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Abstract: Deformation can effectively reflect the structural state of concrete dams and, thus, establish-
ing na accurate concrete dam deformation prediction model is important for dam health monitoring
and early warning strategies. To address the problem that the spatial coordinates introduced in
the traditional multi-point deformation prediction model of dams not being able to accurately and
efficiently reflect the spatial correlation of multiple-measuring points, a 2D-1D-CNN model is pro-
posed which expresses the spatial correlation between each measuring point through spatial feature
vectors, replacing the spatial coordinates in the traditional multi-point model. First, the spatial
feature vector is extracted from the historical spatio-temporal panel series of deformation values of
measuring points via a Two-Dimensional Convolutional Neural Network (2D-CNN); second, the
vector is combined with the environmental impact factor of dam deformation to form the final input
factor of fused spatial features; and, thirdly, this vector is combined with the environmental impact
factors of dam deformation to form the final input factor of fused spatial features, and the non-linear
linkage between the factors and the measured displacement values is constructed by the efficient
feature processing capability of a One-Dimensional Convolutional Neural Network (1D-CNN) to
obtain the prediction results. Finally, the actual monitoring data of a concrete dam in China are
used as an example to verify the validity of the model. The results show that the proposed model
outperforms the other models in most cases, respectively, which verifies the effectiveness of the
proposed model in this paper.

Keywords: concrete dam; deformation prediction; convolutional neural network; deep learning

1. Introduction

Following the development of engineering technology, the number of dams in the
world has gradually increased; meanwhile, the risk of dam failure has also been increasing.
Deformation is the effect quantity that best reflects the operational safety status of dams.
By analyzing the historical monitoring data of dams and establishing an accurate dam
deformation prediction model, we can intuitively grasp the safety status of dams, which is
important to ensure the stable operation of dams and is one of the research hotspots in the
field of dam safety monitoring [1–3].

Currently, the commonly used dam deformation prediction methods can be classified
into deterministic models, statistical models, and machine learning models. Deterministic
models combine the actual structure and physical parameters of dams and dam foun-
dations through the finite element method to obtain the evolution of dam deformation,
which has high prediction accuracy and interpretability, but has the problem that some
parameters are difficult to determine. The traditional statistical regression model is highly
interpretable and has high operational efficiency, but it has insufficient ability to fit nonlin-
ear relationships and is susceptible to multi-collinearity among its factors, resulting in poor
model fitting [4]. Therefore, machine learning models that are more suitable for nonlinear
relations and have stronger generalization ability are gradually introduced into the field
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of dam deformation prediction, such as Su et al. [5], who combined wavelet analysis, a
particle swarm optimization algorithm and support vector machine (SVM) to construct a
ReP-WSVM model for dam deformation prediction, which has a greater improvement in
prediction accuracy compared with the traditional SVM model. Kang et al. [6] proposed
a Hydrostatic-Air temperature-Time (HTAT) concrete dam prediction model based on
Kernel Extreme Learning Machines (KELM); Wei et al. [7] developed a dam deformation
prediction model considering chaotic residuals using a BP neural network (BPNN) and
frog jump algorithm. Compared with the statistical regression model, the machine learning
model can better extract the nonlinear relationship between the causal factors and the
deformation of the measuring point, and improve the prediction accuracy [8].

In addition, most of the traditional dam deformation prediction models only model
the deformation of a single measuring point and do not consider the spatial correlation of
the deformation of different measuring points, which makes it difficult to reflect the overall
deformation state of the dam [9]. As the study progressed, the traditional single-point
model is gradually developed into a multi-point model that can take into account the spatial
and temporal features. For example, Li et al. [10] proposed a deterministic multi-point
model for concrete arch dams using the finite element method; Song et al. [11] proposed a
wavelet-based SSA-ELM dam deformation spatio-temporal prediction model to address
the problem that multi-point statistical models are susceptible to multiple covariance and
noise; Wei et al. [9] combined the Finite Element Method(FEM) and SVM of particle swarm
optimization to construct a hybrid multi-point model for concrete dams.

