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Abstract: This paper proposed angle measurement methods based on direct third harmonic gen-
eration (THG) in centrosymmetric crystals. The principles of the intensity-dependent and the
wavelength-dependent angle measurement methods were illustrated. In this study, three prospective
centrosymmetric crystals and two different phase-matching types were investigated in a wavelength
range from 900 nm to 2500 nm. For the intensity-dependent method, a dispersion-less wavelength
range was found from 1700 nm to 2000 nm for α-BBO and calcite. Compared with rutile, α-BBO and
calcite had relatively better measurement performance based on the angle measurement sensitivity
calculation. The wavelength-dependent method was considered in a dispersive range of around
1560 nm. The results suggested that α-BBO and calcite were also suitable for wavelength-dependent
measurement. In addition, the effects of focusing parameters were considered in the simulation,
and the optimized focal length (f = 100 mm) and the focused position (in the center of the crystal)
were determined.

Keywords: angle measurement; direct third harmonic generation; centrosymmetric crystals;
femtosecond laser

1. Introduction

Angle measurement is essential for controlling the quality of products in manufac-
turing processes [1]. Among angle measurement methods, optical angle measurement is
widely adopted for the advantage of non-contact detection. In the decades, an amount of
optical angle measurement techniques were developed [2], such as the well-used optical
encoders mounted on the rotary shaft for covering the 360◦ angle displacement range of
rotation [3]. Accurate evaluation of small angular displacements is also required in many
situations, such as the angular error motion of a moving stage and the tilt error motion of
a rotating spindle [4]. For this purpose, angle sensors based on autocollimation and light
interferometry were proposed [5–7]. In such an angle sensor, a reflective mirror is mounted
on the measured target. The angular displacement of the reflective mirror induces changes
in the sensor output for the measurement.

In the field of optical metrology, an appropriate light source should be selected. Fem-
tosecond laser sources have not only the characteristics of conventional laser sources but
also a series of stable, equally spaced modes in the frequency domain and femtosecond-
scale ultrashort pulses in the time domain [1]. Several angle measurement setups have
been built employing the femtosecond laser source for high-resolution angle measure-
ment [8–10]. For the optical lever sensor based on the femtosecond laser, a grating reflector
was mounted on a rotary stage while the detector was kept stationary. In this case, the
femtosecond laser beam was projected onto the grating reflector after the laser beam was
modulated by using a Fabry–Pérot etalon. A group of first-order diffracted beams of the
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different modes was then generated at the grating reflector [8]. As the stage was rotated,
the detected intensity would change periodically, which extends the measurement range
of angle measurement to a maximum of 15,000 arcseconds. Similarly, the mode-locked
femtosecond laser autocollimator also extends the angle measurement range by taking
the advantage of the widely spreading spectrum of the femtosecond laser source in the
frequency domain [9,10]. Compared with the optical lever sensor, the angle measurement
sensitivity of the autocollimator is not affected by the distance between the detector and
the grating reflector, where a compact setup design can be realized.

Meanwhile, an extremely high electrical field of femtosecond laser induces the nonlin-
ear polarization field which is the source of nonlinear optical (NLO) phenomena, such as
the second harmonic generation (SHG) [11]. SHG is a common NLO process in which the
second harmonic of an incident laser is generated by passing some kind of material through
it. The produced second harmonic wave (SHW) has the double frequency ν2 (ν2 = 2ν1) and
the half wavelength λ2 (λ2 = λ1/2) of the incident laser beam (fundamental wave), which
has the frequency and the wavelength of ν1 and λ1. The angle dependence of SHG in the
birefringent crystal was found in the early 1960s [11]. As the laser propagates through the
birefringent crystal in different directions, the phase mismatch between the laser and the
second harmonic wave changes due to anisotropy, resulting in the intensity changes of
the generated SHW. Based on this principle, several prototypes of the SHG-based angle
measurement were developed with the commercial mode-locked femtosecond laser [12–14].
In the early sensors, a lens was employed to focus the laser beam into a crystal for reducing
the diameter of the light spot for SHW production. At first, Beta Barium Borate (β-BBO)
crystals with low wavelength dispersion of the SHG output were used and a sub-arcsecond
resolution was realized [12]. However, the measurement range of the sensor was narrow
and the chromatic aberration in the crystal was unavoidable due to the narrow optical
pulse width, resulting in a significant reduction in measurement sensitivity. Then, the
wavelength-dependent SHG angle sensor was proposed [13], where a shift of the SHG spec-
trum in the frequency domain was used to denote the angle position. However, the focused
laser beam should be very carefully aligned with the NLO crystal, making it difficult to
measure a moving target [15]. Then, to deal with this problem, an SHG angle sensor with a
collimated femtosecond laser beam was constructed where a second harmonic wave was
successfully generated with the collimated laser beam [14].

