (Curve 1, Figure 4), one can say that at a low
angular velocity ω of rotation of the thrower, an increase in the airflow velocity Vn from 5 to
35 m·s−1 leads to a smooth linear increase in the relative velocity of particle M as it moves
along the blade from 0.67 up to 0.78 m·s−1. For a higher angular velocity ω of rotation of
the thrower (Curve 3), there is a more intense increase in the relative velocity of the haulm
particle at an airflow velocity Vn within a range from 5 to 25 m·s−1 and approaches a linear
law at an airflow velocity of more than 25 m·s−1.



Appl. Sci. 2023, 13, 11233 12 of 14Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 15 
 

 
Figure 4. Dependence of the relative speed x  of the haulm particle M  on the speed of the air-
flow nV  and the angular speed ω  of rotation of the (at l  = 0.15 m): 1—ω  = 10 s–1; 2—ω  = 15 s–

1; 3—ω  = 20 s–1. 

Analyzing the obtained dependences (Curve 1, Figure 4), one can say that at a low 
angular velocity ω   of rotation of the thrower, an increase in the airflow velocity nV  
from 5 to 35 m·s–1 leads to a smooth linear increase in the relative velocity of particle M  
as it moves along the blade from 0.67 up to 0.78 m·s–1. For a higher angular velocity ω  of 
rotation of the thrower (Curve 3), there is a more intense increase in the relative velocity 
of the haulm particle at an airflow velocity nV  within a range from 5 to 25 m·s–1 and ap-
proaches a linear law at an airflow velocity of more than 25 m·s–1. 

In addition, the relative velocity varies from 0.9 to 1.4 m·s–1. At an angular velocity of 
ω  = 15 s–1 (Curve 2), there is a decrease in the relative velocity of particle M  when mov-
ing along the blade at an airflow speed nV  of up to 30 m·s–1, which indicates that the 
airflow prevents the movement of the haulm particles, and only at an airflow nV  over 30 
m·s–1 a gradual increase in the relative velocity of the particle is observed. 

The following shows the dependence (Figure 5) of the relative velocity x  of haulm 
particle M  on the angular velocity ω  of rotation of the thrower. 

 
Figure 5. Dependence of relative velocity x  of haulm particle M  on the angular velocity ω  of 
rotation of the thrower (at l  = 0.1 m and nV  = 35 m·s–1). 

The dependence in Figure 5 shows that in the case of using a thrower with a small 
blade length (up to 0.15 m) and, despite the high speed nV  of the airflow, there is a drop 
in the relative, and as a result, the absolute aV   speed of haulm particle M   when it 
leaves the blade of the haulm thrower at an angular velocity ω , is equal to 10…13 s–1. 
Accordingly, for the final selection of the structural and kinematic parameters of the 
thrower, it is necessary to analyze the output parameters using the developed 

Figure 4. Dependence of the relative speed
.
x of the haulm particle M on the speed of the airflow Vn

and the angular speed ω of rotation of the (at l = 0.15 m): 1—ω = 10 s−1; 2—ω = 15 s−1; 3—ω = 20 s−1.

In addition, the relative velocity varies from 0.9 to 1.4 m·s−1. At an angular velocity of
ω = 15 s−1 (Curve 2), there is a decrease in the relative velocity of particle M when moving
along the blade at an airflow speed Vn of up to 30 m·s−1, which indicates that the airflow
prevents the movement of the haulm particles, and only at an airflow Vn over 30 m·s−1 a
gradual increase in the relative velocity of the particle is observed.

The following shows the dependence (Figure 5) of the relative velocity
.
x of haulm

particle M on the angular velocity ω of rotation of the thrower.
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of the thrower (at l = 0.1 m and Vn = 35 m·s−1).

The dependence in Figure 5 shows that in the case of using a thrower with a small
blade length (up to 0.15 m) and, despite the high speed Vn of the airflow, there is a drop in
the relative, and as a result, the absolute Va speed of haulm particle M when it leaves the
blade of the haulm thrower at an angular velocity ω, is equal to 10. . .13 s−1. Accordingly, for
the final selection of the structural and kinematic parameters of the thrower, it is necessary
to analyze the output parameters using the developed mathematical model to obtain the
highest efficiency and the required absolute speed of the descent of the haulm particle from
the blade. This is to ensure its further movement along the surface of the casing of the
loading mechanism of the haulm harvester, taking into account the influence of the airflow.

The studies of other authors [11] previously considered the movement of particles of
a technological material along the surfaces of the working parts of agricultural machines
and implements. The nature of the change in the kinematic characteristics of the particle
under consideration coincides with our results. But, when using the mathematical model
that we have developed for the movement of a particle of the tops along the blade of
the thrower, more accurate results are obtained since the influence of the air flow and
aerodynamic characteristics of the particle are taken into account. This makes it possible to
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obtain more accurate kinematic characteristics of a particle of tops when considering its
further movement inside the casing of the unloading mechanism.

There are also many works [18–20] in which elements of the theory of particle move-
ment in the air and liquid flow are considered. Some results of these studies, especially on
the straight line sections, confirm the basic laws of changes in the speed of the top particles
that we have obtained. But, due to the fact that we have studied a more complex case of
acceleration of a particle of the tops on a bladed thrower in the passing air flow and its
further vertical movement, we have analyzed the issues of relative and absolute movement
in more detail.

4. Conclusions

1. A differential equation has been compiled for the relative movement of a particle of
cut sugar beet tops along the blade of the haulm harvester loading mechanism, taking
into account the influence of the airflow pressure created by the thrower rotation upon
the process of the particle movement along the blade;

2. As a result of an analytical solution to the obtained differential equation of movement,
a law of motion of a haulm particle and a law of change in the relative velocity as
functions of time;

3. As calculations show, an increase in the angular speed of rotation of the thrower and
the length of its blade leads to an increase in the absolute speed of the haulm particles
leaving the end of the blade. Thus, with an increase in the length of the thrower
blade from 0.1 m to 0.35 m and its angular velocity from 10 s−1 to 40 s−1, the absolute
velocity increases from 1.2 m·s−1 to 16 m·s−1;

4. At a low angular velocity ω of rotation of the thrower, equal to 10 s−1, an increase
in the airflow velocity Vn from 5 to 35 m·s−1 leads to a smooth linear increase in the
relative velocity of particle M as it moves along the blade from 0.67 to 0.78 m·s−1;

5. For a higher angular velocity ω of rotation of the thrower, equal to 20 s−1, the growth
curve of the relative particle M velocity is more intense at an airflow velocity Vn
within the range from 5 to 25 m·s−1 and approaches a linear law at an airflow velocity
of more than 25 m·s−1. In this case, the relative velocity varies from 0.9 to 1.4 m·s−1;

6. At an angular velocity ω = 15 s−1, a decrease in the relative velocity of particle M
is observed when moving along the blade at an airflow speed Vn of up to 30 m·s−1,
which indicates that the airflow prevents the movement of the haulm particles, and
only at an airflow speed greater than 30 m·s−1, a gradual increase in the relative
velocity of the particle is observed.
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