Most of the existing multi-point models express the spatial characteristics between
measuring points by introducing the spatial coordinates of measuring points, which has
the following main problems: (1) Due to the complex causes of dam deformation, the
spatial distribution pattern of the displacement values of each measuring point is often
complex and uneven [12], which is difficult to accurately express by fitting multiple terms
of spatial coordinates only. (2) The spatial correlation between multiple measuring points
is not constant, but varies from moment to moment [13], and it is difficult to reflect this
variability using static spatial coordinates of measuring points. (3) Combining multiple
terms of measuring point coordinates with environmental causal factors results in a model
with too many input variables and too much model complexity [9].

In recent years, with the rapid development of deep learning theory, some scholars
are trying to introduce deep learning models with better fitting ability into the field of dam
deformation prediction [14,15], compared with machine learning models and shallow artifi-
cial neural networks, deep learning models can fully consider the lag effect of causal factors
(i.e., the influence of causal factors at historical moments on the deformation of measuring
points). A Convolutional Neural Network (CNN) is one of the most important networks in
deep learning with high spatio-temporal feature extraction capability and computational
efficiency, which has been widely used in remote sensing image recognition [16,17], traffic
flow prediction [18,19], intelligent road tunnel investigations [20] and other fields, but less
applied in the field of dam deformation prediction.

In summary, in order to improve the problems of the multi-point model with fused
spatial coordinates and improve the prediction accuracy of the model, this paper proposes
a 2D-1D-CNN model with fused spatial feature vectors by combining convolutional neural
networks, takes a concrete dam as an example and compares the prediction results of this
model with the current commonly used models to verify its effectiveness. Meanwhile,
the prediction results of the SVM model are used as samples to explore the differences in
prediction performance between the multi-point model with fused spatial coordinates and
the multi-point model with fused spatial feature vectors.

2. 2D-1D-CNN Deformation Prediction Model for Concrete Dams
2.1. Multi-Point Model of Concrete Dams Incorporating Spatial Coordinates

Based on the existing theory of dam construction [1], this paper mainly considers the
deformation of the dam body caused by water pressure, temperature, and aging. Among
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them, the deformation caused by water pressure and temperature is reversible elastic
deformation, and the deformation caused by aging factors is irreversible deformation
caused by the deterioration of the dam material. Therefore, the concrete dam deformation
can be divided into the water pressure component δH , the temperature component δT and
the aging component δθ , as shown in Equation (1):

δ = δH + δT + δθ (1)

For concrete dams in which the heat of hydration has been completely dissipated
during the operation period, the harmonic factor can be chosen as the temperature factor.
Therefore, Equation (2) can be used as the expression of the concrete dam deformation
model [8].

δ = a0 +
4

∑
i=1

ai Hi +
2

∑
i=1

(
b1i sin

2πi∆t
365

)
+

2

∑
i=1

(
b2i cos

2πi∆t
365

)
+ c1θ + c2 ln θ (2)

where H is the upstream water level height; ∆t is the cumulative number of days from the
deformation monitoring date to the starting monitoring date; θ = ∆t/100; a0 is a constant
term; ai, b1i, b2i and c1, c2 are all fitting coefficients.

Since the deformation of concrete dams exists in both time and space dimensions, the
traditional single-point statistical model only models a single-point, which has difficulty
in accurately reflecting the overall deformation state of the dam. The multi-point model
of concrete dams is based on the single-point model, and the spatial coordinates of the
measuring points are combined with the spatial correlation between the deformation
sequences of measuring points, so it can better reflect the overall deformation of the dam.
By incorporating the spatial coordinates of the measuring points (x, y, z) into the single-
point model of the concrete dam, the expression of the multi measuring point model of the
concrete dam can be derived, as shown in Equations (3) and (4) [9].