SHG is related to the symmetry of the crystal, described by the point group of the
crystal. The different point groups usually have different forms of second-order optical
nonlinear susceptibility χ(2) for generating a second harmonic wave. Theoretically, the
SHG signal can only be detected in a crystal without inversion symmetry, called a non-
centrosymmetric crystal [16–18]. Several birefringent crystals have an inversion center,
also referred to as centrosymmetric structures. The second-order optical susceptibility χ(2)

should be equal to zero in these crystals [19,20]. Therefore, the SHG process is forbidden
in centrosymmetric crystals because SHG is a typical second-order nonlinear optical phe-
nomenon relying on the second-order optical susceptibility χ(2). Compared with SHG, the
direct third-harmonic generation (THG) process, where the laser beam directly generates
the third harmonic wave, can be found in any material because the third-order optical
susceptibility χ(3) does not vanish regardless of the symmetry of the material even in the
air [21,22]. It has also been proved that THG has a significant angle dependence in both
the non-centrosymmetric crystals such as β-BBO [23] and the centrosymmetric crystals
such as fused silica and calcite [24,25]. The conversion efficiency of THG reaches 2.5%
when the femtosecond laser has an intensity of 1011 W/cm2, though it is a weaker pro-
cess than SHG [26]. Since the angular dependence of THG is generally sensitive near the
phase-matching angle [23–26], it is expected to be applied to angle sensors.

In this research, we propose two angle measurement methods based on THG, in-
cluding the intensity-dependent method and the wavelength-dependent method. This
paper presents the proposed methods with centrosymmetric birefringent crystals. The non-
centrosymmetric crystals are not discussed in this paper because they are seriously affected
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by the non-phase-matched second-order χ(2) optical processes [26]. The simulation results
of investigating the angle measurement performance of different centrosymmetric crystals
are reported in this paper. Firstly, the angle dependence principle of direct THG in the
centrosymmetric crystal is illustrated for an intuitive understanding. Then, two angle
measurement methods are introduced, including the intensity-dependent and wavelength-
dependent methods. For theoretical investigation, three centrosymmetric crystals are
selected, which could achieve a considerate THG conversion efficiency. Their material
specifications are also supported by the literature. A wide wavelength range from 900 nm
to 2500 nm is considered in the simulation for angle measurement. In this range, the
measurement sensitivity is evaluated to choose the crystals that are suitable for angle
measurement. In addition, the effects of focusing parameters, including the focal length
and the focused position, are discussed. The optimized measurement configurations are
found, and the reasons are briefly discussed.

2. The Principle of Angle Measurement Based on Direct THG
2.1. The Basic Principle of Angle Dependence of Direct THG in Centrosymmetric Crystal

Figure 1a shows a brief schematic of the THG process in centrosymmetric crystal.
The fundamental wave (FW) passes through the crystal and produces a third harmonic
wave (THW) by three-order susceptibility χ(3). The produced third harmonic wave has
three times the frequency (ν3 = 3ν1) and the wave number (k3 = 3k1) of the fundament
wave. Its wavelength becomes one-third of the FW accordingly (λ3 = λ1/3). The angle
dependence of THG is mainly related to the birefringence and dispersion of the crystal’s
refractive index, which makes the light propagate at different speeds in different directions
and wavelengths. Therefore, we introduce the refractive index first. For the common
uniaxial crystal, Figure 1b gives the refractive index ellipsoid of the uniaxial crystal, where
X-Y-Z is the Cartesian coordinates of the crystal, and the Z axis is assumed to be parallel to
the optical axis. θ is the angle between the wave vector k and the optical axis. ϕ denotes
the azimuthal angle, which is the angle between the projection of k in the X-Y plane and
the X-axis. No and Ne are the length of the refractive ellipsoid. There are two different
propagated waves in crystal, called the ordinary wave (o-wave) and the extraordinary wave
(e-wave), of which the electrical fields are perpendicular and parallel to the incident plane,
respectively. It should be noted that the effect of the walk-off is ignored in this paper. Thus,
we assume that the e-wave is perpendicular to the k. The refractive index can be calculated
by Equation (1), where the numbers 1 and 3 correspond to the FW and THW. We can see
that the refractive index of the e-wave is dependent on the angle θ, and it is also related
to the wavelength λ. Because the refractive index of the e-wave is determined by both θ
and λ, the angle θ can be used for the compensation of refractive index dispersion between
FW and THW. That is to say, the refractive index n3 of the third harmonic wave may be
equal to that of the fundamental wave n1 by propagating at one special angle and choosing
a suitable polarization combination, which is so-called birefringent phase-matching.

