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Abstract: Process understanding and process monitoring are of great importance in production in
order to control processes and guarantee a high quality. Demanding customer requirements with
an increasing number of variants pose an even greater challenge to the quality of the processes, as
this must be maintained at the highest level even in the event of process changes. In addition, new
regulations and standards require process data to be recorded and stored, especially in manufacturing
environments for medical and safety equipment (e.g., surgical instruments, camera systems in the
automotive industry). Continuous variations in production processes and changes to products and
the production system mean that the planning effort required to implement process monitoring has
become vast. This is where automated planning and decision support systems become important.
They are able to manage the complexity arising from alternative solutions and present suitable
alternatives to the user. This article deals with the computer-aided identification of assembly features,
which influence process monitoring and the generation of production system-neutral tasks for process
monitoring. Computer-aided feature recognition methods were used to derive features from three-
dimensional models. Furthermore, a skill-based approach was used to formulate tasks for process
monitoring. This publication thus aims at the automated and product-specific generation of processes
for process monitoring.

Keywords: process monitoring; automated planning; CAD feature extraction; CAD feature recognition;
assembly

1. Introduction

In recent years, industrial production has increasingly demanded customized and
high-quality products. Therefore, flexible and reconfigurable production systems (i.e.,
flexible and reconfigurable manufacturing systems (FMS and RMS)) are emerging to meet
customer requirements while maintaining high quality standards. In addition to increasing
customer demands for high product quality, stricter regulations and standards mean that
companies have to control their processes better [1,2]. In particular, safety standards and
regulations have become stricter in the production of electronic components with a high
safety relevance and medical devices (e.g., due to the MDR - Medical Device Regulation
(MDR) 2017/745) [3]. In addition, the increasing awareness of sustainable production and
the avoidance of waste (i.e., material and resources) requires an increased reproducibility
of the production processes. To meet these requirements, process data need to be recorded
and analyzed. Assembly is one of the most important phases of manufacturing, accounting
for a significant portion of the total production time and total manufacturing costs [4].
A large proportion of the costs are incurred in assembly, where faulty production processes
cause high costs. Assembly involves upstream value-adding processes, so defects are
particularly noticeable here. Quality control or inspection only after the assembly process
is time-consuming and cost-intensive. Additional inspection processes have to be designed,
which cost time and add no value to the product. To improve the assembly quality and
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reduce the overall assembly time and cost, an efficient approach to monitoring the assembly
process is essential. Process monitoring has been studied as a possible approach for quality
control [5]. More flexible and reconfigurable production systems can adapt an existing
production configuration for the assembly of a new product variant while also integrating
sensors for process monitoring. Unfortunately, this often requires a great deal of manual
effort and expert knowledge to identify the resources and sensors capable of monitoring
the processes directly (e.g., monitoring a joining process with a force–torque sensor) or
indirectly (e.g., monitoring a joining process with sensors integrated into the robot axes).
Different assembly processes and ways to assemble a product also influence the ability to
monitor these processes. Determining monitoring requirements is the first step in process
monitoring planning in assembly and is dependent on product, process, and resource
information. To reduce the manual effort and expert knowledge required, automation
approaches are needed to manage this complexity. This paper presents an approach that
addresses precisely this issue (i.e., a reduction in effort and required expert knowledge)
through the automated identification of monitoring requirements. It is structured as follows:
after the introduction in Section 1, a literature review on process monitoring and inspection
planning is given in Section 2. This section analyzes the literature to show the need for action
regarding why the automatic generation of process monitoring requirements with feature
recognition is relevant. Computer-aided approaches in process and inspection planning are
also considered to identify the benefits that can be applied to process monitoring planning.
Finally, product and process features (i.e., geometric and process-specific) and feature-
based approaches required for process planning are described. Section 3 gives an overview
of the overall system developed and then goes into detail about the individual modules
(e.g., feature extraction and feature recognition) for generating monitoring requirements.
The results are presented in Section 4, leading to a discussion of the system and results
in Section 5. Finally, Section 6 summarizes the publication and presents an outlook for
future research.

2. Literature Review

This section provides an insight into process monitoring in general and shows ap-
proaches in the field of computer-aided process planning (CAPP) and inspection planning
(CAIP). Furthermore, features and feature-based approaches relevant to process and in-
spection planning are presented.