δ= f1[( f (H), f (x, y, z)] + f2[( f (T), f (x, y, z)] + f3[( f (θ), f (x, y, z)] (3)

where H, T, θ are water pressure, temperature, and aging factor, respectively.

f (x, y, z) =
3

∑
l,m,n=0

Almnxlymzn (4)

Jointly with (2), the expression of the concrete dam multi-point model can be ex-
pressed as

δ =
4

∑
i=0

3

∑
l,m,n=0

AilmnHixlymzn+

1

∑
i,j=0

3

∑
l,m,n=0

Bilmn sin
2πi∆t

365
· cos

2π j∆t
365

xlymzn+

1

∑
i,j=0

3

∑
l,m,n=0

Cilmnθi ln θjxlymzn

(5)

where Almn, Blmn and Clmn are the fitting coefficients.

2.2. Convolutional Neural Network

As one of the most important deep learning frameworks, a convolutional neural
network has efficient feature extraction ability and a lower number of parameters [21], and
can be divided into 3D-CNN, 2D-CNN and 1D-CNN according to the application object.
2D-CNN is commonly used for the spatial feature extraction of panel data, and 1D-CNN is
commonly used for the temporal feature extraction of sequences. A convolutional neural
network mainly consists of a convolutional layer, pooling layer and fully connected layer.
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Among them, the convolutional layer is used to extract data features, and the calculation
process is shown in Equation (6).

Xconv = f (X ∗ f ilter + b) (6)

where X is the input data, ∗ represents the convolution operation, f ilter is the convolu-
tion kernel, b is the bias, f is the activation function and Xconv is the output data of the
convolution layer.

The pooling layer is used to extract key features from the data, which can be divided
into maximum pooling and average pooling to reduce the computational effort of the
model while reducing the risk of overfitting. The fully-connected layer is used to integrate
the local feature vectors extracted by the convolutional and pooling layers to form features
with practical meaning.

2.3. 2D-1D-CNN Concrete Dam Deformation Prediction Model Construction Process

The literature [22] pointed out that the spatial correlation between the measuring point
deformation sequences is manifested by the correlation between the change patterns of
the displacement values of each measuring point within the same period, and, on this
basis, the spatial correlation of the measuring point deformation is quantified by the time
series similarity. In this paper, based on work in the literature [22], a 2D-1D-CNN model
is constructed by combining the idea of spatio-temporal data modeling and extracting
the spatial features among measuring points through convolutional neural networks. The
model consists of three parts, 2D-CNN, 1D-CNN and a tensor calculation layer. Among
them, the 2D-CNN part extracts the spatial feature vector µ, which can reflect the spatial
features of each moment, from the historical deformation sequence of multiple measuring
points, and replaces the spatial coordinates in the traditional multiple measuring point
model with it. The tensor calculation layer refers to the expression of the traditional multi-
point model and combines the spatial feature factor with the causal factors of the dam
deformation to obtain the final input factors. Considering the advantages of 1D-CNN in
sequence prediction with fewer parameters and higher prediction accuracy [23], 1D-CNN
is selected in this paper to construct the nonlinear relationship between input factors and
measuring point deformation to obtain the final prediction results. The specific structure of
the 2D-1D-CNN model is shown in Figure 1.

Figure 1. Schematic diagram of 2D-1D-CNN model.
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The model expression is shown in Equation (7).

δ = f1[ f (H), f (µ)] + f2[ f (T), f (µ)] + f3[ f (θ), f (µ)]

=
4

∑
i=1

k

∑
p=1

Ailmnai Hiµp+

1

∑
i,j=0

k

∑
p=1

Bilmn sin
2πi∆t

365
· cos

2π j∆t
365

µp+

1

∑
i,j=0

k

∑
p=1

Cilmnθi ln θjµp

(7)

where k is the dimension of the spatial feature vector, which belongs to the hyper parameters
of the model.