n1e, 3e(λ1,3, θ) =

(
cos2 θ

[No(λ1,3)]
2 +

sin2 θ

[Ne(λ1,3)]
2

)−1/2

e−wave n1o, 3o = No(λ1,3) o−wave (1)

Figure 2 illustrates the type I phase-matching of positive uniaxial crystal as an example.
In this figure, FW and THW are assumed as e-wave and o-wave, respectively. X’-Y’-Z’
and X-Y-Z denote the stationary laboratory’s coordinate and the rotated crystal coordinate,
respectively. The Z’ axis is parallel to the FW propagation direction k̂1e (laser direction) in
crystal. Figure 2a shows the refractive index surface of the phase-matching case. We can
see k̂1e is in the direction of phase-matching angle θm, which makes the phase mismatching
∆k(θm) = 6π/λ1(n3o − n1e(λ1, θm)) = 0 because of the refractive index difference ∆n(θm) =
n3o − n1e(λ1, θm) = 0. In the phase-matching case, as given in Figure 2b, FW and THW
have the same propagated speed in the crystal because ∆k = 0 and ∆n = 0. The THW
generated in different positions (the first, second, and third, positions shown in Figure 2b)
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can be strengthened by constructive interference. Therefore, the detectable THG intensity
is generated. However, as the crystal is rotated at an angle ∆θ away from the phase-
matching angle θm shown in Figure 2c, d, the transmitted THG will be weakened because
the generated THWs in different positions are reduced by the destructive interference where
the ∆k(θm + ∆θ) and ∆n(θm + ∆θ) are not equal to zero. For the birefringent phase matching,
there are three types for both the negative uniaxial crystal and the positive uniaxial crystal.
Here, we only discuss the type I phase-matching of positive uniaxial crystal and the type
II phase-matching of negative uniaxial crystal, taking into consideration that the high-
efficiency THG in the centrosymmetric crystals has been demonstrated in the literature.
The concept is similar in both the type I phase-matching of positive uniaxial crystal and
the type II phase-matching of negative uniaxial crystal. The only difference is that the
phase-matching angle θm should meet the condition of n1o + n1o + n1e(λ1, θm) = n3e(λ3,
θm), and the incident fundamental wave should contain both the o-wave and the e-wave
for the THG process. Combined with Equation (1) and the concept of phase-matching,
the calculation of θm can be easily induced, and they are displayed in Equation (2) and
Equation (3). Equation (2) is for the type I phase-matching, and Equation (3) is for the type
II phase-matching. It should be noted that Equation (3) only shows an implicit relation,
which should be solved by numerical methods.

θm = arcsin


√√√√ [No(λ3)]

−2 − [No(λ1)]
−2

[Ne(λ1)]
−2 − [No(λ1)]

−2

 Type I (Positive crystal) (2)

(
cos2 θm

[No(λ3)]
2 +

sin2 θm

[Ne(λ3)]
2

)−1/2

=
1
3

2No(λ1) +

(
cos2 θm

[No(λ1)]
2 +

sin2 θm

[Ne(λ1)]
2

)−1/2


Type II (Negative crystal)

(3)

Generally, a small incident angle deviation ∆θ can cause a large change in the THG
intensity, which is especially beneficial for the small-angle measurement. Next, we propose
to utilize the angle dependence of direct THG for angle measurement. Two measurement
methods will be explained in detail.
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2.2. The Angle Measurement Methods Based on Direct THG with a Femtosecond Laser