2.1. Process Monitoring as Part of Inspection Planning

According to DIN 9000:2015 [6], quality control is part of quality management. Here,
the focus is on achieving quality, which is defined as “[the] degree to which a set of
inherent characteristics of an object [meets] requirements” [6]. To determine the quality
of products, quantitative and qualitative characteristics, called inspection characteristics,
must be determined [6]. Quality control is defined by variables that affect processes
and lead to changes in product characteristics. These variables need to be monitored to
diagnose the state of the machine and process [7,8]. Various quality control strategies exist
for assembly, such as process monitoring at several stations, the monitoring of individual
processes (e.g., during joining), and product quality testing [1,6]. Depending on the scenario
resulting from the availability of sensor data and the complexity of production, some
strategies are more favorable than others. Process monitoring as efficient runtime data
acquisition and information provision, as well as data analysis and the recognition of
patterns in quality-relevant process data, leads to increasingly better insights into the
production process and its internal and external influences [1,9,10]. Direct and indirect
process monitoring methods can be used to directly or indirectly monitor the relevant
quality characteristics [5]. As an example, a force–torque sensor of a robot serves as a
direct monitoring method for detecting the accuracy of a joining process. The evaluation of
the sensors in the individual axes of the robot based on current deviations is an indirect
monitoring approach. Direct monitoring methods have a higher accuracy because the
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sensor and sensor data are specifically designed to monitor the process. Indirect monitoring
methods, on the other hand, can be more cost-effective and industrially applicable by
using existing sensor data and correlating them with process quality [5,11]. The increasing
complexity of planning is based on a large number of possible process alternatives and
factors that have to be taken into account due to the various possibilities of reconfigurable
production systems. Greater variations in process parameters and technologies, as well as
different alternatives, lead to an increased complexity not only in monitoring planning but
also in process and assembly planning in general. Decision support systems can facilitate
the planning phase by suggesting suitable alternatives according to predefined criteria (e.g.,
a high required accuracy or a low number of required reconfigurations) [12–15]. However,
before decision support systems can be used for planning, the data required for process
monitoring planning are needed. In this case, quality requirements need to be identified
that can later be monitored with appropriate resources (i.e., sensors). An overall decision
support system capable of matching requirements with the monitoring skills of an existing
production system and its resources was presented in previous works [15–17]. The aim
of our work is to determine the quality requirements necessary for process monitoring
semi-automatically. This provides a decision support system for the user, who is still able to
interact with the system. The motivation for this work lies in the consideration that a new
product variant with its existing assembly sequence and assembly plan can be analyzed
with a reduced manual effort and lower required expert knowledge to determine the quality
requirements, making the planning of process monitoring for small batch production more
efficient. Multi-variant production on a flexible/reconfigurable production system requires
multiple iterations of process planning. The approach in this work was therefore to identify
monitoring requirements as part of the inspection planning. In the process planning phase,
this can be classified as a subsequent phase of process or assembly planning [18].

2.2. Computer-Aided Process Planning and Inspection Planning

The flexible assembly of products on a given production system leads to high com-
plexity in the planning processes. For example, the identification of processes, assembly
sequences, the allocation of resources to individual processes, and the multiple use of the
production system (e.g., unidirectional and bidirectional material flow) are advantageous
for process planning since a product can be assembled under different bounding condi-
tions (e.g., the capacity of individual production stations or resources) in different ways.
CAPP reduces manual effort and the required expert knowledge by automating planning
steps [19]. Different computer-aided approaches can be used for individual domains [19,20].
For example, the design of products can be supported by computer-aided design (CAD)
tools, and the planning of manufacturing processes by computer-aided manufacturing
(CAM) tools. In the area of quality management, CAIP tools can be used to determine
the quality characteristics to be measured and inspected. The matching of inspection
characteristics with the appropriate measuring equipment can also be performed automati-
cally. Virtual analysis of the part to be manufactured can identify inspection characteristics
and measuring equipment. These tools primarily focus on manufacturing processes and
manufacturing characteristics rather than assembly characteristics or processes [21]. The
choice of measuring equipment is also often determined in advance and set as a coordinate
measuring machine (CMM).