The specific steps for constructing the model are as follows:

(1) Data set construction
As shown in Figure 2, each measuring point is constructed into a spatio-temporal
panel data in the form of a grid according to its relative spatial position, with each
small square representing the relative position of a measuring point, followed by
filling the displacement values of each measuring point into the corresponding square,
and filling the part of missing measuring points with 0. According to the above
process, the deformation sequence of measuring points on the dam is constructed into
a three-dimensional matrix of dimension Xh ∈ RS1×S2×t as the panel data input of
the model, where S1, S2, represent the horizontal and vertical numbers of measuring
point distribution, and t denotes the length of the time window.
According to Equation (2), this paper takes H, H2, H3, H4, sin 2π∆t

365 , cos 2π∆t
365 , sin 4π∆t

365 ,
cos 4π∆t

365 , θ, lnθ as the environmental casual factors of dam deformation, and constructs
sliding windows in the time dimension for data addition, followed by the REPEAT
function. The environment casual factor is replicated and filled n times (n is the number
of measuring points), and, finally, the casual factor input X f∈ Rt×n×10 is obtained.

(2) Spatial feature vector extraction
The spatio-temporal panel data Xh ∈ RS1×S2×t in (1) is input to the 2D-CNN, and the
spatial feature vector µ∈ Rt×n×k, which can reflect the spatial features at the current
moment, is finally obtained through convolution calculation, and the calculation
process is shown in Equation (8).

µ = W1 ·MaxPool{Relu[Conv2D(Xt)]}+ b1 (8)

where Xt is the panel data input of the model, W1, b1 are the weights and bias, MaxPool
represents the maximum pooling operation and Relu is the activation function.

(3) Input factors incorporation
The tensor calculation layer is constructed to fuse µ = (µ1, µ2, . . . µk) with the en-
vironmental casual factors input according to Equation (9), and the fused factors
are normalized by the Batch Normalization layer to obtain the final input factors
X f ′∈ Rt×n×(k×10) of the fused spatial feature vector.

X f ′ = BatchNorm
[
concat(µ1 · X f , µ2 · X f , · · · , µk · X f )

]
(9)

where BatchNorm represents the batch normalization process and concat represents
the tensor stitching operation.

(4) Concrete dam deformation prediction
X f ′ is input to 1D-CNN for prediction, and the final prediction results are obtained.
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Figure 2. Schematic diagram of the spatio-temporal panel data construction process.

3. Case Study

Based on the above method, a 2D-1D-CNN model is constructed for concrete dam
deformation prediction based on the actual monitoring data of a hydropower station in the
south of China, which has a maximum dam height of 67.5 m and a total installed capacity of
4 × 18,000 kW. The project profile is shown in Figure 3. In this paper, the deformation data
from 1 January 2009 to 22 October 2010 (shown in Figure 4) were selected from measuring
points EX3-EX7 in the dam crest tension line, and the sampling interval was once every
5 days. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Square
Error (MSE) were used as statistical indexes.

Figure 3. Dam project overview map.

Figure 4. Deformation sequence of measuring points.

3.1. Model Activation Functions Selection

The ReLU activation function is chosen for the proposed model in this paper. In
order to verify the effect of different activation functions on the model, we constructed
a 2D-1D-CNN model based on the sigmiod activation function, and analyzed the effect
of different activation functions on the prediction performance of the model through the
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change of the loss curves of these two models during the training process, as shown in
Figure 5.

Figure 5. Comparison of the model’s loss curves with different activation functions.

Figure 2 shows that the 2D-1D-CNN model is not sensitive to the choice of activation
function, and the loss values can converge better in both cases. Overall, when choosing the
sigmoid activation function, the loss value of the model test set converges faster and, when
choosing the ReLU activation function, the loss value of the model test set can drop lower,
which also means higher prediction accuracy. Therefore, the ReLU activation function is
preferred in this paper.

3.2. Model Hyperparameters Selection

In order to investigate the influence of the spatial feature factor dimension k on the
prediction accuracy of the model, the prediction was carried out in the cases of spatial
feature factor 1–6 dimensions, and the optimal k value was determined by comparing the
average value of the RMSE index of each measuring point, and the results are shown in
Table 1.