Figure 3a shows the angle measurement schematic based on direct THG in centrosym-
metric crystal. Because the magnitude of χ(3) for THG is very small, the femtosecond
laser beam is needed to be focused into centrosymmetric crystal by a focused lens after
passing through the polarizer 1. The generated third harmonic wave is collected by a
detector. The polarizer 2 used here prevents the femtosecond laser beam from affecting
the measured result. The crystal is mounted on a rotary stage. The angle θ changes as the
target rotates. In a THG process, the incident fundamental wave (FW) and the transmitted
THW generally contain a certain bandwidth in the frequency domain, which can be seen in
Figure 3a. For a mode-locked femtosecond laser, the FW has N equally spaced modes in the
frequency domain. It is also the case for the THW. The spaces between the ith mode and the
i + 1th mode are νrep and 3νrep for FW and THW, respectively. The carrier-envelope offsets
are νCEO and 3νCEO for FW and THW, respectively, because the THG process triples the
frequency of FW in the crystal. The λ1,3 are used to denote the corresponding wavelengths
of FW and THW, respectively, in Figure 3a. In this paper, we assume the focused beam
has a typical Gaussian distribution in free space, and the characteristics are displayed in
Figure 3b. Here, w and b are the beam waist and the confocal parameter of the Gaussian
beam, respectively. The ZL and ZR are the coordinate value in the incident plane and the
output plane, respectively. The crystal length L = ZR − ZL. The d and f are the diameter of
the incident laser beam and the focal length of the focused lens, respectively.
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The angle dependence of transmitted THG I3(λ3, θ) is given in Equation (4) [27], where
c and ε0 are the light speed and dielectric constant of free space, respectively. I1 is the
intensity of the fundamental wave. χ

(3)
eff is the third-order effective nonlinear coefficient,

which is related to the phase-matching type and the χ(3) matrix of crystal. Here, the J3
function is crucial for the angle measurement. It is dependent on the phase-mismatching
variation ∆k(λ1, θ). The equations for the calculation of ∆k, b1, and w1 are given as Equation
(6) to Equation (8), respectively. The beam waist and the confocal parameter for THW
are w3 =

√
3w1 and b3 = b1, respectively [28]. χ

(3)
eff will be calculated in the next section

corresponding to the investigated centrosymmetric crystals.

I3(λ3, θ) =
48(χ(3)

eff )
2
I3
1

n3n3
1λ2

1c2ε2
0w4

1
|J3(∆k(λ1, θ), b1, ZL, ZR)|2, 3λ3 = λ1 (4)

|J3|2 =

∣∣∣∣∣
∫ zR

zL

ei∆k(λ1,θ)zdz

(1 + 2iz/b1)
2

∣∣∣∣∣
2

(5)
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∆k =
6π

λ1
(n1e(λ1, θ)− n3o) Type I (Positive crystal)

∆k =
2π

λ1
(2n1o + n1e(λ1, θ)− 3n3e(λ3, θ)) Type II (Negative crystal)

(6)

b1 =
8 f 2λ1

πd2n1
(7)

2w1 =
4 f λ1

πdn1
(8)

Because the actual rotated angle for the measurement target is the incident angle θi,
the relationship between θi and θ should also be considered for the angle measurement.
As shown in Figure 3c, θr is the refractive angle, and θspec is the angle between the optical
axis and the normal direction, which is often around the phase-matching θm. This enables
the incident laser to easily achieve phase-matching conditions at the normal incidence.
The relationship can be described by Snell’s law as Equation (9), where n1 can be calculated
according to Equation (1), which is related to the dispersion and the angle θ.

sin θi = n1(λ1, θ) sin θr = n1(λ1, θ) sin(θspec − θ) (9)

As reported in our previous studies, there are two types of angle measurement meth-
ods based on the phase-matching principle of THG: the intensity-dependent method and
the wavelength-dependent method. For the former, a single photodiode (PD) can be used
as the detector (see Figure 3a), which converts the angle-related intensity change into
an electrical current output. Then, the electrical current is amplified to a voltage by an
I/V converter, and the voltage is displayed on an oscilloscope. The dispersion of angle
dependence is very important because a single PD can only detect the total intensity ITHW
of THW, which has a band from λ1

3 to λN
3 . Therefore, the characteristics in the frequency

domain cannot be measured. The angle dependence of measured total intensity ITHW(θ)
can be evaluated by Equation (10) [12].

ITHW(θ) =
N

∑
i=1

I3(λ
i
3, θ) (10)

Figure 4 is used to visually explain the effect of dispersion. Supposing the angle
dependence I3(θ) is dispersion-less in the wavelength band as shown in Figure 4a, there
is a less overlap area of angle dependence between the modes of λ1

3, λi
3, λi+1

3 , and λN
3 .