2.3. Features in Process Planning

Several approaches used to improve the efficiency of decision support systems for
process planning use features, both in manufacturing and assembly [22–24]. Features can
be extracted from CAD models and describe assembly knowledge for planning processes.
Product features are divided into low-level features (shape features) and high-level features
(application-specific features, e.g., assembly features such as joining surfaces) [25]. Low-
level features describe geometric and topological units of parts and shapes such as holes,
chamfers, notches, and slots. High-level features describe application-specific features in
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terms of functionality and use. An assembly feature, as a high-level feature, can be the
connection between two shape features of different parts in an assembly group. Different
definitions of high-level or assembly features can be found [21,26,27]. These definitions
differ in depth and application. In general, a high-level feature is significant to the process.
In assembly applications, this can be specified by describing the geometric, topological,
and process parameters. The study in [27] describes joining features as representing the
entities involved in the connection, the joining method, constraints, and geometric shapes
(e.g., groove, chamfer). Features of the joining path, tolerances, and gripping positions
also belong to this category [20]. In this paper, assembly features relevant to process
monitoring are defined as assembly knowledge. Thus, geometric, topological, functional,
and process-relevant features are included in this category.

2.4. CAD Feature Recognition

Different feature recognition approaches have been developed in the past few decades
to support engineers during the design and manufacturing planning phases [28,29]. In
particular, in CAD and CAM tools, these approaches are used to improve the identification
of features for manufacturing processes (e.g., inspection criteria for milling processes), as
can be seen in Table 1. Most of the approaches rely on an analysis of the CAD model of the
product as a bounding representation (B-Rep). In B-Rep models, volumes are described
internally by the surfaces bounding them and, thus, by the boundary edges. In addition to
the standard analytical curves and surfaces (cylinders, planes, circles, ellipses), free-form
surfaces and curves are also used. The direction of the normal vector of the surface pointing
toward the material is used to uniquely define on which side of the surface the enclosed
volume is located. Based on the representation of individual parts, different approaches
have been developed to identify form and geometrical features in CAD models [28,29].
Table 1 below shows some approaches for feature recognition. Depending on the objective
and focus, the approaches vary for specific use cases (e.g., critical milling features). The
column “focus” shows the main characteristics of each approach and describes the best
fit of each approach. As can be derived from the table, a hint-based approach has been
proven to be especially applicable for machining features from 2D orthographic projections.
Up to a certain point, all approaches presented in Table 1 rely on a rule-based approach.
Nevertheless, the rule-based approach is often described in isolation, as the focus is on
logical rules rather than volumetric decomposition or hint-based methods.

CAD feature recognition relies on the extraction of data. The data extraction can also
be seen as a pre-process for feature recognition. Hereby, external and internal approaches
for the extraction of features can be distinguished [24,25]. Internal approaches are included
in commercial CAD systems and can be addressed via application programming interfaces
(APIs). These approaches extract geometric data and recognize features directly from the
corresponding CAD systems. External approaches are independent of CAD systems and
use neutral data formats, such as STEP and XML files. Currently, almost every CAD system
supports neutral data formats, including the import and export of neutral format files. This
promotes the development of a computer-aided approach for the automated identification
of features. An external approach is very appealing, especially in the area of assembly
features relevant for process planning, where CAD files are often transferred between
different commercial tools.
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Table 1. Different approaches for CAD feature recognition based on form identification.

References Approach Description Focus

[30–33] Graph-based
approach

Boundary surface models (B-Reps) search for surface edge
models (face–edge patterns). The boundary representation
of each part is transformed into a graph in the form of
nodes and edges. Newer approaches tend to enrich the
expressiveness of the feature graph by including
more attributes.

- Nodes and arcs represent faces
and edges
- More successful for isolated features
(i.e., non-interacting features)

[34–36] Hint-based approach

Hint-based methods were developed based on the idea
that incomplete representations can search for hints about
the presence of certain features. Searching for exact
patterns/rules is very prone to errors when features
intersect. Recent approaches consider not only faces as
hints but also edges and vertices.

- Patterns in the part boundary that
provide an indication of the possible
existence of a feature
- Recognizing machining features from
2D orthographic projections

[28,32,37] Rule-based approach

Features are generalized as templates consisting of
characteristic rule patterns, but defined without an explicit
representation scheme for feature extraction. Application
of rules (e.g., to databases) in which feature
instances/templates are stored.

- Predefined constraints are formalized
as rules
- Broad applicability due to predefined
rules that are required for every
conceivable feature

[28,29,38,39]
Convex-hull volu-
metric decomposition
approach

Decomposition of non-convex objects into convex
components with arbitrary shape. Further approaches use
the alternating sum of volumes with partitioning (ASVP)
to express a non-convex object in form of a sequence of
convex volumes.