Table 1. RMSE index predicted by the model under different k values.

k 1 2 3 4 5 6

RMSE 0.2291 0.2029 0.1688 0.1468 0.1720 0.2085

Table 1 shows that, when k is taken as 4, the model has the best prediction effect, so
k = 4 is taken in this paper. At the same time, after several experimental analyses, the time
window was set to 6, the convolution kernel size in 2D-CNN was set to [1, 3], the sliding
step size was set to 1, and the number of convolution kernels was set to 96. In order to
reduce the calculation amount of the model, the size of the first layer of convolution kernel
size in 1D-CNN is set to 3, the dilatation rate is set to 2, the size of the second layer of the
convolution kernels is set to 2, and the number of convolution kernels is uniformly set to
64. The model is built based on Tensorflow 2.10, the loss function is selected as MSE, the
optimizer is selected Adam, the batch size is set to 32, the number of epochs is set to 300
and the learning rate is 0.001.

3.3. Prediction Results and Comparative Analysis

To comprehensively evaluate the prediction performance of the proposed model,
the prediction results are compared with the SVM multi-point model with fused spatial
coordinates, single-point BP neural network, a linear regression model based on HTAT and
a single-point 1D-CNN model; the prediction results are shown in Figure 6. In addition,
since this paper only models and analyzes the horizontal displacement of the measuring
points on the lead tension line, only the coordinate changes in the x-direction are considered
in the fused spatial coordinates in this paper.
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Figure 6. Comparison of model prediction results.

Figure 6 shows that the prediction results of the proposed model at the three measuring
points can better fit the measured values, and the prediction results can better fit the real
displacement trend at the measuring points than the prediction results of other comparative
models, which also shows that the proposed model can accurately reflect the overall
deformation behavior of the dam. In addition, the HTAT-based linear regression model
has a higher prediction accuracy in the part where the deformation fluctuates locally, but
deviates more for the part where the deformation is more gentle. Overall, the advantages
of introducing air temperature are not obvious for this study case. In order to show the
model prediction accuracy more intuitively, the prediction accuracy indexes of each model
at the three measuring points were calculated, as shown in Table 2.

Table 2 shows that the average RMSE index of the proposed model in this paper
achieves 72.6%, 74.58% and 69.89% relative to the single-point BPNN model, multi-point
SVM model and 1D-CNN, respectively, indicating that the proposed model is reasonable
and effective. Compared with the comparison models, the prediction accuracy of the
proposed model is higher, which is mainly because the 2D-1D-CNN model models multiple
measuring points at the same time, considering the interconnection of displacement values
among multiple measuring points on the one hand, and considering the deformation
sequences of multiple measuring points while, at the same time, also expanding the
training samples of the model to a certain extent. In addition, the deep learning model
can fully consider the influence of the environmental factors on the deformation of the
measuring points at the historical time (i.e., the lag effect of the causal factors) and the
change law of the spatial association of the deformation of the measuring points with time
(i.e., the change characteristic of the spatial association of multiple measuring points), so
its prediction accuracy is higher than that of the machine-learning-based model and the
shallow artificial neural network in most cases.
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Table 2. Model prediction statistical indexes comparison table.

Monitoring
Points

Statistical
Indexes 2D-1D-CNN SVM BPNN 1D-CNN HTAT

RMSE/mm 0.121 0.5472 0.4162 0.4222 0.3426
EX3 MAE/mm 0.0971 0.4782 0.3649 0.3826 0.2840

MAPE 11.75% 46.82% 39.14% 51.27% 38.30%
R2 0.9658 0.8678 0.5957 0.5840 0.7261

ine RMSE/mm 0.1635 0.4263 0.7347 0.4413 0.5345
EX5 MAE/mm 0.1241 0.3245 0.6284 0.2713 0.4236

MAPE 6.47% 21.04% 24.90% 13.82% 19.43%
R2 0.9694 0.8486 0.3833 0.7775 0.6736

ine RMSE/mm 0.1296 0.5349 0.4781 0.5115 0.4134
EX7 MAE/mm 0.1045 0.4501 0.3176 0.412 0.3437