That means there is also less possibility for the angle sensitivity to be reduced between
the modes. A relatively stronger total intensity ITHW(θ) can then be expected because the
summation of Equation (10) will be large. Conversely, as shown in Figure 4b, if the angle
dependence is dispersive, the expected angle measurement sensitivity will be weakened
because of the large overlap area of angle dependence.
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Different from the intensity-dependent method, the wavelength-dependent method is
based on the angle dependence dispersion. An optical spectrum analyzer (OSA) is used for
THG detection in the frequency domain. As shown in Figure 5a, the different blue lines
correspond to the angle dependence curve of different THG wavelengths λ1

3, λi
3, λi+1

3 , and
λN

3 . Due to the dispersion, the angle dependence curve for each wavelength is different.
The corresponding phase-matching angles θm(λ3) also change in the THG band. As the
angle θ changes from θm(λ1

3) to θm(λN
3 ), the corresponding wavelength that has the highest

intensity should also change from λ1
3 to λN

3 . Therefore, an obvious spectrum peak shift can
be seen in the frequency domain as illustrated in Figure 5b. To quantitatively characterize
the angle-dependent peak shift, we use the weighted wavelength λw(θi) to denote peak
wavelength [13], as given in Equation (11).

λw(θi) =

N
∑

i=1
λi

3 I3(λ
i
3, θi)

N
∑

i=1
I3(λ

i
3, θi)

(11)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. (a) The diagram of dispersion-less angle dependence I3(θ); (b) The diagram of dispersive 
angle dependence I3(θ). 

Different from the intensity-dependent method, the wavelength-dependent method 
is based on the angle dependence dispersion. An optical spectrum analyzer (OSA) is used 
for THG detection in the frequency domain. As shown in Figure 5a, the different blue lines 
correspond to the angle dependence curve of different THG wavelengths 1

3λ , 3
iλ , 1

3
iλ + , 

and 3
Nλ . Due to the dispersion, the angle dependence curve for each wavelength is differ-

ent. The corresponding phase-matching angles θm(λ3) also change in the THG band. As 
the angle θ changes from θm( 1

3λ ) to θm( 3
Nλ ), the corresponding wavelength that has the 

highest intensity should also change from 1
3λ  to 3

Nλ . Therefore, an obvious spectrum 
peak shift can be seen in the frequency domain as illustrated in Figure 5b. To quantita-
tively characterize the angle-dependent peak shift, we use the weighted wavelength λw(θi) 
to denote peak wavelength [13], as given in Equation (11). 

3 3 3 i
1

w i

3 3 i
1

( , )
( )

( , )

N
i i

i
N

i

i

I

I

λ λ θ
λ θ

λ θ

=

=

=



 (11) 

 
Figure 5. (a) The diagram of phase-matching angle θm dispersion; (b) The diagram of spectrum peak 
shift in the frequency domain. 

3. Simulation Results and Discussion 
3.1. The Investigated Centrosymmetric Crystals 

In this paper, three centrosymmetric crystals, Alpha Barium Borate (α-BBO), calcite, 
and rutile, are investigated considering their transparency, THG conversion efficiency, 
broad phase-matching range, and availability. Here, it should be clarified that α-BBO is a 
typical centrosymmetric crystal, which is different from the non-centrosymmetric Beta 
Barium Borate (β-BBO) in our previous study, although they have a similar refractive 

Figure 5. (a) The diagram of phase-matching angle θm dispersion; (b) The diagram of spectrum peak
shift in the frequency domain.

3. Simulation Results and Discussion
3.1. The Investigated Centrosymmetric Crystals

In this paper, three centrosymmetric crystals, Alpha Barium Borate (α-BBO), calcite,
and rutile, are investigated considering their transparency, THG conversion efficiency,
broad phase-matching range, and availability. Here, it should be clarified that α-BBO is
a typical centrosymmetric crystal, which is different from the non-centrosymmetric Beta
Barium Borate (β-BBO) in our previous study, although they have a similar refractive
index [26]. α-BBO and calcite are negative crystals (Ne < No), and rutile is a positive crystal
(Ne > No). The dispersion of the refractive index can be empirically calculated by the
Sellmeier relation as shown in Equation (12). The coefficients are given in Table 1 from the
literature. The third-order effective nonlinear coefficient χ

(3)
eff should be considered with the

phase-matching type and the formation of χ(3) matrix, which is dependent on the crystal
class. Here, we discuss the type II phase-matching for α-BBO and calcite of crystal class 3m,
and the type I phase matching for rutile of crystal class 4/mmm, because of the high THG
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conversion efficiency [26,29,30]. The calculation of χ
(3)
eff is given in Equation (12), and the

parameters χ
(3)
eff (θm) can be found in the literature [30].