- Volumetric decomposition into
convex volumes
- Effective in determining delta
volumes for polyhedral parts, but
difficulties with curved surfaces

[28,29,38,40] Cell-based volumetric
approach

All geometric surfaces are expanded to decompose the
delta volume into unit volumes, i.e., minimal cells or
simple shapes. The features defined in the cell-based
decomposition approach are essentially volumes with
simple shapes.

- Volumetric decomposition into
minimal cells
- Parts with flat surfaces and only in a
limited number of cases with convex
curved surfaces

[41,42] Neurona- network-
based approach

Compared to traditional feature detection methods,
neuronal networks do not perform explicit reasoning.
Neural networks are able to infer implicit patterns through
training with examples. As input date, 2D projections of
the CAD model are often used to identify its features.

- Training algorithms, design of
network layers, and number of
neurons in each layer
- Requires structured data, high-quality
data, and sufficient quantity of data for
the training

[43,44] Synthetic pattern
recognition approach

Semantic primitives construct a model of the part, written
in a description language
Edge boundary classification (EBC): The spatial
addressability information of solid models identifies the
solid and empty “sides” of a boundary entity.

- Features only in rotationally and axis
symmetric elements
- Manufacturing features for 2D NC
machines (e.g., pockets)

[45,46] Hybrid
approaches

Combinations of approaches, e.g., graph-based and
hint-based approaches, rule-based and
network-based approaches

- Combination of different advantages
and limitations of
individual approaches
- Applicable to different fields

2.5. Need For Action

Due to the high manual effort required for the identification and definition of assembly
features relevant to process monitoring, as well as the high level of expert knowledge,
computer-aided feature recognition approaches are needed. As can be seen in Section 2.4,
several feature recognition approaches exist for manufacturing processes (e.g., milling) and
process planning (e.g., in combination with CAPP; see Section 2.2). Feature recognition
methods have also become a focus of attention in the context of inspection planning for
manufacturing processes. Assembly planning uses assembly feature recognition to identify
assembly processes and assembly sequences in CAD models (see Section 2.3). There
are no approaches yet in assembly feature recognition relevant to process monitoring
planning. As can be seen from the literature review in Section 2.4, rule-based approaches
seem to be promising due to their individual applicability. Rules must be formulated and
applied for this purpose. This paper resolves the lack of feature recognition for identifying
monitoring requirements in assembly processes by presenting a system for formulating and
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integrating rule-based feature recognition that can be combined with predefined templates
for monitoring requirements. Different assembly plans and assembly processes lead to
a variety of possible monitoring requirements and, with the assigned sensors, to process
monitoring plans. An automated approach is therefore required to automatically generate
different monitoring requirements. This has the further advantage of the monitoring
requirements with the allocated sensors being able to be used as criteria for the selection of
an assembly plan [15]. The concept for the automated identification and parameterization
of process monitoring requirements with its individual modules is presented in Section 3.

3. Concept

The following section describes an approach for the automatic identification of process
monitoring features in assembled products. As can be seen in Figure 1, a user interaction en-
ables the customization of the identification of the monitoring features and parameters and,
thus, the individual monitoring requirements of a new product variant to be assembled.

Figure 1. System overview for the identification of process monitoring requirements in
assembly products.