MAPE 4.95% 17.27% 14.53% 16.54% 15.94%
R2 0.9772 0.8817 0.6892 0.6442 0.7676

3.4. Validation of the Validity of a Multi-Point Model Incorporating Spatial Feature Vectors

To more intuitively verify the validity of the multi-point model with fused spatial fea-
ture vectors, the final input factor X f ′ constructed in the 2D-1D-CNN model in Section 3.2
is extracted from the network, reconstructed as the input factor X f ′′∈ Rn×(k×10) with fused
spatial features according to the format of the input factor of the SVM model, input to the
SVM model prediction and compared with the conventional multi-point SVM model with
the introduction of spatial coordinates in Section 3.2 to analyze the variation of prediction
accuracy of the SVM model with different input factors; the results are shown in Figure 7
and Table 3.

Figure 7. Comparison of SVM prediction results with different input factors.
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Table 3. Comparison of SVM prediction statistical indexes with different input factors.

Monitoring Points Statistical Indexes 2D-1D-CNN SVM (Space
Coordinate)

SVM (Spatial
Feature Vector)

RMSE/mm 0.121 0.5472 0.238
EX3 MAE/mm 0.0971 0.4782 0.1406

MAPE 11.75% 46.82% 10.52%
R2 0.9658 0.3010 0.8678

ine RMSE/mm 0.1635 0.4263 0.364
EX5 MAE/mm 0.1241 0.3245 0.1946

MAPE 6.47% 21.04% 7.45%
R2 0.9694 0.7923 0.8486

ine RMSE/mm 0.1296 0.5349 0.2949
EX7 MAE/mm 0.1045 0.4501 0.1671

MAPE 4.95% 17.27% 6.42%
R2 0.9772 0.6110 0.8817

Figure 7 and Table 3 show that the prediction results of the SVM model with spatial
feature vectors can be more in line with the trend of measured values, and the prediction
accuracy is more significantly improved at the moment when the deformation fluctuation
is large. The RMSE index on the three measuring points decreased by 56.51%, 14.62%
and 44.87%, respectively. This shows that the spatial feature vectors used in this paper
can more accurately reflect the spatial correlation between the deformation sequences
of each measuring point and have validity. At the same time, because the traditional
multi-point model needs to combine the causal factor with the zeroth to third degree of
the spatial coordinates, every time the one-dimensional coordinate increases, the number
of input factors increases exponentially by four, which easily produces the problem of
excessive input factors. The spatial feature factor constructed in this paper reflects the
spatial characteristics in the form of vectors, and the complexity of the space increases
linearly, so the overall computational efficiency is stronger than that of the traditional multi-
point model; with the increase of the coordinate dimension, the advantages of the spatial
feature factor proposed in this paper in computational efficiency will be more prominent.

4. Conclusions

In this paper, combined with a convolutional neural network, a dam deformation
prediction model (2D-1D-CNN) based on spatial feature vectors is proposed. After an
experimental analysis of the measured data of a concrete dam, the following conclusions
are obtained:

(1) The multi-point model based on the fusion of spatial feature vectors can effectively
extract the spatial connection between the measuring points and, compared with
the other models, the model proposed in this paper shows a great improvement
in the prediction accuracy.In addition, the experimental results indicated that the
prediction accuracy of the deep-learning-based prediction model is higher than that of
the machine learning model and the statistical model in most cases.

(2) The case study shows that the proposed 2D-1D-CNN model is able to accurately
predict the deformation of concrete dams so that it is effective and feasible.

(3) In this paper, 2D-CNN and 1D-CNN are fused into the same network model, which,
on the one hand, improves the fitting ability of the network for dam deformation
sequences, and, on the other hand, it also increases the hyperparameters that need to
be adjusted to a certain extent. Since this paper only adopts the artificial coarse tuning
method, the optimization algorithm can be combined in future studies to further
improve the prediction performance of the model.
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