Ne(λ), No(λ) =

√
A +

B
λ2 − C

− Dλ2 α−BBO

Ne(λ), No(λ) =

√
A +

Bλ2

λ2 − C
− Dλ2

λ2 − E
calcite

Ne(λ), No(λ) =

√
A +

Bλ2

λ2 − C
rutile

(12)

χ
(3)
eff =

1
3

χ
(3)
11 cos2 θm + χ

(3)
16 sin2 θm + χ

(3)
10 sin 2θm sin 3ϕα−BBO, calcite

χ
(3)
eff =

1
2

cos2 θm[χ
(3)
11 sin2 2ϕ + χ

(3)
18 (3 cos2 2ϕ− 1)] + χ

(3)
16 sin2 θm rutile

(13)

Table 1. The coefficients of Sellmeier Equations [26,31,32].

Nonlinear Crystal A B C D E

α-BBO

No 2.7471 0.01878 µm2 0.01822 µm2 0.01354 µm−2

Ne 2.3715 0.01224 µm2 0.01667 µm2 0.01516 µm−2

Calcite
No 1.7335 0.96464 µm−2 1.94325 µm2 1.8283 µm−2 120 µm2

Ne 1.3585 0.82427 µm−2 1.06689 µm2 0.1442 µm−2 120 µm2

Rutile

No 5.913 2.441 × 105 µm−2 0.803 × 105 µm2

Ne 7.197 3.322 × 105µm−2 0.843 × 105µm2

3.2. The Sensitivity Investigation of Angle Measurement Based on Direct THG

As illustrated before, the intensity-dependent and wavelength-dependent methods
are based on the dispersion-less and dispersive properties of angle dependence. Here, we
use the phase-matching angle θm(λ1) to denote the dispersion speed in a certain wave-
length range because θm represents the angle of the highest point in the angle dependence
curve. We first consider a wavelength range from 900 nm to 2500 nm, which covers
a commonly used range of femtosecond laser, to find a suitable wavelength range for
intensity-dependent angle measurement. The simulation results are given in Figure 6a,
where the lines correspond to α-BBO, calcite, and rutile. In the investigated wavelength
range, the θm(λ1) of rutile is monotonically decreasing from 79.8◦ to 34.2◦, which indicates
the angle dependence of rutile has a very significant dispersion in this range. Therefore,
rutile is not an ideal crystal for intensity-dependent measurement in the investigated range.
Compared with rutile, both the θm(λ1) curves of α-BBO and calcite go down firstly from
900 nm to around 1700 nm, then keep stable from 1700 nm to 2000 nm, and finally slowly
rise from 1700 nm to 2000 nm. We can see that the trends of α-BBO and calcite are very
similar, and the range 1700 nm to 2000 nm is the ideal range for intensity-dependent angle
measurement because of the low dispersion. In the dispersion-less area, the θm(λ1) of
α-BBO and calcite are around 33.0◦ and 27.1◦. It is easy to understand that the derivative of
θm(λ1) in the dispersion-less area should be close to zero. Figure 6b shows the calculated
phase-matching angle derivative in a unit of deg/nm. In this figure, the α-BBO and calcite
correspond to the left vertical axis. It can be seen that the dispersion speed of θm(λ1) is
in the order of 10−3 deg/nm. Here, the red circles represent the positions having zero
derivatives, which are 1803 nm and 1858 nm for calcite and α-BBO, respectively. As a
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comparison, the derivative result of rutile is also given in the figure. It corresponds to the
right vertical axis. We see the dispersion speed of θm(λ1) is in the order of 10−2 deg/nm,
which is much higher than the dispersion-less cases.
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To evaluate the angle measurement sensitivity of the intensity-dependent method,
we calculate the angle dependence of ITHW(θi). In the simulation process, the parameters
are set as: the focal length f = 70 mm, the Z positions of the crystal are ZL = −1 mm and
ZR = 1 mm, respectively, the crystal length L = ZR − ZL = 2 mm, the diameter of incident
femtosecond beam d = 3.6 mm. We assume the focused point (beam waist) is perfectly in
the center of the crystal, and the azimuthal angle ϕ = 30◦. The wavelength range of the
incident femtosecond laser is set from 1800 nm to 1900 nm, covering the dispersion-less
area. The space between the modes is 1 nm. Figure 7 shows the simulated results, where
the index (a), (b), and (c) of subplots correspond to α-BBO, calcite, and rutile, respectively.
In each subplot, the lines in different colors correspond to the angle dependence I3(θi) of
different modes or the total intensity ITHW(θi). The horizontal axis denotes the angular
displacement of the incident angle θi. The left and right vertical axes denote the intensity
of I3 and ITHW, respectively. It is clear that I3(θi) does not have an obvious change between
the wavelength of 1800 nm, 1850 nm, and 1900 nm for α-BBO and calcite, and the angle
dependence of ITHW(θi) keeps the same shape as I3(θi). The maximum total intensities of
ITHW are strengthened to 96.8 a.u. (α-BBO), 93.0 a.u. (calcite), respectively. Conversely,
due to the dispersion, the rutile has a much lower maximum total intensity ITHW of 2.7 a.u.
The measurement sensitivity is calculated from about 80% to 20% of ITHW, and they are
−0.087 a.u./arcsec, −0.108 a.u./arcsec, 0.002 a.u./arcsec, for α-BBO, calcite, and rutile,
respectively shown in Figure 7.
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For the wavelength-dependent method, the spectrum peak shift can be found except
for the dispersion-less area (1700–2000 nm) of α-BBO and calcite. In our previous work, a
commercial femtosecond laser source was used for producing harmonic waves, and the
central wavelength of the laser was around 1560 nm. Therefore, the wavelength-dependent
method will be discussed near 1560 nm for future experimental work. In the simulation
results, the parameters are the same as those of the intensity-dependent method. Figure 8
shows the calculated results for three crystals. In this figure, the letters a, b, and c correspond
to the results of materials of α-BBO, calcite, and rutile, respectively. The numbers 1 and 2
correspond to the 3-D plot and 2-D plot third harmonic intensity I3, respectively. For each
subplot, the color bar is used to indicate the amount of intensity. Here, we fixed the range
from −0.8◦ to 0.6◦ to compare the peak shifts. The results in Figure 8(a1,b1,c1) show that
the peak shifts exist for all the investigated materials, and all the peak shifts toward the
longer wavelength in the frequency domain as θi decreases. The peak shifts of α-BBO and
calcite both cover a range from around 500 nm to 540 nm. In contrast, the peak shift of
rutile is relatively slow because it even cannot cover the wavelength range from 519 nm to
521 nm. The essence of peak shift is the point movement, which makes ∆n(λ1, θ) = const.
This movement can be described by a contour map of ∆n(λ1, θ). It has been analyzed in
our previous work on SHG. Therefore, it is not repeated here because of the similarity.
The weighted wavelengths λw(θi) are shown in Figure 8(a2,b2,c2) by the white dotted
lines to quantitatively evaluate peak shifts. The sensitivity is calculated by a linear fitting
function to get the slope of λw(θi). The calculated sensitivities are −0.0054 nm/arcsec,
−0.0063 nm/arcsec, and −0.0002 a.u./arcsec for α-BBO, calcite, and rutile, respectively.
The results suggest that α-BBO and calcite have better measurement performance in the
wavelength around 1560 nm.
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3.3. The Focusing Parameter’s Effects on Angle Measurement