The initial situation for the use of the system or the identification of the monitoring
requirements is based on the newly planned assembly of a new product variant with high
quality demands. In this case, the product and its assembly plan(s), with its production
locations (e.g., stations or cells) and operating resources (e.g., robots and grippers), are
defined. Multiple assembly plans and assembly sequences can influence the determination
of monitoring requirements. Based on the sequence of components to be assembled, dif-
ferent characteristics may form as a result that are necessary for monitoring. This concept
considers multiple assembly plans and creates the monitoring requirement individually for
the assembly plans (see Figure 1). Different assembly plans and monitoring requirements
can have an influence on the generation of monitoring tasks and plans [15]. Therefore,
the main objective for using the following system is to identify and define monitoring
requirements that must be considered when planning process monitoring. The product
information derived from the CAD model of the assembled product and the information
from the assembly plan serve as an input for the system to identify the monitoring re-
quirements for assembly processes. The extraction and recognition of the geometric and
process-specific features rely heavily on two sub-modules. The sub-module containing
templates for monitoring requirements describes known geometric features and process
parameter types that are relevant to the successful execution of the assembly processes.
These templates must be created manually in advance. The templates are based on existing
descriptions (e.g., norms and standards, such as DIN 8593 – “Manufacturing Processes Join-
ing”) of assembly processes and their relevant characteristics. A more detailed description
of the templates can be found in Section 3.2. Depending on the complexity of the process
and the company’s internal adjustments or additional requirements, the manual setup of a
template varies in the time required. These can then be used more frequently for different
product alternatives. This recording can be performed in workshops and by experts (e.g.,
the quality manager or product designer).
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The sub-module for parameterizing the process monitoring requirements assigns the
monitoring parameters obtained from the assembly plan information, standard process
parameters (e.g., the torque of the screw, the joining force), and user inputs. The extraction
and recognition module is the core element of requirement identification and serves as a
feature extractor for the product CAD model and for feature recognition. First, the CAD
data are extracted. This information is then used for feature recognition to determine
and identify the application-specific assembly features. Figure 2 describes the interactions
between the individual modules and the user. The generation of process monitoring re-
quirements for a single product can be divided into four phases: 1. the import phase; 2. the
feature extraction phase; 3. the feature detection phase; 4. the parameter determination
phase. The individual phases and modules are described in the following sections. At the
end of the cycle, the user can manually define further monitoring requirements that the
system does not recognize or that need to be detailed further.

Import assembly group (CAD)

Parameterization  
module

Import assembly plan(s)

Load input and
extract features

Connect to database

Retrieve information

Fill templatesPass on filled parameter templates

Associate inputs

Start feature extraction and recognition

Template  
database
module

Feature Extraction

Find parameters
Display process

monitoring requirements

Pull information

Push information

Caption:

Solid feature  
recognition

Connection feature
recognition

Retrieve information

Import

User
(e.g., engineer) I/O module

Feature extraction  
and recognition  
module

Feature Recognition

Parameter Determination

Figure 2. The sequence diagram shows the interactions between the modules for automatic identifi-
cation of process monitoring characteristics and the user. The user role and modules are shown in
Figure 1 and provide additional information about which data must be selected and imported and
how the results can be retrieved. Additionally, the individual phases can be seen, such as Import,
Feature Extraction, Feature Recognition, and Parameter Determination.

3.1. CAD Feature Extraction and Recognition for Monitoring Processes

The feature extraction and recognition module relies on the information previously
imported via the input/output module (I/O module). Here, the process plan (as JSON
file) with its individual assembly processes must be imported together with the CAD
model of the product (as a STEP file). The process plans consist of the individual required
assembly steps and additional process information (e.g., required joining force). This
file can be created manually or automatically in advance and shows the individual work
plans as the sequence of parts to be assembled. The CAD model as the STEP file contains
information about the individual parts, positions, and alignments, and thus the entire
assembled product. The extraction step involves obtaining geometrical and topological
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CAD information from the STEP file for feature recognition. For the extraction of the
relevant information, an external approach based on OpenCascade Technology (OCC
Technology, https://www.opencascade.com/) was used in this work. Since the STEP
format is set up as a text-based file format, the geometric and topological information
relevant for feature recognition can be extracted automatically. Various topological entities,
such as edges and vertices, are retrieved from the STEP file. The identification of each
feature is part of the recognition process. Surfaces, shapes, solids, and connections are
recognized (Figure 3). The subsequent recognition of the individual features (e.g., faces) is
thus based on the extracted information from the OpenCascade Technology.

Figure 3. Different levels of features, from simple face features to connection features, relevant to
assembly processes.

Face feature recognition is performed by geometric inference (i.e., application to
vertices and edges), resulting in the recognition of cylindrical, circular (conical), and
spherical faces. Shape features are recognized by geometric reasoning from surface features
and describe holes, hexagons, and m-t shapes, among others. A form feature, such as a hole,
can be described as a cylindrical face feature with an inward orientation. An m-t-shape can
be described as a cylindrical face that has one or more continuously connected faces whose
axis directions are parallel to the axis direction of the cylindrical face (form feature as part of
the screw, in Figure 3). Solid features are generated using form features (i.e., face features).
These consist of a unique identifier, a transformation (Cartesian coordinate system), the
individual planes, cylinders, cones, hexagons, spheres, component information, and, when
recognized, standard components (e.g., bolt, nut). For example, a nut can be recognized
if a solid feature has only one hole, one hexagon feature, and only one m-t-shape, and
their axis directions are parallel to each other. Connection features refer to the intersections
between different solids, which are understood as a set of intersections between the faces
of different solids (also called Face2Face features). For example, if two cylindrical surfaces
have parallel directions and the vector between their centers is parallel to that direction,

https://www.opencascade.com/
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then the cylindrical surfaces are concentric (see Appendix C). In addition to the information
derived from the process plans, further information can be added to these connection
features (e.g., a screw connection feature).