The influence of the focusing parameters on the THG angle measurement is inves-
tigated by changing the focal length f and the focused position. Here, we only put the
results of calcite crystal because of its better sensitivity performance compared with rutile.
The results are similar to those of α-BBO. In the simulation, the crystal length L = 2 mm,
d = 3.6 mm, λ1 = 1850 nm. The focused point is in the center of the crystal and the azimuthal
angle ϕ = 30◦. Figure 9 shows the results of angle dependence I3(θi), where the lines in
different colors correspond to different focal lengths. In Figure 9a, the range of incident
angle θi is from−13◦ to 1◦. The peak intensities corresponding to the focal lengths are noted
in the figure. The peak intensities are not monotonically decreasing as the focal length f
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increases, and the highest intensity is 1.00 a.u. appear as f = 70 mm. The overall trend of the
peak intensity is that it increases from 0.74 a.u. (10 mm) to 1.00 a.u. (70 mm) then decreases
from 1.00 a.u. (70 mm) to 0.51 a.u. (150 mm). We can also see the width of the angle
dependence curve is reduced as the focal length becomes longer from f = 10 mm (11.9 deg.)
to f = 150 mm (0.5 deg.). In Figure 9b, θi only covers the range from −1◦ to 0.5◦, and the
sensitivity result is shown except for the f = 10 mm because of the relatively low value. We
can see the maximum sensitivity result is −4.21 a.u./deg when f = 100 mm, rather than
f = 70 mm, which has the highest peak intensity. This is because the f = 100 mm case has a
similar high peak intensity (0.96 a.u.) but has a relatively narrower angle dependence range
compared with the f = 70 mm case. Therefore, better angle measurement can be expected
from the setting of f = 100 mm.
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Figure 9. (a) The results of angle dependence I3(θi) from −13◦ to 1◦; (b) The angle dependence I3(θi)
from −1◦ to 0.5◦; (c) The zoom in from (b), where the horizontal axis and vertical axis are limited in
the range of 0◦–0.5◦ and 0 a.u.–0.02 a.u., respectively.