As can be seen in Figure 3, multiple features at different levels of different parts
merge into high-level features; for example, connection features between parts, such as the
congruence of screws and holes or surface contacts between blocks. Combining different
features at different levels is part of a rule-based approach based on geometric reasoning.
Faces, forms, solids, and connections can be identified by applying geometrical rules
(initially to vertices and edges from the STEP file). These features are relevant to assembly
and therefore applicable and useful for process planning (i.e., high-level assembly features).
Since these characteristics are relevant for process planning, monitoring planning is also
included in the utilization of these features. To further enrich these features into monitoring
requirements, the next step is to design product-neutral templates for process monitoring
requirements and populate them with the recognized features.

3.2. Product-Neutral Process Monitoring Requirements Templates

The templates for monitoring requirements contain empty shells of parameters to be
monitored during the process (Table 2). Assembly processes can include up to two parts or
groups of parts at once, depending on the process type. While joining processes involve an
existing part or group of parts in which the new part is assembled, welding processes do not
involve an additional second part or group of parts because a joining process was previously
performed. The information about the parts involved in the process to be monitored can
be stored in the template and may be relevant when using the monitoring requirements
for planning. The template contains names for the two parts or groups of parts as well as
their unique IDs in the CAD file. In addition, individual parameter names, units, and types
are inserted, which can be derived from process-relevant parameter descriptions (e.g., VDI
guidelines, papers, and DIN norms, such as DIN 8593). These parameters can then be filled
with assembly features that need to be monitored. These features can be differentiated into
geometric and process-relevant features (see Section 2.3). Each feature has a description
(e.g., name and ID), a feature type (geometric or process-relevant), a value range (e.g.,
torque 2.0 Nm to 2.2 Nm), and a volume range (e.g., positions and alignments). These
empty shells serve as a template for the parameterization sub-module and are filled with
information from the recognition sub-module and process plan information (see Figure 1).
The template and its structure are designed according to the monitoring skills of the sensors.
This allows for an automatic assignment of sensors to monitoring requirements in further
planning steps, which is not part of this article (see Section 2.1) [13,14,16].

3.3. Generation Of Product-Specific Monitoring Requirements

The parameterization sub-module generates the requirements for process monitoring.
Information from the recognition module and from the process plan is transferred to the
monitoring templates to define the requirements. Allocation rules allow the templates
to be filled with information about the part IDs, process types, and feature IDs. For this
step, it is important for the process plan to contain information about the processes to be
executed according to each part and part ID. The result of this step is a generated list of
requirements for each process step of the preloaded process plan. This list can now be
manually completed by the user to add additional features that were either not identified
in the CAD file or defined in the process plan (e.g., the required torque for the screw and
torque to be monitored).
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Table 2. Exemplary monitoring template structure for joining and screwing.

Process Type

Part A Part B Parameter Feature

Name ID Name ID Name Unit Type Descriptions
Volume (List of
Positions and
Orientations)

Screwing Block A 23 Block B 24

Torque Nm mechanical / / / / Position Orientation

Rotational
speed 1/s mechanical / / / / Position Orientation

Angle ° geometric / / / / Position Orientation

Joining Block A 23 Block B 24

Contact
surface m2 geometric / / / / Position Orientation

Lead-in
chamfer true/false geometric / / / / Position Orientation

Force Nm mechanical / / / / Position Orientation
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4. Results

The software and hardware used for the implementation are listed in Table A1 in
Appendix A. Since OpenCascade provides a Python library (PyOCC) for feature extraction
from STEP files, the core element of the approach (feature extraction and recognition) was
implemented in Python. The database for the monitoring templates was implemented
in an SQL database that interacts with the Python implementation. Each monitoring
requirement template for each process type was set up as a database table, as shown in
Table 2. To be able to interact with the solution, the visualization was realized in PyQT (see
Figure 4). The assembly of an exemplary surround view camera serves as a use case for the
implementation. The product consists of two housing parts (lower and upper housing), an
electrical circuit board, and four screws (see Figure 5). Two joining processes are required
for the electrical circuit board and the two housing parts, four screwing processes to attach
the board to the lower housing part, and one welding process to fuse the upper and lower
housing parts. Each of these processes requires a different set of process parameters (e.g.,
joining force, welding temperature).