We also give a qualitative explanation of the results of Figure 9a. It can be seen from
Equation (4) to Equation (8) that the angle dependence I3(θi) is related to both the beam
waist w1 and the confocal parameter b1. As the focal length f decreases, both the beam waist
w1 and the confocal parameter b1 are reduced in Equations (7) and (8). On the one hand, as
in Equation (4), the decrease of w1 makes the I3 increase directly. On the other hand, the
decrease of confocal parameter b1 will make the |J3|2 change because J3 is related to the
term 1/(1 + 2iz/b1). After a Taylor expansion of 1/(1 + 2iz/b1), |J3|2 has the following
form as shown in Equation (14),

|J3|2 =
∣∣∣J(1)3 + J(2)3

∣∣∣2
J(1)3 =

∫ zR
zL

ei∆k(θ)zdz = −Lsin c(∆kL/2)

J(2)3 =
∫ zR

zL

∞
∑

i=1
(−1)i(i + 1)(

2i
b
)

i
ziei∆k(θ)zdz

(14)
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where the decrease of b1 will make the part of J(2)3 to dominate J(1)3 . It will induce an extra
phase in |J3|2, which is harmful to the phase-matching when ∆k(θm) = 0. Therefore, there
should be a trade-off between the beam waist w1 and confocal parameter b1. The focal
length of 100 mm is the best choice, which has a Rayleigh length of 2.2 mm. In addition, as
can be found in Equation (14), a longer focal length f makes the J(2)3 smaller and |J3|2 will
degenerate to the sinc2(∆k(θ)L/2) function form. Then, the side peaks of sinc2(∆k(θ)L/2) in
the Maker fringe area also can be seen in Figure 9c [33].

In the optimized case of f = 100 mm, the effect of the beam waist position is considered
in Figure 10. Lines and circles are used to denote the beam waist positions of ±0.2 mm,
±0.4 mm, ±0.6 mm, ±0.8 mm, and ±1 mm relative to the crystal center. The maximum
intensity is obtained in the center of the crystal at 1.00 a.u., which can be seen in the red line.
This is because the central position makes the high-intensity area of the Gaussian beam
to be fully used for the THG process. As the beam waist gradually moves away, the peak
intensity falls from 0.95 a.u. (±0.2 mm) to 0.51 a.u. (±1 mm). The symmetric results for
the positive/negative beam waist movements are the consequence of the Gaussian beam’s
symmetric shape. In addition, the angle dependence areas of I3 are both close to 0.63 deg,
as shown in the figure. Thus, the best measurement sensitivity should be obtained when
the beam waist is in the center associated with the highest intensity.
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4. Conclusions

In this paper, we have proposed the intensity-dependent and wavelength-dependent
angle measurement methods by THG in centrosymmetric crystals. Three prospective
crystals, including the α-BBO, calcite, and rutile, have been considered in this research for
the two angle measurement methods. The effects of the focusing parameters on the angle
dependence have also been considered. The optimized focusing parameters have been
found for future experimental work.

For the intensity-dependent method, the type I phase-matching angle of rutile and the
type II phase-matching angle of α-BBO have been calculated in the wavelength range from
900 nm to 2500 nm. The results show that the type II phase-matching angle has a good
performance due to its dispersion-less property in the wavelength range of 1700–2000 nm.
The sensitivities of angle measurement have been evaluated for calcite and α-BBO, which
are −0.108 a.u./arcsec and −0.087 a.u./arcsec, respectively. They are much higher than
the sensitivity of 0.002 a.u./arcsec for rutile. The sensitivity of the wavelength-dependent
method has been evaluated in the dispersive range of around 1560 nm. The peak shift
in the frequency domain has been shown for the three investigated crystals. The weighted
wavelengths λw have been used to characterize the peak shift speeds, which were
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−0.0054 nm/arcsec, −0.0063 nm/arcsec, and −0.0002 a.u./arcsec for α-BBO, calcite, and
rutile, respectively. α-BBO and calcite also have fast peak shifts around 1560 nm.

In addition, the focal length f has been changed from 10 mm to 150 mm for investigat-
ing the effect of f on the angle measurement. The optimized focal length has been obtained
as f = 100 mm. It has been demonstrated that the maximum sensitivity is achieved when
the focus position is in the center of the crystal.
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