Figure 4. Graphical user interface for the detection and visualization of assembly features relevant
to monitoring.

The graphical user interface (GUI) enables the import of individual files (e.g., process
plans, CAD models) and establishes a connection to the template database via a user login
(see operation panel 1 in Figure 4). Operation panel 2 then allows the feature recognition
and parameterization to be performed. The individual results are then saved in the feature
window (recognized features), database window (monitoring templates), and parameter
window (process parameters). A logging output displays the current steps and serves
as a log file. At the end, the user can manipulate the monitoring requirements in the
parameter area:

• Add monitoring requirements;
• Delete monitoring requirements;
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• Modify monitoring requirements.

The results are stored in a text-based and human-readable JSON file for further pro-
cessing (e.g., resource allocation for monitoring planning). As can be seen in Figure 5, the
process features from the process plans (JSON file) and the geometric features from the
CAD model (STEP file) result in a variety of different monitoring requirements. The assem-
bly sequence shown in Figure 5 is imported via the GUI as a JSON file. The information
stored in the JSON file consists of the different assembly sequences, process types (e.g.,
screwing, joining, welding), and additional process parameters relevant for monitoring
(e.g., joining force of 4 Nm). For validation, a surround-view camera and its integration
into the software tool was tested (Figure 5). This camera system is used for autonomous
driving. Therefore, the assembly processes must achieve a high quality.

The identified features from the process plan and the CAD file are automatically rec-
ognized and fill the monitoring templates. Company-internal knowledge can be identified
and stored in the templates before the automated approach automatically identifies the
requirements using the expert knowledge already available. The template database can be
manipulated by the user before applying the monitoring requirement identification.

Figure 5. Use case – identification of monitoring features of an assembled surround view camera.

The monitoring requirements are then stored in a text-based format (JSON file) to be
used for further steps of monitoring planning (e.g., sensory resource allocation). Excerpts
from the feature detection method and code can be found in Appendixes B–E.
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5. Discussion

The approach and implementation allow expert knowledge about process monitoring
requirements to be stored and used efficiently. This enables a reduction in planning effort
and costs, particularly in the case of multi-variant production with small batch sizes. When
manually determining the monitoring requirements, the quality manager must determine
these requirements in various workshops. This requires expert knowledge and various
steps to manually determine the requirements in the CAD file and in the process plan. The
approach presented in this article is also advantageous for larger batch sizes, since the
determination of the monitoring requirements does not increase the production time and
thus does not directly affect production costs. In the best case, costs for additional sensors
are avoided. Monitoring requirements are initially needed for non-value-added monitoring
tasks (i.e., secondary processes). They only indirectly impact costs through increased
planning efforts, increased process understanding, earlier defect detection, and lower
defect rates. Due to higher process and production standards in certain production areas,
such as medical device production (due to MDR), higher process monitoring standards are
needed. Another aspect to investigate is the initial cost of setting up this semi-automated
identification of monitoring needs. Creating the requirement templates is not as time-
consuming as defining the individual rules for recognizing assembly features. This aspect,
in particular, requires a high level of expert knowledge and setup time.
The results described in this paper show a relatively simple assembly example consisting of
six parts to be assembled. The assembly plan, which consists of seven assembly processes,
is also not too complex. The variety of assembly processes can lead to a complex initial
setup of the presented system since different features have to be considered, and therefore
rules have to be formulated. In addition, the complexity of the geometries can lead to
missing features and monitoring requirements, which have to be added afterward by
the user. In this use case, 14 different solid features were identified, consisting of planes,
cylinders, screws, and holes. A total of 19 connection features were recognized, with 15
plane connections and 4 cylinder connections. Cylinder connections are, for example, the
connections between the screw and hole (see Appendix E). These characteristics were
then used to populate the monitoring requirements templates along with the information
derived from the assembly plan. Here, geometry and process characteristics formulate
monitoring requirements (R), as can be seen in Figure 5. Some missing requirements were
added manually, such as the measuring force during joining, which was not present in the
assembly plan.

Depending on the process diversity, production yield, scrap rate, and batch size, the
approach may be too time-consuming and costly. Once the initial stage of the approach is
implemented, new processes or product variants bring more variety to the production, and,
over time, the cost of building the approach is amortized. In addition, the approach and
implementation should be semi-automated so that the user can intervene and improve the
system at any time. The structure of the presented system allows the user to decide which
individual module to choose. This gives the user the flexibility to increase or decrease the
level of automation.

6. Conclusions

The presented approach and implementation in this paper take into account the fact
that, in today’s production, a more sustainable and reliable process handling needs the early
identification of the requirements for process monitoring. Particularly in assembly, the aspect
of automatically setting up process monitoring has remained insufficiently investigated.
In this paper, a feature recognition approach was developed to identify assembly features
relevant to process monitoring. In doing so, three modules help the user to automatically
identify monitoring requirements by analyzing CAD files and process plans.

After the initial effort to set up the modules (e.g., developing the monitoring request
templates, geometric reasoning rules, and parameter mapping rules), the approach enables
the automatic identification of monitoring requests based on geometric and process-based
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features of a new product variant. As shown in the implementation and discussion, this
leads to a reduction in the required expert knowledge and time for the identification of these
requirements. As can be seen from the results and discussion, the monitoring requirements
of standard/standard parts and geometries (e.g., screws, holes, chamfers) were identified
in particular with little additional user input. To improve the approach in this paper, more
complex parts and assemblies with free-form surfaces need to be examined and feature
recognition rules need to be optimized. Further investigations will explore more complex
assembly plans and product designs. So far, the approach has been developed at the
institute and validated there together with a use case partner. In addition, the approach is
currently being validated in the ASSISTANT research project with various use case partners
of the project. An application of the system in a heterogeneous production environment is
also required to evaluate the limitations of this approach (e.g., production portfolio and
batch sizes).

Author Contributions: All authors contributed to the concept and design of the study. The method-
ology, software, data collection, and analysis were performed by C.G. The first draft of the manuscript
was written by C.G. and all authors commented on earlier versions of the manuscript. D.G. provided
assistance in constituting the results in this paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Franco-German Alliance for Factory of the Future (www.
future-industry.org, (accessed on 9 January 2023) and the EU commission. The research in this paper
was possible due to the funding of the EU project “ASSISTANT” (Grant number: 101000165).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors of this paper would like to thank the EU commission and all the
participants of the EU project “ASSISTANT”. The research in this paper was possible due to the
funding of the EU project “ASSISTANT” (Grant number: 101000165).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
MDR Medical Device Regulation
CAD Computer-Aided Design
CAPP Computer-Aided Process Planning
CAM Computer-Aided Manufacturing
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Appendix A

The following table displays the software that was used to generate the results. The
hardware used to test the implemented system is also shown in Table A1.
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Table A1. Software and hardware used for the implementation.

Nr. Module Description
Software/
Programming
Environment

Hardware

1 Monitoring
Templates

Tables for individual
process types consisting
of different parameters to
be monitored

SQL database

Intel(R) Core(TM)
i7-7700HQ
CPU @ 2.80 GHz
and 16.0 GB
of RAM under
MS Windows
10 Edu (64 bit)

2
Feature Extraction

and
Recognition

Extracting geometrical
features from a STEP-file
(CAD file)

Python,
PythonOCC,
PyQT

Intel(R) Core(TM)
i7-7700HQ
CPU @ 2.80 GHz
and 16.0 GB
of RAM under
MS Windows
10 Edu (64 bit)

Rule-based recognition of
geometrical features from
geometrical features
extracted from a STEP-file
(CAD file)

Python,
PythonOCC,
PyQT

3 Parameterization

Merging geometrical
features recognized by the
module 2 (Feature
Extraction and Recognition)
and process-based features
extracted from the process
plan (JSON-file)

Python, PQT,
PySQL,
JSON

Intel(R) Core(TM)
i7-7700HQ
CPU @ 2.80 GHz
and 16.0 GB
of RAM under
MS Windows
10 Edu (64 bit)

Appendix B

The following figure shows an exemplary extract of the geometrical reasoning.

Figure A1. Geometric reasoning for face features.
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Appendix C

The following figure describes different intersections of faces.

Figure A2. Geometric reasoning for connection Face2Face features.

Appendix D

The following figure displays some rules implemented in Python.

Figure A3. Implementation of the detection of faces, solids, edges, etc., based on the OpenCascade
technology.
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Appendix E

The following figure displays the results of the feature recognition of the example
product described in Section 4.

Figure A4. The results (recognized solid features and intersections) of the use case.
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